The Role of Mineral and Organic Composition on the Phosphorus Content of Prehistoric Pottery (Middle Neolithic to Late Bronze Age) from NW Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Assemblage
2.2. Mineralogical Analysis (XRD)
2.3. Elemental Analysis (XRF and CN Analyzer)
2.4. FTIR-ATR
2.5. Statistical Analyses
3. Results and Discursion
3.1. Mineralogical Composition (XRD)
3.2. Elemental Composition (XRF)
3.3. FTIR-ATR
3.4. FTIR-ATR and Phosphorous Content in the Sherds
3.5. Regression Model for Phosphorous Content in the Sherds
3.6. Archaeological Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bintliff, J.; Degryse, P. A Review of Soil Geochemistry in Archaeology. J. Archaeol. Sci. Rep. 2022, 43, 103419. [Google Scholar] [CrossRef]
- Wilson, C.A.; Davidson, D.A.; Cresser, M.S. Multi-Element Soil Analysis: An Assessment of Its Potential as an Aid to Archaeological Interpretation. J. Archaeol. Sci. 2008, 35, 412–424. [Google Scholar] [CrossRef]
- Holliday, V.T.; Gartner, W.G. Methods of Soil P Analysis in Archaeology. J. Archaeol. Sci. 2007, 34, 301–333. [Google Scholar] [CrossRef]
- Oonk, S.; Slomp, C.P.; Huisman, D.J. Geochemistry as an Aid in Archaeological Prospection and Site Interpretation: Current Issues and Research Directions. Archaeol. Prospect. 2009, 16, 35–51. [Google Scholar] [CrossRef]
- Terry, R.E.; Nelson, S.D.; Carr, J.; Parnell, J.; Hardin, P.J.; Jackson, M.W.; Houston, S.D. Quantitative Phosphorus Measurement: A Field Test Procedure for Archaeological Site Analysis at Piedras Negras, Guatemala. Geoarchaeology 2000, 15, 151–166. [Google Scholar] [CrossRef]
- King, S.M. The Spatial Organization of Food Sharing in Early Postclassic Households: An Application of Soil Chemistry in Ancient Oaxaca, Mexico. J. Archaeol. Sci. 2008, 35, 1224–1239. [Google Scholar] [CrossRef]
- Fernández, F.G.; Terry, R.E.; Inomata, T.; Eberl, M. An Ethnoarchaeological Study of Chemical Residues in the Floors and Soils of Q’eqchi’ Maya Houses at Las Pozas, Guatemala. Geoarchaeol. Int. J. 2002, 17, 487–519. [Google Scholar] [CrossRef]
- García-López, Z.; Martínez Cortizas, A.; Álvarez-Fernández, N.; López-Costas, O. Understanding Necrosol Pedogenetical Processes in Post-Roman Burials Developed on Dunes Sands. Sci. Rep. 2022, 12, 10619. [Google Scholar] [CrossRef]
- Farswan, Y.S.; Nautiyal, V. Investigation of Phosphorus Enrichment in the Burial Soil of Kumaun, Mid-Central Himalaya, India. J. Archaeol. Sci. 1997, 24, 251–258. [Google Scholar] [CrossRef]
- Tallón Armada, R.; López Costas, O.; Martínez Cortizas, A. Análisis Del Contenido En Fósforo En Los Suelos y Sedimentos Del Yacimiento de Ventosiños (Coeses) Como Una Alternativa Al Hallazgo de Restos Óseos. In Un Yacimiento Ceremonial en la Transición del Bronce al Hierro: Ventosiños (Coeses, Lugo); Cano Pan, J.A., Piay Augusto, D., Naveiro López, J., Eds.; Arqueoloxia do Noroeste SLU: Cambre, Spain, 2015; pp. 121–127. [Google Scholar]
- Nielsen, N.H.; Kristiansen, S.M. Identifying Ancient Manuring: Traditional Phosphate vs. Multi-Element Analysis of Archaeological Soil. J. Archaeol. Sci. 2014, 42, 390–398. [Google Scholar] [CrossRef]
- Horák, J.; Janovský, M.P.; Klír, T.; Malina, O.; Ferenczi, L. Multivariate Analysis Reveals Spatial Variability of Soil Geochemical Signals in the Area of a Medieval Manorial Farm. Catena 2023, 220, 106726. [Google Scholar] [CrossRef]
- Devos, Y. Near Total and Inorganic Phosphorus Concentrations as a Proxy for Identifying Ancient Activities in Urban Contexts: The Example of Dark Earth in Brussels, Belgium. Geoarchaeology 2018, 33, 470–485. [Google Scholar] [CrossRef]
- Lehmann, J.; Vabose Campos, C.; Luiz Casconselos de Mâncedo, H.; German, L. Sequential P Fractionation of Relict Anthopogenic Dark Earths of Amazonia; Glaser, B., Woods, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 9783662056837. [Google Scholar]
- Wilson, L.; Pollard, A.M. Here Today, Gone Tomorrow? Integrated Experimentation and Geochemical Modeling in Studies of Archaeological Diagenetic Change. Acc. Chem. Res. 2002, 35, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Neff, D.; Dillmann, P.; Bellot-Gurlet, L.; Beranger, G. Corrosion of Iron Archaeological Artefacts in Soil: Characterisation of the Corrosion System. Corros. Sci. 2005, 47, 515–535. [Google Scholar] [CrossRef]
- Nord, A. On the Deterioration of Archaeological Iron Artefacts in Soil. Fornvännen 2002, 97, 298–300. [Google Scholar]
- Hedges, R.E.M. Bone Diagenesis: An Overview of Processes. Archaeometry 2002, 44, 319–328. [Google Scholar] [CrossRef]
- Kendall, C.; Eriksen, A.M.H.; Kontopoulos, I.; Collins, M.J.; Turner-Walker, G. Diagenesis of Archaeological Bone and Tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 491, 21–37. [Google Scholar] [CrossRef]
- López-Costas, O.; Lantes-Suárez, Ó.; Martínez Cortizas, A. Chemical Compositional Changes in Archaeological Human Bones Due to Diagenesis: Type of Bone vs Soil Environment. J. Archaeol. Sci. 2016, 67, 43–51. [Google Scholar] [CrossRef]
- Maggetti, M. Phase Analysis and Its Significance for Technology and Origin. In Archaeological Ceramics; Olin, J.S., Franklin, A.D., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1982; pp. 121–133. [Google Scholar]
- Rice, P.M. Recent Ceramic Analysis: 1. Function, Style, and Origins. J. Archaeol. Res. 1996, 4, 133–163. [Google Scholar] [CrossRef]
- Rice, P.M. Recent Ceramic Analysis: 2. Composition, Production, and Theory. J. Archaeol. Res. 1996, 4, 165–202. [Google Scholar] [CrossRef]
- Maritan, L. Archaeo-Ceramic 2.0: Investigating Ancient Ceramics Using Modern Technological Approaches. Archaeol. Anthropol. Sci. 2019, 11, 5085–5093. [Google Scholar] [CrossRef]
- Maggetti, M.; Heinmann, R.B. Experiments on Simulated Burial of Calcareous Terra Sigillata (mineralogical change). Preliminary Results. Br. Museum Occas. Pap. 1981, 19, 163–177. [Google Scholar]
- Maritan, L. Ceramic Abandonment. How to Recognise Post-Depositional Transformations. Archaeol. Anthropol. Sci. 2020, 12, 199. [Google Scholar] [CrossRef]
- Schwedt, A.; Mommsen, H.; Zacharias, N.; Buxeda i Garrigós, J. Analcime Crystallization and Compositional Profiles—Comparing Approaches to Detect Post-Depositional Alterations in Archaeological Pottery. Archaeometry 2006, 48, 237–251. [Google Scholar] [CrossRef]
- Stoner, W.D.; Shaulis, B.J. Chemical Mapping to Evaluate Post-Depositional Diagenesis among the Earliest Ceramics in the Teotihuacan Valley, Mexico. Minerals 2021, 11, 384. [Google Scholar] [CrossRef]
- Gilstrap, W.D.; Meanwell, J.L.; Paris, E.H.; López Bravo, R.; Day, P.M. Post-depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects. Minerals 2021, 11, 749. [Google Scholar] [CrossRef]
- Maritan, L.; Angelini, I.; Artioli, G.; Mazzoli, C.; Saracino, M. Secondary Phosphates in the Ceramic Materials from Frattesina (Rovigo, North-Eastern Italy). J. Cult. Herit. 2009, 10, 144–151. [Google Scholar] [CrossRef]
- Golitko, M.; McGrath, A.; Kreiter, A.; Lightcap, I.V.; Duffy, P.R.; Parditka, G.M.; Giblin, J.I. Down to the Crust: Chemical and Mineralogical Analysis of Ceramic Surface Encrustations on Bronze Age Ceramics from Békés 103, Eastern Hungary. Minerals 2021, 11, 436. [Google Scholar] [CrossRef]
- Aoyama, H.; Yamagiwa, K.; Fujimoto, S.; Izumi, J.; Ganeko, S.; Kameshima, S. Non-Destructive Elemental Analysis of Prehistoric Potsherds in the Southern Ryukyu Islands, Japan: Consideration of the Pottery Surface Processing Technique in the Boundary Region between the Japanese Jōmon and Neolithic Taiwan. J. Archaeol. Sci. Reports 2020, 33, 102512. [Google Scholar] [CrossRef]
- Gosselain, O.P. Poteries Du Cameroun Méridional: Styles Techniques et Rapports à L’identité; CNRS ÉDITIONS: Paris, France, 2002; ISBN 2-271-06034-6. [Google Scholar]
- Colas, C. Présence de Céramiques à Dégraissant Osseux Dans Les Régions de l’ouest de La France. Bull. Société Préhistorique Française 1996, 93, 534–542. [Google Scholar] [CrossRef]
- Kowalski, Ł.; Weckwerth, P.; Chabowski, M.; Adamczak, K.; Jodłowski, P.; Szczepańska, G.; Chajduk, E.; Polkowska-Motrenko, H.; Kozicka, M.; Kukawka, S. Towards Ritualisation: Insights into Bone-Tempered Pottery from the TRB Settlement in Kałdus (Poland, 3500–3350 BC). Ceram. Int. 2020, 46, 3099–3112. [Google Scholar] [CrossRef]
- Odriozola, C.P.; Hurtado Pérez, V.M. The Manufacturing Process of 3rd Millennium BC Bone Based Incrusted Pottery Decoration from the Middle Guadiana River Basin (Badajoz, Spain). J. Archaeol. Sci. 2007, 34, 1794–1803. [Google Scholar] [CrossRef]
- Díaz-del-Río, P.; Consuegra, S.; Domínguez, R.; Martín-Bañón, A.; Vírseda, L.; Agua, F.; Villegas, M.Á.; García-Heras, M. Identificación de Una Tradición Tecnológica Cerámica Con Desgrasante Óseo En El Neolítico Peninsular. Estudio Arqueométrico de Materiales Cerámicos de Madrid (5300-3400 Cal AC). Trab. Prehist. 2011, 68, 99–122. [Google Scholar] [CrossRef]
- Opriș, V.; Velea, A.; Secu, M.; Rostas, A.M.; Buruiană, A.T.; Simion, C.A.; Mirea, D.A.; Matei, E.; Bartha, C.; Dimache, M.; et al. ‘Put Variety in White’: Multi-Analytical Investigation of the White Pigments Inlaid on Early Chalcolithic Pottery from Southern Romania. J. Archaeol. Sci. Rep. 2022, 42, 103402. [Google Scholar] [CrossRef]
- Gomart, L.; Burnez-Lanotte, L. Technique de Façonnage, Production Céramique et Identité de Potiers: Une Approche Technologique de La Céramique de Style Non Rubané Du Site Du Staberg à Rosmeer (Limbourg, Belgique). Bull. Société Préhistorique Française 2012, 109, 231–250. [Google Scholar] [CrossRef]
- Rodrigues, S.F.S.; da Costa, M.L. Phosphorus in Archeological Ceramics as Evidence of the Use of Pots for Cooking Food. Appl. Clay Sci. 2016, 123, 224–231. [Google Scholar] [CrossRef]
- Perišić, N.; Marić-Stojanović, M.; Andrić, V.; MIOč, U.B.; Damjanović, L. Physicochemical Characterisation of Pottery from the Vinča Culture, Serbia, Regarding the Firing Temperature and Decoration Techniques. J. Serbian Chem. Soc. 2016, 81, 1415–1426. [Google Scholar] [CrossRef]
- London, D.; Cerny, P.; Loomis, J.L.; Pan, J.J. Phosphorus in Alkali Feldspars of Rare-Element Granitic Pegmatites. Can. Mineral. 1990, 28, 771–786. [Google Scholar]
- Chung, F.H. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures. I. Matrix-Flushing Method for Quantitative Multicomponent Analysis. J. Appl. Crystallogr. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Lantes Suárez, Ó.; Prieto Martínez, M.P.; Martínez Cortizas, A. Caracterización de Pastas Blancas Incrustadas En Decoraciones de Campaniformes Gallegos. In dagando Sobre Su Procedencia. In VIII Congreso Ibérico de Arqueometría; Saíz Carrasco, M.E., López Romero, R., Cano Díaz-Tendero, M.A., Calvo García, J.C., Eds.; Seminario de Arqueología y Etnología Turolense; SAET: Teruel, Spain, 2009; pp. 87–99. [Google Scholar]
- Martínez Cortizas, A.; Lantes Suárez, Ó.; Prieto Martínez, M.P. Análisis Arqueométrico de La Cerámica de Contextos Campaniforme Del Área Ulla-Deza. In Reconstruyendo la Historia de la Comarca del Ulla-Deza (Galicia, España). Escenarios Arqueológicos del Pasado. TAPA 41; Prieto Martínez, M.P., Criado Boado, F., Eds.; Consejo Superior de Investigaciones Científicas. Laboratorio de Arqueoloxía do Insituto de Estudos Padre Sarmiento; Xunta de Galicia: Santaigo de Compostela, Spain, 2010; pp. 135–145. ISBN 9781119130536. [Google Scholar]
- Prieto Martínez, M.P.; Martínez Cortizas, A.; Lantes Suárez, Ó.; Guimarey, B. Cerámicas Campaniformes de Galicia (NW de España): Caracterización Arqueométrica y Estudio de La Procedencia de Algunos Yacimientos Representativos. Cuad. Prehist. Arqueol. 2015, 41, 109–125. [Google Scholar] [CrossRef]
- Salanova, L.; Prieto Martínez, M.P.; Clop García, X.; Convertini, F.; Lantes Suárez, Ó.; Martínez Cortizas, A. What Are Large-Scale Archaeometric Programmes for? Bell Beaker Pottery and Societies from the Third Millennium BC in Western Europe. Archaeometry 2016, 58, 722–735. [Google Scholar] [CrossRef]
- Demšar, J.; Curk, T.; Erjavec, A.; Gorup, Č.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Bollong, C.A.; Vogel, J.C.; Jacobson, L.; van der Westhuizen, W.A.; Sampson, C.G. Direct Dating and Identity of Fibre Temper in Pre-Contact Bushman (Basarwa) Pottery. J. Archaeol. Sci. 1993, 20, 41–55. [Google Scholar] [CrossRef]
- Ionescu, C.; Hoeck, V.; Ghergari, L. Electron Microprobe Analysis of Ancient Ceramics: A Case Study from Romania. Appl. Clay Sci. 2011, 53, 466–475. [Google Scholar] [CrossRef]
- Duma, G. Phosphate Content of Ancient Pots as Inidcation of Use. Curr. Anthropol. 1972, 13, 127–130. [Google Scholar] [CrossRef]
- da Costa, M.L.; Kern, D.C.; Pinto, A.H.E.; Souza, J.R.D.T. The Ceramic Artifacts in Archaeological Black Earth (terra preta) from Lower Amazon Region, Brazil: Chemistry and Geochemical Evolution. Acta Amaz. 2004, 34, 375–386. [Google Scholar] [CrossRef]
- Costa, M.L.; Rios, G.M.; da Silva, M.M.C.; da Silva, G.J.; Molano-Valdes, U. Mineralogia e Química de Fragmentos Cerâmicos Arqueológicos Em Sítio Com Terra Preta Da Amazônia Colombiana. Rev. Esc. Minas 2011, 64, 17–23. [Google Scholar] [CrossRef]
- Legodi, M.A.; de Waal, D. Raman Spectroscopic Study of Ancient South African Domestic Clay Pottery. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2007, 66, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Iordanidis, A.; Garcia-Guinea, J.; Karamitrou-Mentessidi, G. Analytical Study of Ancient Pottery from the Archaeological Site of Aiani, Northern Greece. Mater. Charact. 2009, 60, 292–302. [Google Scholar] [CrossRef]
- Belfiore, C.M.; Di Bella, M.; Triscari, M.; Viccaro, M. Production Technology and Provenance Study of Archaeological Ceramics from Relevant Sites in the Alcantara River Valley (North-Eastern Sicily, Italy). Mater. Charact. 2010, 61, 440–451. [Google Scholar] [CrossRef]
- Freestone, I.C.; Meeks, N.D.; Middleton, A.P. Retention of Phosphate in Buried Ceramics: An Electron Microbieam Approarch. Archaeometry 1985, 27, 161–177. [Google Scholar] [CrossRef]
- Fabbri, B.; Gualtieri, S. Reasons of Phosphorus Pollution in Archaeological Pottery and Its Consequences: A Reassessment. In New Developments in Archaeology Research; Adalslteinn, M., Olander, T., Eds.; Nov. Sci. Publ.: New York, NY, USA, 2013; pp. 41–66. [Google Scholar]
- Costa, M.L.; Rodrigues, S.F.S.; Silva, G.J.S.; Pöllmann, H. Crandallite Formation in Archaeological Potteries Found in the Amazonian Dark Earth Soils. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), Trondheim, Norway, 2–5 August 2011; Maarten, A.T.M.B., Ed.; Springer: Trondheim, Norway, 2012; pp. 137–138. [Google Scholar]
- Gasparini, E.; Tarantino, S.C.; Ghigna, P.; Riccardi, M.P.; Cedillo-González, E.I.; Siligardi, C.; Zema, M. Thermal Dehydroxylation of Kaolinite under Isothermal Conditions. Appl. Clay Sci. 2013, 80–81, 417–425. [Google Scholar] [CrossRef]
- Berzina-Cimdina, L.; Borodajenko, N. Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy. In Infrared Spectroscopy—Materials Science, Engineering and Technology; Theopanides, T., Ed.; IntechOpen: London, UK, 2012; pp. 123–148. [Google Scholar]
- Brangule, A.; Gross, K.A. Importance of FTIR Spectra Deconvolution for the Analysis of Amorphous Calcium Phosphates. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; Volume 77. [Google Scholar] [CrossRef]
- Breiter, K.; Frýda, J.; Leichmann, J. Phosphorus and Rubidium in Alkali Feldspars: Case Studies and Possible Genetic Interpretation. Bull. Czech Geol. Surv. 2002, 77, 93–104. [Google Scholar]
- Prieto Martínez, M.P.; Lantes Suárez, Ó.; Martínez Cortizas, A.M. Dos Enterramientos de La Edad Del Bronce de La Provincia de Ourense. Rev. Aquae Flaviae 2009, 41, 93–105. [Google Scholar]
- Rajan, S.S.S. Changes in Net Surface Charge of Hydrous Alumina with Phosphate Adsorption. Nature 1976, 262, 45–46. [Google Scholar] [CrossRef]
- Kaal, J.; Lantes Suárez, Ó.; Martínez Cortizas, A.M.; Prieto Lamas, B.; Prieto Martínez, M.P.; Lantes-Suárez, O.; Martínez Cortizas, A.M.; Prieto, B.; Prieto Martínez, M.P. How Useful Is Pyrolysis-GC/MS for the Assessment of Molecular Properties of Organic Matter in Archaeological Pottery Matrix? An Exploratory Case Study from North-West Spain. Archaeometry 2014, 56, 187–207. [Google Scholar] [CrossRef]
- Prieur, B.; Meub, M.; Wittemann, M.; Klein, R.; Bellayer, S.; Fontaine, G.; Bourbigot, S. Phosphorylation of Lignin: Characterization and Investigation of the Thermal Decomposition. RSC Adv. 2017, 7, 16866–16877. [Google Scholar] [CrossRef]
- Ferry, L.; Dorez, G.; Taguet, A.; Otazaghine, B.; Lopez-Cuesta, J.M. Chemical Modification of Lignin by Phosphorus Molecules to Improve the Fire Behavior of Polybutylene Succinate. Polym. Degrad. Stab. 2015, 113, 135–143. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, C.; Huo, T.; Ren, Y.; Liu, X. Highly Effective Flame Retardant Lignin/Polyacrylonitrile Composite Prepared via Solution Blending and Phosphorylation. Polym. Degrad. Stab. 2020, 181, 109362. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.N.; Wu, Q.; Li, Q.; Huang, J.; Li, W.; Zhang, W.; Wang, S. Phosphorus Containing Group and Lignin toward Intrinsically Flame Retardant Cellulose Nanofibril-Based Film with Enhanced Mechanical Properties. Compos. Part B Eng. 2021, 212, 108699. [Google Scholar] [CrossRef]
- Chaudhari, T.; Rajagopalan, N.; Dam-Johansen, K. Lignin Phosphate: A Biobased Substitute for Zinc Phosphate in Corrosion-Inhibiting Coatings. ACS Sustain. Chem. Eng. 2024, 12, 7813–7830. [Google Scholar] [CrossRef]
- Bekiaris, G.; Peltre, C.; Jensen, L.S.; Bruun, S. Using FTIR-Photoacoustic Spectroscopy for Phosphorus Speciation Analysis of Biochars. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 168, 29–36. [Google Scholar] [CrossRef]
- Heimann, R.B. Ancient and Historical Cooking Pots and Food: An Eternal Communion. A Topical Review. Archaeometry 2024, 1–16. [Google Scholar] [CrossRef]
- Copley, M.S.; Berstan, R.; Dudd, S.N.; Aillaud, S.; Mukherjee, A.J.; Straker, V.; Payne, S.; Evershed, R.P. Processing of Milk Products in Pottery Vessels through British Prehistory. Antiquity 2005, 79, 895–908. [Google Scholar] [CrossRef]
- Kulkova, M.; Kulkov, A. The Identification of Organic Temper in Neolithic Pottery from Russia and Belarus. Old Potter’s Alm. 2016, 21, 2–12. [Google Scholar]
- Dzhanfezova, T. ‘Organic Temper’ and the Early Neolithic Pottery Production: Interpretational Challenges. Acta Archaeol. 2020, 91, 61–87. [Google Scholar] [CrossRef]
- Casanova, E.; Knowles, T.D.J.; Bayliss, A.; Dunne, J.; Barański, M.Z.; Denaire, A.; Lefranc, P.; di Lernia, S.; Roffet-Salque, M.; Smyth, J.; et al. Accurate Compound-Specific 14C Dating of Archaeological Pottery Vessels. Nature 2020, 580, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Gabasio, M.; Evin, J.; Arnal, G.B.; Andrieux, P. Origins of Carbon in Potsherds. Radiocarbon 1986, 28, 711–718. [Google Scholar] [CrossRef]
- Livingstone Smith, A. Chaîne Opératoire de La Poterie. Références Ethnographiques, Analyses et Reconstitution; Musée Royal de l’Afrique Centrale: Tervuren, Belgium, 2007; ISBN 9789074752237. [Google Scholar]
- Mamede, A.P.; Vassalo, A.R.; Piga, G.; Cunha, E.; Parker, S.F.; Marques, M.P.M.; Batista De Carvalho, L.A.E.; Gonçalves, D. Potential of Bioapatite Hydroxyls for Research on Archeological Burned Bone. Anal. Chem. 2018, 90, 11556–11563. [Google Scholar] [CrossRef]
- Bowser, B.J.; Patton, J.Q. Learning and Transmission of Pottery Style: Women’s Life Histories and Communities of Practice in the Ecuadorian Amazon. In Cultural Transmission and Material Culture: Breaking Down Boundaries; Stark, M.T., Bowser, B.J., Horne, L., Eds.; The University of Arizona Press: Tucson, AZ, USA, 2008; pp. 105–129. [Google Scholar]
- Cámara Manzaneda, J.; García Rosselló, J.; López-Cachero, F.J.; Clop García, X. Ceramic Production and Household Organisation of Late Bronze Age Communities: Forming Processes and Spatial Distribution of the Ceramic Vessels of Genó (North-Eastern Iberian Peninsula). Trab. Prehist. 2022, 79, 67–84. [Google Scholar] [CrossRef]
- Wallaert-Pêtre, H. Learning How to Make the Right Pots: Apprenticeship Strategies and Material Culture, a Case Study in Handmade Pottery from Cameroon. J. Anthropol. Res. 2001, 57, 471–493. [Google Scholar] [CrossRef]
- Gosselain, O.; Livingstone Smith, A. The Source. Clay Selection and Processing Practices in Sub-Saharan Africa. In Breaking the Mould: Challenging the Past through Pottery; Berg, I., Ed.; BAR International Series; Archaeopress: Oxford, UK, 2005; pp. 33–47. ISBN 1841716952. [Google Scholar]
- Thompson, V.D.; Stoner, W.D.; Rowe, H.D. Early Hunter-Gatherer Pottery along the Atlantic Coast of the Southeastern United States: A Ceramic Compositional Study. J. Isl. Coast. Archaeol. 2008, 3, 191–213. [Google Scholar] [CrossRef]
- Šegvić, B.; Šešelj, L.; Slovenec, D.; Lugović, B.; Ferreiro Mählmann, R. Composition, Technology of Manufacture, and Circulation of Hellenistic Pottery from the Eastern Adriatic: A Case Study of Three Archaeological Sites along the Dalmatian Coast, Croatia. Geoarchaeology 2012, 27, 63–87. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro González, M.G.; Prieto Martínez, M.P.; Martínez Cortizas, A. The Role of Mineral and Organic Composition on the Phosphorus Content of Prehistoric Pottery (Middle Neolithic to Late Bronze Age) from NW Spain. Minerals 2024, 14, 880. https://doi.org/10.3390/min14090880
Castro González MG, Prieto Martínez MP, Martínez Cortizas A. The Role of Mineral and Organic Composition on the Phosphorus Content of Prehistoric Pottery (Middle Neolithic to Late Bronze Age) from NW Spain. Minerals. 2024; 14(9):880. https://doi.org/10.3390/min14090880
Chicago/Turabian StyleCastro González, María Guadalupe, María Pilar Prieto Martínez, and Antonio Martínez Cortizas. 2024. "The Role of Mineral and Organic Composition on the Phosphorus Content of Prehistoric Pottery (Middle Neolithic to Late Bronze Age) from NW Spain" Minerals 14, no. 9: 880. https://doi.org/10.3390/min14090880
APA StyleCastro González, M. G., Prieto Martínez, M. P., & Martínez Cortizas, A. (2024). The Role of Mineral and Organic Composition on the Phosphorus Content of Prehistoric Pottery (Middle Neolithic to Late Bronze Age) from NW Spain. Minerals, 14(9), 880. https://doi.org/10.3390/min14090880