Sandstone Porosity Evolution and Reservoir Formation Models of the Paleogene Huagang Formation in Yuquan Structure of West Lake Sag, East China Sea Basin
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Rock Mineralogical Characteristics
4.2. Pore Characteristics
4.2.1. Pore Type
4.2.2. Pore Combination Characteristics
4.3. Physical Characteristics
4.4. Type of Diagenesis
4.4.1. Compaction Effect
4.4.2. Authigenic Minerals Precipitation
4.4.3. Dissolution
4.4.4. Tectonic Rupture
5. Discussion
5.1. Chronological and Quantitative Analysis of Pore Evolution
5.1.1. Porosity Evolution
5.1.2. Quantitative Inversion of Porosity
5.1.3. Evolution Characteristics of Reservoir Pores
5.2. Main Controlling Factors for Reservoir Development
5.2.1. Temporal and Spatial Configuration Relationship between Reservoir Rock and Tectonics Being the Most Crucial Factor
5.2.2. Early Precipitation of Carbonates Laying the Material Foundation for Reservoir Formation in the Upper Huagang Formation
5.2.3. Early Weak Alkaline Environment and Abundant Detrital-Feldspar Being the Foundation for Reservoir Formation of the Lower Huagang Formation
5.3. Reservoir Formation Model
5.3.1. Carbonate Dissolution Pore + Grain Dissolution Pore Type
5.3.2. Carbonate Dissolution Pore Type
5.3.3. Particle Dissolution Pore Type
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, H.; Wang, H.N.; Yang, Y.D.; She, H.Q. Influence of diagenetic evolution on tight sandstone reservoir flow capacity. Pet. Geol. Exp. 2019, 41, 800–811. [Google Scholar]
- Tian, B.; Zheng, Y.; Zhao, J.; Zhu, X.; He, T.; Luo, X. Research Development in Anomalously High Porosity of Deep Clastic Reservoirs. Sci. Technol. Eng. 2022, 22, 9456–9465. (In Chinese) [Google Scholar]
- Liu, Z.; Li, S.; Zhang, J.; Li, W.; Li, M.; Xu, Q. Quantitative Study of Diagenesis and Dissolution Porosity in Conglomerate Reservoirs. Chem. Technol. Fuels Oils 2023, 58, 1035–1045. [Google Scholar] [CrossRef]
- Shen, Y. A Study on the Sedimentary Facies of the Huagang Formation in the West Lake Sag. Master’s thesis, China University of Petroleum, Dongying, China, 2018. (In Chinese). [Google Scholar] [CrossRef]
- Zhou, X. Geological understanding and innovation in Xihu sag and breakthroughs in oil and gas exploration. China Offshore Oil Gas 2020, 32, 1–12. [Google Scholar]
- Yuan, G. Dissolution Mechanism of Feldspar and Carbonate Minerals During Rock-Forming Process and Its Physical Response. Ph.D. thesis, China University of Petroleum, Dongying, China, 2014. (In Chinese). [Google Scholar]
- Huang, X.; Lin, C.Y.; Huang, D.W.; Duan, D.; Lin, J.; He, X.; Liu, B. Diagenetic differential evolution of Huagang Formation sandstone reservoir in the north-central part of central reversal structural belt in Xihu Sag. Pet. Geol. Recovery Effic. 2022, 29, 1–14. [Google Scholar]
- Morgan, C.D.; Bereskin, S.R. Characterization of petroleum reservoirs in the Eocene Green River Formation, Central Uinta Basin, Utah. Mt. Geol. 2003, 40, 111–127. [Google Scholar]
- Schlunegger, F.; Kissling, E. Slab Load Controls Beneath the Alps on the Source-to-Sink Sedimentary Pathways in the Molasse Basin. Geosciences 2022, 12, 226. [Google Scholar] [CrossRef]
- Lin, T.; Hu, M.; Cai, Q. Characteristics of sedimentary phases of Quan Si section in Wangjiatun area, northern Songliao Basin. J. Oil Gas 2013, 35, 12–17. [Google Scholar]
- Yang, J.; Yang, X.; Zhou, J.; Gan, J.; Song, A.; Jiang, F.; Yang, L. Developmental characteristics and hydrocarbon geological significance of the inversion tectonic zone of the Songnan-Baodao depression in the deep-water area of the Qiongdongdong Basin. J. Oceanogr. 2019, 41, 97–106, (In Chinese with English Abstract). [Google Scholar]
- Zhou, P.; Sun, P.; Liu, C.; Xiong, Z. Study on the spatial and temporal matching relationship between oil and gas formation and storage in the Yuquan tectonics of the Xihu Depression. Mar. Quat. Geol. 2024, 44, 121–129. [Google Scholar]
- Yang, Z.; Huang, Z.; Qu, T.; Li, Z.; Wang, R.; Zhang, J.; Ma, C.; Pan, Y.; Yu, J. Main controlling factors and formation mode of oil and gas in Huangyan area, Xihu Depression, East China Sea Basin. Geol. Rev. 2023, 69, 2179–2194. [Google Scholar]
- Twiss, R.J.; Moores, E.M. Structural Geology; Palgrave Macmillan: New York, NY, USA, 2007. [Google Scholar]
- Xu, F.; Xu, G.; Liu, Y.; Zhang, W.; Cui, H.; Wang, Y. Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structural belt in Xihu sag, East China Sea Basin. Pet. Explor. Dev. 2020, 47, 101–113. [Google Scholar] [CrossRef]
- Xu, G.; Cui, H.; Liu, Y.; Wang, Y.; Huang, S.; Zhang, W.; Li, P.; Zhou, P. Relationship between sandstone reservoirs densification and hydrocarbon charging in the Paleogene Huagang Formation of West Lake Sag, East China Sea Basin. Bull. Geol. Sci. Technol. 2020, 39, 20–29. [Google Scholar]
- Zhong, T.; Zhang, W.; Miao, Q. Characteristics and genesis of anomalously high porosity zones in the Huagang Formation sandstones in Xihu sag, East China Sea. J. Chengdu Univ. Technol. 2018, 45, 478–486. [Google Scholar]
- Zhang, Y.Z.; Z, W.; Chen, Z.Y.; Diao, H. Mechanism and geologic significance of “sinking before gathering” of gas reservoirs in the Paleoproterozoic Huagang Formation in the central inversion tectonic zone of the Xihu Depression, East China Sea Shelf Basin. J. Oil Gas Geol. 2023, 44, 1256–1269. [Google Scholar]
- Zhou, X.; Jiang, Y.; Tang, X. Tectonic setting, prototype basin evolution and exploration enlightenment of Xihu sag in East China Sea basin. China Offshore Oil Gas 2019, 31, 1–10. [Google Scholar]
- Yu, Z.-K.; Ding, F.; Zhao, H. Characteristics of structural evolution and classification of hydrocarbon migration and accumulation units in Xihu Sag, China. Shanghai Land Resour. 2018, 39, 75–78. [Google Scholar]
- Zhang, G.; Zhang, J. Characterization of tectonic inversion in the East China Sea shelf basin and exploration of the genesis mechanism. Geol.Front. 2015, 22, 11. [Google Scholar]
- Zhou, R.; Fu, H.; Xu, G.; Miao, Q. Sedimentary stratigraphy of Pinghu Formation-Huagang Formation, Xihu Depression, East China Sea shelf basin. J. Sedimentol. 2018, 36, 132–141. [Google Scholar]
- Jiang, Y.; Zou, W.; Liu, J.; Tang, X.; He, X. Tectonic genesis of the late Miocene reversed backslope in the Xihu Depression, East China Sea: New insights from basal structural differences. Earth Sci. 2020, 45, 968–979. [Google Scholar]
- Wang, L. The Tectonic Evolution of the Yuquan Structure and Its Surrounding Areas in the East China Sea. Master’s thesis, Ocean University of China, Qingdao, China, 2010. (In Chinese). [Google Scholar]
- Guo, Z.; Liu, C.; Tian, J. Structural characteristics and main controlling factors of inversion structures in West Lake Sag in Donghai Basin. Earth Sci. Front. 2015, 22, 59–67. [Google Scholar]
- Dong, C.M.; Zhao, Z.X.; Zhang, X.G.; Yu, S.; Huang, X.; Duan, D.P.; Lin, J.L.; Sun, X.L. Analysis of provenance and sedimentary facies of Huagang formation in the north-central of Xihu sag. J. Northeast Pet. Univ. 2018, 42, 25–34. [Google Scholar]
- Zhang, G.; Liu, J.; Qin, L.; Zhao, H. Characteristics of the large braided river depositional system of the Oligocene Huagang Formation in the Xihu sag. China Offshore Oil Gas 2018, 30, 10–18. [Google Scholar]
- Xu, F. Reservoir Characteristics and Controlling Factors of the Paleocene Huagang Formation in the Central Inversion Tectonic Zone of the Xihu Depression. Master’s thesis, Chengdu University of Technology, Chengdu, China, 2017. (In Chinese). [Google Scholar]
- Gao, Y.; Fu, H.; Zhao, L.; Ge, H.; Fu, Z. Stratigraphic sequence of the Huagang Formation, Xihu Depression, East China Sea. Sediment. Tethys Geol. 2014, 34, 24–29, (In Chinese with English Abstract). [Google Scholar]
- GB/T29172-2012; Practices for Core Analysis. Standardization Administration of China: Beijing, China, 2012.
- SY/T 5163-2010; National Energy Administration. Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-ray Diffraction. Petroleum Industry Press: Beijing, China, 2010.
- GB/T 14506.28-2010; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Methods for Chemical Analysis of Silicate Rocks—Part 28. Determination of 16 major and minor elements content. Standards Press of China: Beijing, China, 2011.
- GB/T 14506.30-2010; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Methods for Chemical Analysis of Silicate Rocks—Part 30. Determination of 44 elements. Standards Press of China: Beijing, China, 2011.
- SY/T 6010-2011; National Energy Administration. Test Method for Fluid Inclusion in Sedimentary Basins by Microthermometry. Petroleum Industry Press: Beijing, China, 2011.
- SY/T 5238-2008; National Development and Reform Commission. Analysis Method for Carbon and Oxygen Isotope of Organic Matter and Carbonate. Petroleum Industry Press: Beijing, China, 2008.
- SY/T6285-2011; Petroleum Geological Exploration Professional Standardization Committee. Oil and Gas Reservoir Evaluation Method. National Energy Administration: Beijing, China, 2011.
- Lei, C.; Ye, J.R.; Wu, J.F.; Shan, C.; Yin, S. Dynamic Process of Hydrocarbon Accumulation in Low-Exploration Basins: A Case Study of West Lake Sag. EarthSci. J. China Univ. Geosci. 2014, 39, 837–847. [Google Scholar]
- Keith, M.L.; Weber, J.N. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim. Et Cosmochim. Acta 1964, 28, 1787–1816. [Google Scholar] [CrossRef]
- Yin, G.; Ni, S. Isotope Geochemistry; Geological Publishing House: Beijing, China, 2009. [Google Scholar]
- Friedman, I.; O’Neil, J.R. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry, 6th ed.; Professional Paper; United States Government Printing Office: Washington, DC, USA, 1977; pp. 1–12. [Google Scholar]
- SY/T 5477-2003; Classification of the Stages of Petrogenesis of Clastic Rocks. State Economic and Trade Commission: Beijing, China, 2003.
- Huang, S.; Huang, P.; Wang, Q.; Liu, H.; Wu, M.; Zou, M. The significance of cementation in porosity preservation in deep-buried sandstones. Lithol. Reserv. 2007, 3, 7–13. [Google Scholar]
Well | Depth (m) | Content (wt%) | |||||
---|---|---|---|---|---|---|---|
Quartz | Potassium Feldspar | Plagioclase | Calcite | Dolomite | Clay | ||
A | 2774 | 78.2 | 5.4 | 10.6 | 0.2 | 0.4 | 5.2 |
A | 2804 | 83.0 | 5.7 | 6.9 | 0.5 | 0.6 | 3.3 |
A | 3090 | 86.8 | 6.9 | 0 | 0.5 | 0.7 | 5.1 |
A | 3122 | 85.7 | 7.1 | 0 | 0.7 | 0.6 | 5.9 |
A | 3126 | 84.6 | 8.8 | 0 | 0.4 | 1.1 | 5.1 |
A | 3126.5 | 85.4 | 6.6 | 0.3 | 0.5 | 0.9 | 6.3 |
A | 3127.7 | 86.5 | 5.6 | 0 | 0.8 | 0.9 | 6.2 |
A | 3128.9 | 84.8 | 7.3 | 0.3 | 0.6 | 1.0 | 6.0 |
A | 3129.7 | 77.4 | 10.4 | 0.4 | 0.7 | 1.0 | 10.1 |
A | 3130.9 | 75.5 | 11.1 | 0.3 | 1.3 | 1.5 | 10.3 |
A | 3131.7 | 75.0 | 11.0 | 0.3 | 0.8 | 1.5 | 11.1 |
B | 3720 | 71.9 | 6.0 | 16.4 | 1.0 | 0.5 | 4.2 |
B | 3721.3 | 66.3 | 7.9 | 18.4 | 1.2 | 0.6 | 5.6 |
B | 3722.3 | 72.7 | 6.7 | 14.4 | 1.0 | 0.6 | 4.6 |
B | 3723.2 | 70.8 | 7.2 | 15.1 | 1.4 | 0.8 | 4.7 |
B | 3724.3 | 74.4 | 5.0 | 13.9 | 0.3 | 0.6 | 5.8 |
B | 3725.3 | 59.0 | 7.1 | 22.7 | 1.1 | 0.4 | 9.0 |
B | 3726.3 | 42.8 | 7.1 | 14.5 | 31.5 | 1.0 | 3.1 |
B | 3726.6 | 50.9 | 3.7 | 15.7 | 1.1 | 3.3 | 25.3 |
B | 3730.8 | 54.8 | 2.3 | 17.0 | 2.6 | 4.1 | 19.2 |
B | 3734.8 | 46.1 | 1.1 | 10.8 | 6.8 | 4.8 | 30.4 |
B | 4418.4 | 72.1 | 2.7 | 18.9 | 0.2 | 0.7 | 5.4 |
B | 4419.4 | 67.4 | 3.7 | 20.7 | 1.0 | 0.3 | 6.9 |
B | 4420.4 | 72.8 | 3.4 | 18.4 | 0.7 | 0 | 4.7 |
B | 4421.4 | 74.0 | 2.3 | 18.5 | 0.2 | 0.3 | 4.7 |
B | 4422.4 | 75.0 | 2.8 | 17.6 | 0.3 | 0.7 | 3.6 |
B | 4423.4 | 68.0 | 5.6 | 15.1 | 0.2 | 0 | 11.1 |
Pore | Pore Type | Reservoir Type | ||
---|---|---|---|---|
Carbonate Dissolution Pore + Particle Dissolution Pore Type | Carbonate Dissolution Pore Type | Particle Dissolution Pore Type | ||
Pore(%) | Carbonate dissolution pore type | 10.0 | 10.0 | 2.0 |
Particle dissolution pore type | 6.2 | 2.4 | 5.5 | |
Residual intergranular pore | 1.8 | 0.6 | 1.0 |
Authigenic Mineral | Mineral Period | Reservoir Type | ||
---|---|---|---|---|
Carbonate Dissolution Pore + Particle Dissolution Pore Type | Carbonate Dissolution Pore Type | Particle Dissolution Pore Type | ||
Quartz | Phase 1 | 1.0 | 1.0 | 0.5 |
Phase 2 | 2.0 | 1.0 | 0.7 | |
Phase 3 | 0.0 | 0.0 | 3.9 | |
Illite/smectite mixed layer (%) | 1.8 | 1.4 | 1.5 | |
Chlorite (%) | Phase 1 | 0.0 | 0.0 | 1.4 |
Phase 2 | 0.0 | 0.0 | 0.4 | |
Kaolinite (%) | 6.3 | 1.9 | 0 | |
Illite(%) | Phase 1 | 0.0 | 0.0 | 0.7 |
Phase 2 | 0.5 | 0.5 | 1.0 | |
Carbonate (%) | Cementation | 10.0 | 11.0 | 4.0 |
Metasomatism | 3.5 | 2.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Lv, Z.; Qing, Y.; Xie, C.; Cheng, B.; Liao, Z.; Xu, B. Sandstone Porosity Evolution and Reservoir Formation Models of the Paleogene Huagang Formation in Yuquan Structure of West Lake Sag, East China Sea Basin. Minerals 2024, 14, 899. https://doi.org/10.3390/min14090899
Cai Y, Lv Z, Qing Y, Xie C, Cheng B, Liao Z, Xu B. Sandstone Porosity Evolution and Reservoir Formation Models of the Paleogene Huagang Formation in Yuquan Structure of West Lake Sag, East China Sea Basin. Minerals. 2024; 14(9):899. https://doi.org/10.3390/min14090899
Chicago/Turabian StyleCai, Yonghuang, Zhengxiang Lv, Yuanhua Qing, Cheng Xie, Bingjie Cheng, Zheyuan Liao, and Bing Xu. 2024. "Sandstone Porosity Evolution and Reservoir Formation Models of the Paleogene Huagang Formation in Yuquan Structure of West Lake Sag, East China Sea Basin" Minerals 14, no. 9: 899. https://doi.org/10.3390/min14090899
APA StyleCai, Y., Lv, Z., Qing, Y., Xie, C., Cheng, B., Liao, Z., & Xu, B. (2024). Sandstone Porosity Evolution and Reservoir Formation Models of the Paleogene Huagang Formation in Yuquan Structure of West Lake Sag, East China Sea Basin. Minerals, 14(9), 899. https://doi.org/10.3390/min14090899