Petrogenesis of Eocene A-Type Granite Associated with the Yingpanshan–Damanbie Regolith-Hosted Ion-Adsorption Rare Earth Element Deposit in the Tengchong Block, Southwest China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Petrography
4. Analytical Methods
4.1. Zircon U–Pb Dating
4.2. Zircon Hf Isotope Analysis
4.3. Whole-Rock Major and Trace Element Analysis
4.4. TIMA Mineral Comprehensive Analysis
5. Results
5.1. Zircon U–Pb Ages
5.2. Major and Trace Element Geochemistry
5.3. Zircon Lu–Hf Isotopes
6. Discussion
6.1. Petrogenesis and Tectonic Setting of the Yingpanshan–Damanbie Pluton
6.2. The Relationship between the Initial REE Enrichment in Yingpanshan–Damanbie Granites and iREE Mineralization
7. Conclusions
- (1)
- Granites associated with the Yingpanshan–Damanbie iREE deposit in the Tengchong block are A2-type granites derived from the partial melting of a lithohpheric amphibolite source at a post-collisional extension setting.
- (2)
- The high content of REEs in the parent rock was critical for the formation of the Yingpanshan–Damanbie iREE deposit in the Tengchong block.
- (3)
- REE-bearing minerals (e.g., apatite, titanite, allanite, and fluorite) and rock-forming minerals (e.g., potassium feldspar, plagioclase, and biotite) supply rare earth elements in the weathering regolith.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanematsu, K.; Kon, Y.; Imai, A.; Watanabe, K.; Watanabe, Y. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Miner. Depos. 2013, 48, 437–451. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.F.; Williams-Jones, A.E. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province, South China. Econ. Geol. 2019, 114, 541–568. [Google Scholar] [CrossRef]
- Sanematsu, K.; Watanabe, Y. Characteristics and genesis of Ion adsorption type rare earth element deposits. Rev. Econ. Geol. 2016, 18, 55–79. [Google Scholar]
- Li, Y.H.M.; Zhao, W.W.; Zhou, M.-F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. J. Asian Earth Sci. 2017, 148, 65–95. [Google Scholar] [CrossRef]
- Zhou, M.F.; Li, M.Y.H.; Wang, Z.C.; Li, X.C.; Liu, J.J. The genesis of regolith-hosted rare earth element and scandium deposits: Current understanding and outlook to future prospecting. Chin. Sci. Bull. 2020, 65, 3809–3824. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2023; p. 210.
- Bao, Z.W.; Zhao, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.F. The role of clay minerals in forming the regolith-hosted heavy rare earth element deposits. Am. Mineral. 2020, 105, 92–108. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.F. Physicochemical variation of clay minerals and enrichment of rare earth elements in regolith-hosted deposits: Exemplification from the Bankeng deposit in South China. Clays Clay Miner. 2023, 71, 362–376. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.F. Hyper-enrichment of heavy rare earth element in highly evolved granites through multiple hydrothermal mobilization. Am. Mineral. 2024. online. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.F.; Williams-Jones, A.E. Controls on the dynamics of rare earth elements during subtropical hillslope processes and formation of regolith-hosted deposits. Econ. Geol. 2020, 115, 1097–1118. [Google Scholar] [CrossRef]
- Wang, L.; Xu, C.; Zhao, Z.; Song, W.; Kynicky, J. Petrological and geochemical characteristics of Zhaibei granites in Nanling region, Southeast China: Implications for REE mineralization. Ore Geol. Rev. 2015, 64, 569–582. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, D.H.; Bagasa, L.; Chen, Z.Y. Geochemical and REE mineralogical characteristics of the Zhaibei granite in Jiangxi Province, South China, and the genesis of ion-adsorption REE deposit. Ore Geol. Rev. 2022, 140, 104579. [Google Scholar] [CrossRef]
- He, X.H.; Liu, Z.; Wang, G.C.; Leonard, N.D.; Wang, T.; Tan, S.C. Petrogenesis and tectonic setting of the early cretaceous granitoids in the eastern tengchong terrane, SW China: Constraint on the evolution of Meso-Tethys. Lithos 2020, 12, 150–165. [Google Scholar] [CrossRef]
- He, X.H.; Zhou, R.J.; Tan, S.C.; Liu, Z.; Wang, G.C.; Jiang, Z.Q.; Cao, Y. Late Cretaceous–Eocene magmatism induced by slab rollback and breakoff in the Tengchong terrane, SW China. Int. Geol. Rev. 2021, 63, 294–316. [Google Scholar] [CrossRef]
- Dong, M.L.; Dong, G.C.; Mo, X.X.; Zhu, D.C.; Nie, F.; Xie, X.F.; Wang, X.; Hu, Z.C. Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block, western Yunnan and their implications. Acta Petrol. Sin. 2012, 28, 1453–1464. [Google Scholar]
- Kong, H.L.; Dong, G.C.; Mo, X.X.; Zhao, Z.D.; Zhu, D.C.; Wang, S.; Li, R.; Wang, Q.L. Petrogenesis of Lincang granites in Sanjiang area of western Yunnan Province: Constraints from geochemistry, zircon U–Pb geochronology and Hf isotope. Acta Petrol. Sin. 2012, 28, 1438–1452. [Google Scholar]
- Xu, Y.G.; Yang, Q.J.; Lan, J.B.; Luo, Z.Y.; Huang, X.L.; Shi, Y.R.; Xie, L.W. Temporal–spatial distribution and tectonic implications of the batholiths in the Gaoligong–Tengliang–Yingjiang area, western Yunnan: Constraints from zircon U–Pb ages and Hf isotopes. J. Asian Earth Sci. 2012, 53, 151–175. [Google Scholar] [CrossRef]
- Yang, Q.J.; Xu, Y.G.; Huang, X.L.; Luo, Z.Y.; Shi, Y.R. Geochronology and geochemistry of granites in the Tengliang area, western Yunnan: Tectonic implication. Acta Petrol. Sin. 2009, 25, 1092–1104. [Google Scholar]
- Dong, P.S.; Dong, G.C.; Santosh, M.; Mo, X.X.; Sun, Z.R.; Ketchaya, Y.B.; Pan, Y.N.; Lemdjou, Y.B. Eocene magmatism in the western Tengchong Block: Implications for crust-mantle interaction associated with the slab rollback of the Neo-Tethys Ocean. Gondwana Res. 2022, 106, 259–280. [Google Scholar] [CrossRef]
- Jiang, B.; Gong, Q.J.; Zhang, J.; Ma, N. Late Cretaceous aluminium A-type granites and its geological significance of Dasongpo Sn deposit, Tengchong, West Yunnan. Acta Petrol. Sin. 2012, 28, 1477–1492. [Google Scholar]
- Zhu, X.P.; Zhang, B.; Ma, G.T.; Pan, Z.W.; Hu, Z.G.; Zhang, B.T. Mineralization of ion-adsorption type rare earth deposits in Western Yunnan, China. Ore Geol. Rev. 2022, 148, 104984. [Google Scholar] [CrossRef]
- Replumaz, A.; Tapponnier, P. Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks. J. Geophys. Res. 2003, 108, 2285. [Google Scholar] [CrossRef]
- Zhong, D.L. The Ancient Tethys Orogenic Belt in Western Yunnan and Sichuan; Science Press: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Ji, J.Q.; Zhong, D.L. The garnet Sm-Nd isochron age and significance of the metamorphic basalt from the western Tengchong area, southwest Yunnan, China. Acta Petrol. Sin. 1999, 15, 359–362. [Google Scholar]
- Li, Z.H.; Lin, S.L.; Cong, F.; Xie, T.; Zou, G.F. U–Pb ages of zircon from metamorphic rocks of the Gaoligongshan Group in western Yunnan and its tectonic significance. Acta Petrol. Sin. 2012, 28, 1529–1541. [Google Scholar]
- Dong, M.L. Study of Magmatism in Tengchong–Baoshan Block, Western Yunnan and Its Tectonic Implications. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2016. (In Chinese). [Google Scholar]
- Song, S.G.; Niu, Y.L.; Wei, C.J.; Ji, J.Q.; Su, L. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continentan eastern extension of the Lhasa Block. Lithos 2010, 120, 327–346. [Google Scholar] [CrossRef]
- Chen, F.K.; Li, Q.L.; Wang, X.L.; Li, X.H. Zircon age and Sr–Nd–Hf isotopic composition of migmatite in the eastern Tengchong block, western Yunnan. Acta Petrol. Sin. 2006, 22, 439–448. [Google Scholar]
- Zou, G.F.; Mao, Y.; Lin, S.L.; Cong, F.; Li, Z.H.; Xie, T.; Gao, Y.J. Zircon U–Pb Age and Geochemistry of the Shibancun Biotite Monzo-granites and Its Tectonic Implications in Mangshi County, Western Yunnan. Geol. Rev. 2014, 60, 1425–1436. [Google Scholar]
- Cao, H.W. Research on Mesozoic–Cenozoic Magmatic Evolution and Its Relation with Metallogeny in Tengchong–Lianghe Tin Ore Belt, Western Yunnan. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2015; pp. 1–265. (In Chinese). [Google Scholar]
- Zhao, S.W.; Zhu, R.Z.; Qin, J.F.; Lai, S.C. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan plateau: Constraints from granitic gneisses and granitoid intrusions. Gondwana Res. 2016, 35, 238–256. [Google Scholar] [CrossRef]
- Cao, H.W.; Pei, Q.M.; Zhang, S.T.; Zhang, L.K.; Tang, L.; Lin, J.Z.; Zheng, L. Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China. J. Asian Earth Sci. 2017, 137, 220–240. [Google Scholar] [CrossRef]
- Sun, Z.R. Meso–Cenozoic Granitoid Evolution in Tengchong Block, China and Its Implications for Sn Mineralization; China Geology University: Beijing, China, 2020; p. 134. (In Chinese) [Google Scholar]
- Cong, F.; Lin, S.L.; Zou, G.F.; Xie, T.H.; Li, Z.H.; Tang, F.W.; Peng, Z.M. Geochronology and petrogenesis for the protolith of biotite plagioclase gneiss at Lianghe, western Yunnan. Acta Geol. Sin. 2011, 4, 870–880. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Y.H.; Zhang, S.T.; Cao, H.W.; Zou, H.; Dong, J.H. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China. Geosci. Front. 2018, 9, 459–470. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Wang, Q.F.; Li, G.J.; Cui, X.L. Fractionation process of high-silica magmas through the lens of zircon crystallization: A case study from the Tengchong Block, SW China. Chem. Geol. 2018, 496, 34–42. [Google Scholar] [CrossRef]
- Qi, X.X.; Wei, C.; Cai, Z.H.; Huang, M.H.; Liu, Y.X.; Zhang, C.; Ji, F.B. Sedimentary age of metamorphic rocks of Gaoligong Group in Tengchong Block, Western Yunnan and its relationship with subduction/accretion of prototethys: Evidences from detrital zircon U–Pb dating and geochemistry. Acta Geol. Sin. 2019, 93, 94–112. [Google Scholar]
- Cao, H.W.; Zhang, S.T.; Lin, J.Z.; Luo, Z.; Wu, J.D.; Dong, L. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, Western Yunnan (China): Regional tectonic implications. J. Asian Earth Sci. 2014, 81, 142–152. [Google Scholar] [CrossRef]
- Cao, H.W.; Zhang, Y.H.; Santosh, M.; Zhang, S.; Tang, L.; Pei, Q.M. Mineralogy, zircon U–Pb–Hf isotopes, and whole-rock geochemistry of Late Cretaceous–Eocene granites from the Tengchong terrane, western Yunnan, China: Record of the closure of the Neo-Tethyan Ocean. Geol. J. 2018, 53, 1423–1441. [Google Scholar] [CrossRef]
- Cao, H.W.; Zhang, Y.H.; Tang, L.; Hollis, S.P.; Zhang, S.T.; Pei, Q.M.; Yang, C.; Zhu, X.S. Geochemistry, zircon U–Pb geochronology and Hf isotopes of Jurassic–Cretaceous granites in the Tengchong terrane, SW China: Implications for the Mesozoic tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain. Int. Geol. Rev. 2019, 61, 257–279. [Google Scholar] [CrossRef]
- Xie, J.C.; Zhu, D.C.; Dong, G.; Zhao, Z.D.; Wang, Q.; Mo, X. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation. Gondwana Res. 2016, 39, 217–229. [Google Scholar] [CrossRef]
- Zhao, S.W.; Lai, S.C.; Pei, X.Z.; Qin, J.F.; Zhu, R.Z.; Tao, N.; Gao, L. Compositional variations of granitic rocks in continental margin arc: Constraints from the petrogenesis of Eocene granitic rocks in the Tengchong Block, SW China. Lithos 2019, 326–327, 125–143. [Google Scholar] [CrossRef]
- Chen, X.C.; Hu, R.Z.; Bi, X.W.; Li, H.M.; Lan, J.B.; Zhao, C.H.; Zhu, J.J. Cassiterite LA–MC–ICP–MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong–Lianghe tin district, NW Yunnan, China. Miner. Depos. 2014, 49, 843–860. [Google Scholar] [CrossRef]
- He, X.H.; You, Y.Y.; Ming, T.X.; Yang, S.Q.; Yan, Q.H.; Chen, H.; Liu, M.F. Late Cretaceous–Eocene granitic pegmatite rare-metal mineralization events in the west Yunnan Province: Constraints from U–Pb dating of columbite, monazite, and zircon. Acta Petrol. Sin. 2024, 40, 510–538. [Google Scholar] [CrossRef]
- Pan, Z.W.; Yang, Q.B.; Luo, J.H.; Su, X.Y.; Tang, Z.; Yu, H.J.; Lu, Y.X.; Ming, T.X.; Sun, P.; Zhu, D.L. Study on the occurrence states state of rare earth elements in a REE Deposit in Longchuan, western Yunnan. J. Chin. Soc. Rare Earths 2024, 42, 371–380. [Google Scholar]
- Wang, Y.J.; Xing, X.W.; Cawood, P.A.; Lai, S.C.; Xia, X.P.; Fan, W.M.; Liu, H.C.; Zhang, F.F. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos 2013, 182–183, 67–85. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region southwestern China. Earth Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Cong, F.; Lin, S.L.; Tang, H.F.; Xie, T.; Li, Z.H.; Zou, G.F.; Peng, Z.M.; Liang, T. Trace elements and Hf isotope compositions and U–Pb age of igneous zircons from the Triassic granite in Lianghe, western Yunnan. Acta Geol. Sin. 2010, 84, 1155–1164. [Google Scholar]
- Li, H.; Ling, M.X.; Li, C.Y.; Zhang, H.; Ding, X.; Yang, X.Y.; Fan, W.M.; Li, Y.L.; Sun, W.D. A-type granite belts of two chemical subgroups in central eastern China: Indication of ridge subduction. Lithos 2012, 150, 26–36. [Google Scholar] [CrossRef]
- Chen, X.C.; Hu, R.Z.; Bi, X.W.; Zhong, H.; Lan, J.B.; Zhao, C.H.; Zhu, J.J. Petrogenesis of metaluminous A-type granitoids in the Tengchong–Lianghe tin belt of southwestern China: Evidences from zircon U–Pb ages and Hf–O isotopes, and whole-rock Sr–Nd isotopes. Lithos 2015, 212–215, 93–110. [Google Scholar] [CrossRef]
- Zhu, R.Z.; Lai, S.C.; Qin, J.F.; Zhao, S.W. Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China: Petrogenesis and tectonic implications. J. Asian Earth Sci. 2015, 100, 145–163. [Google Scholar] [CrossRef]
- Pan, Z.W.; Lu, Y.X.; Luo, J.H.; Tang, Z.; Yu, H.J.; Su, X.Y.; Yang, Q.B.; Fu, H. REE distribution characteristics of the Yingpanshan ion adsorption type rare-earth deposit in the Longchuan area of western Yunnan. Geol. Explor. 2021, 57, 784–795. [Google Scholar]
- Yan, L.J.; Chen, Y.Q.; Deng, Z.X.; Chen, C.J.; Yan, Z.A.; Wang, S.J.; Mei, Y.H.; Yang, S.S.; She, Z.M. Features of weathered crust rare earth ores and prospecting direction in the Yingjiang Area, Yunnan Province. Geol. Explor. 2020, 56, 288–301. [Google Scholar]
- Ming, T.X.; Yang, Q.B.; Tang, Z.; Yang, A.P.; Zhang, C.Y.; Yu, H.J. Simple introduction on magmatic mineralization specificity related to REE deposits in Tengchong block. J. Chin. Soc. Rare Earths 2021, 39, 723–728. [Google Scholar]
- Wu, J.D. The Magmatic Origin of Banggunjianshan and Polunshan Granitoids in Tengchong Block, Western Yunnan. Master’s Thesis, University of Science and Technology of China, Hefei, China, 2014; pp. 1–55. [Google Scholar]
- Xiao, S.Y.; Li, Q.P.; Wang, Y.D. The genesis and prospecting method of REE deposit in Husa area in Longchuan, Yunnan. Yunnan Geol. 2018, 37, 213–219. [Google Scholar]
- Zhang, B.; Zhu, X.P.; Zhang, B.H.; Gao, R.D.; Zeng, Z.J.; Ma, G.T. Geochemical characteristics of Tuguanzhai ion-adsorption type REE deposit in Tengchong, Yunnan. J. Chin. Soc. Rare Earths 2019, 37, 491–506. [Google Scholar]
- Mo, X.; Guan, Q.; Wang, X.F. A Study on the metallogenesis background of ion adsorption REE deposit in Yingjiang, West Yunnan. Yunnan Geol. 2020, 39, 174–178. [Google Scholar]
- Thompson, J.M.; Meffre, S.; Danyushevsky, L. Impact of air, laser pulse width and fluence on U–Pb dating of zircons by LA-ICPMS. J. Anal. At. Spectrom. 2018, 33, 221–230. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Maas, R. Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11, Q6A. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2018, 53, 27–62. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; Reilly, S.Y.O.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Genesis of zircon and its constraints on interpretation of U–Pb age. Chin. Sci. Bull. 2004, 49, 1554–1569. [Google Scholar] [CrossRef]
- Morel, M.; Nebel, O.; Nebel, J.Y.J.; Miller, J.S.; Vroon, P.Z. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 2008, 255, 231–235. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, J.H. Zircon U–Pb and Hf isotopic constraints on the multiple components in granites. Geochim. Cosmochim. Acta 2006, 70, A709. [Google Scholar] [CrossRef]
- Watson, B.E.; Harrison, M.T. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Lo, C.H.; Tsai, C.H. Crust–mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Adam, J.; Green, T. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib. Mineral. Petrol. 2006, 152, 1–17. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu–Hf isotopic systematics and their application in petrology. Acta Petrol. Sin. 2007, 23, 185–220. [Google Scholar]
- Eby, G.N. Chemical subdivision of the A-type granitoids petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Jia, X.H.; Wang, Q.; Tang, G.J. A-type granites: Research progress and implications. Geotecton. Metallog. 2009, 33, 465–480. [Google Scholar]
- Mushkin, A.; Navon, O.; Halicz, L.; Hartmann, G.; Stein, M. The petrogenesis of A-type magmas from the Amram Massif, Southern Israel. J. Petrol. 2003, 44, 815–832. [Google Scholar] [CrossRef]
- Anderson, J.L. Proterozoic anorogenic granite plutonism of North America. Meml. Geol. Soc. Am. 1983, 161, 133–154. [Google Scholar]
- Zhao, K.D.; Jiang, S.Y.; Chen, W.F.; Chen, P.R.; Ling, H.F. Zircon U–Pb chronology and elemental and Sr–Nd–Hf isotope geochemistry of two Triassic A-type granites in South China: Implication for petrogenesis and Indosinian transtensional tectonism. Lithos 2013, 160–161, 292–306. [Google Scholar] [CrossRef]
- Gao, W.L.; Wang, Z.X.; Song, W.J.; Wang, D.X.; Li, C.L. Zircon U–Pb geochronology, geochemistry and tectonic implications of Triassic A-type granites from southeastern Zhejiang, South China. J. Asian Earth Sci. 2014, 96, 255–268. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, L.M.; Cawood, P.A.; Ma, L.Y.; Fan, W.M.; Zhang, A.M.; Zhang, Y.Z.; Bi, X.W. Eocene supra-subduction zone mafic magmatism in the Sibumasu Block of SW Yunnan: Implications for Neotethyan subduction and India–Asia collision. Lithos 2014, 206–207, 384–399. [Google Scholar] [CrossRef]
- Zhao, S.W.; Lai, S.C.; Qin, J.F.; Zhu, R.Z. Petrogenesis of Eocene granitoids and microgranular enclaves in the western Tengchong Block: Constraints on eastward subduction of the Neo-Tethys. Lithos 2016, 264, 96–107. [Google Scholar] [CrossRef]
- Zhao, S.W.; Lai, S.C.; Qin, J.F.; Zhu, R.Z.; Wang, J.B. Geochemical and geochronological characteristics of Late Cretaceous to Early Paleocene granitoids in the Tengchong Block, Southwestern China: Implications for crustal anatexis and thickness variations along the eastern Neo-Tethys subduction zone. Tectonophysics 2017, 694, 87–100. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics. Contrib. Mineral. Petrol. 1987, 95, 420–436. [Google Scholar] [CrossRef]
- Patiňo-Douce, A.E.; Harris, N. Experimental constraints on Himalayan anatexis. J. Petrol. 1998, 39, 689–710. [Google Scholar] [CrossRef]
- Sylvester, P.J. Postcollisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Altherr, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzer, H. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 2005, 148, 635–661. [Google Scholar] [CrossRef]
- Lopez-Escobar, L.; Kilian, R.; Kempton, P.; Tagiri, M. Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone of the Andes between 41°30′ and 46°00′S, Chile. Andean Geol. 1993, 20, 33–55. [Google Scholar]
- Wolf, M.B.; London, D. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms. Geochim. Cosmochim. Acta 1994, 58, 4127–4145. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Liu, C.Z.; Chung, S.L. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Sci. China Ser. D Earth Sci. 2009, 52, 1240–1261. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Wang, Q.; Wyman, D.A.; Li, Z.X.; Yang, J.H.; Shi, X.B.; Ma, L.; Tang, G.J.; Gou, G.N.; Jia, X.H. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~91–30 Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese. Lithos 2014, 196–197, 213–231. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Wang, X.C.; Liu, C.Z.; Li, Q.L.; Liu, Z.C.; Liu, X.C.; Wang, J.G. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet. Geology 2016, 44, 283–286. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Duan, L.F.; Lu, Y.J.; Zheng, Y.C.; Zhu, D.H.; Yang, Z.M.; Yang, Z.S.; Wang, B.D.; Pei, Y.R.; Zhao, Z.D.; et al. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Econ. Geol. 2015, 110, 1541–1575. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Sun, X.; Gao, S.B.; Zhao, Z.D.; Zhang, G.Y.; Wu, S.; You, Z.M.; Li, J.D. Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: Implications for Eocene and Miocene magma sources and resource potential. J. Asian Earth Sci. 2014, 79, 842–857. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Qi, X.X.; Tang, G.Z.; Liu, J.K.; Zhu, L.H.; Hu, Z.; Zhao, Y.H.; Zhang, C. The identification of early Indosinian tectonic movement in Tengchong block, western Yunnan: Evidence of zircon U–Pb dating and Lu–Hf isotope for Nabang diorite. Geol. China 2013, 40, 730–741. [Google Scholar]
- Gao, Y.F.; Yang, Z.S.; Hou, Z.Q.; Wei, R.H.; Meng, X.J.; Tian, S.H. Eocene potassic and ultrapotassic volcanism in South Tibet: New constraints on mantle source characteristics and geodynamic processes. Lithos 2010, 117, 20–32. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Sun, X.; Gao, S.B.; Wu, S.; Xu, J.; Jiang, J.S.; Chen, X.; Zhao, Z.Y.; Liu, Y. Metallpgenesis and the minerogenetic series in the Gangdese polymetallic copper belt. J. Asian Earth Sci. 2015, 103, 23–39. [Google Scholar] [CrossRef]
- Wang, H.; Lin, F.C.; Li, X.Z.; Shi, M.F.; Liu, C.J.; Shi, H.Z. Tectonic unit division and Neo-Tethys tectonic evolution in north-central Myanmar and its adjacent areas. Geol. China 2012, 39, 912–922. [Google Scholar]
- Chui, H.Y.; Chung, S.L.; Wu, F.Y.; Liu, D.Y.; Liang, Y.H.; Lin, I.J.; Lizuka, Y.; Xie, L.W.; Wang, Y.B.; Chu, M.F. Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics 2009, 477, 3–19. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.F.; Harris, N.; Parrish, R.; Xu, W.C.; Shi, Z.L. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis: Evidence from U–Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex. Gondwana Res. 2012, 21, 100–111. [Google Scholar] [CrossRef]
- Pan, F.B.; Zhang, H.F.; Xu, W.C.; Guo, L.; Wang, S.; Luo, B.J. U–Pb zircon chronology, geochemical and Sr–Nd isotopic composition of Mesozoic–Cenozoic granitoids in the SE Lhasa terrane: Petrogenesis and tectonic implications. Lithos 2014, 192, 142–157. [Google Scholar] [CrossRef]
- Qi, X.X.; Zhu, L.H.; Grimmer, J.C.; Hu, Z.C. Tracing the Transhimalayan magmatic belt and the Lhasa block southward using zircon U–Pb, Lu–Hf isotopic and geochemical data: Cretaceous–Cenozoic granitoids in the Tengchong block, Yunnan, China. J. Asian Earth Sci. 2015, 110, 170–188. [Google Scholar] [CrossRef]
- Huang, Y.F.; He, H.P.; Liang, X.L.; Bao, Z.W.; Tan, W.; Ma, L.Y.; Zhu, J.X.; Huang, J.; Wang, H. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China. Ore Geol. Rev. 2021, 135, 104173. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, Q.; Luo, P.; Li, P.Q.; Liu, J.P.; Zhou, H.; Yi, Z.B.; Xu, C. Mineralization diversity of ion-adsorption type REE deposit in southern China and its critical influence by parent rocks. Acta Geol. Sin. 2022, 96, 3901–3923. [Google Scholar]
- Liang, X.L.; Tan, W.; Ma, L.Y.; Zhu, J.X.; He, H.P. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits. Earth Sci. Front. 2022, 29, 29–41. [Google Scholar]
- Feng, Y.Z.; Chen, H.Y.; Xiao, B.; Chu, G.B.; Zheng, H.; Shen, C. REE remobilization of allanite: Implications for the formation of ion-adsorption REE deposits, South China. Chin. Sci. Bull. 2023, 68, 1217–1229. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Kwong, H.T.; Williams-Jones, A.E.; Zhou, M.F. The thermodynamics of rare earth element liberation, mobilization and supergene enrichment during groundwater-regolith interaction. Geochim. Cosmochim. Acta 2022, 330, 258–277. [Google Scholar] [CrossRef]
- Foley, N.K.; Ayuso, R.A. Rare earth element mobility in high-alumina altered metavolcanic deposits South Carolina, USA. J. Geochem. Explor. 2013, 133, 50–67. [Google Scholar] [CrossRef]
- Bern, C.R.; Yesavage, T.; Foley, N.K. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration. J. Geochem. Explor. 2017, 133, 50–67. [Google Scholar] [CrossRef]
Spot No. | Pb | Th | U | Th/U | Isotope Ratio | Age (Ma) | Concordance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | ppm | 207Pb/206Pb | 2σ | 207Pb/235U | 2σ | 206Pb/238U | 2σ | 206Pb/238U | 2σ | 207Pb/235U | 2σ | % | ||
Syenogranite (L–1–b5) | |||||||||||||||
Lb5–1 | 2.6 | 240 | 279 | 0.86 | 0.0499 | 0.0061 | 0.0523 | 0.0063 | 0.00778 | 0.00021 | 49.9 | 1.4 | 51.3 | 6.1 | 97 |
Lb5–2 | 14.5 | 1228 | 1514 | 0.81 | 0.0471 | 0.0023 | 0.0504 | 0.0022 | 0.00798 | 0.00011 | 51.2 | 0.7 | 49.9 | 2.1 | 97 |
Lb5–3 | 4.8 | 665 | 421 | 1.58 | 0.0497 | 0.0039 | 0.0514 | 0.0039 | 0.00766 | 0.00017 | 49.2 | 1.1 | 50.6 | 3.7 | 97 |
Lb5–4 | 2.1 | 222 | 211 | 1.05 | 0.0445 | 0.0056 | 0.0453 | 0.0054 | 0.00766 | 0.00021 | 49.2 | 1.3 | 44.5 | 5.2 | 90 |
Lb5–5 | 5.8 | 525 | 594 | 0.88 | 0.0494 | 0.0041 | 0.0524 | 0.0044 | 0.0079 | 0.00017 | 50.7 | 1.1 | 51.7 | 4.2 | 98 |
Lb5–6 | 1.5 | 148 | 149 | 0.99 | 0.0526 | 0.0076 | 0.0536 | 0.0077 | 0.00774 | 0.00027 | 49.7 | 1.7 | 52.4 | 7.3 | 95 |
Lb5–7 | 5.2 | 316 | 588 | 0.54 | 0.0496 | 0.0041 | 0.0516 | 0.0041 | 0.00783 | 0.00016 | 50.3 | 1.0 | 50.9 | 3.9 | 99 |
Lb5–8 | 3.5 | 458 | 315 | 1.45 | 0.0497 | 0.0064 | 0.0531 | 0.0068 | 0.00781 | 0.0002 | 50.2 | 1.2 | 52.0 | 6.5 | 96 |
Lb5–9 | 2.7 | 243 | 278 | 0.87 | 0.0441 | 0.0045 | 0.0473 | 0.0051 | 0.00786 | 0.00021 | 50.5 | 1.3 | 46.6 | 4.9 | 92 |
Lb5–10 | 20.9 | 973 | 2349 | 0.41 | 0.0479 | 0.0019 | 0.0515 | 0.0018 | 0.00795 | 0.0001 | 51.1 | 0.7 | 51.1 | 1.8 | 100 |
Lb5–11 | 5.2 | 386 | 546 | 0.71 | 0.0511 | 0.0039 | 0.0534 | 0.0038 | 0.00783 | 0.00017 | 50.3 | 1.1 | 52.6 | 3.6 | 96 |
Lb5–12 | 1.7 | 180 | 168 | 1.07 | 0.0492 | 0.0064 | 0.0502 | 0.0063 | 0.00766 | 0.00022 | 49.2 | 1.4 | 49.0 | 6.1 | 100 |
Lb5–13 | 5.5 | 449 | 567 | 0.79 | 0.0496 | 0.0035 | 0.0523 | 0.0034 | 0.00776 | 0.00014 | 49.8 | 0.9 | 52.0 | 3.4 | 96 |
Lb5–14 | 14.9 | 950 | 1588 | 0.6 | 0.0476 | 0.0022 | 0.0526 | 0.0023 | 0.0078 | 0.00012 | 50.1 | 0.7 | 52.0 | 2.2 | 96 |
Lb5–15 | 4.7 | 386 | 477 | 0.81 | 0.0472 | 0.004 | 0.0536 | 0.0044 | 0.00804 | 0.00019 | 51.6 | 1.2 | 52.8 | 4.2 | 98 |
Lb5–16 | 5.9 | 372 | 636 | 0.59 | 0.0465 | 0.0036 | 0.0517 | 0.0038 | 0.00795 | 0.00015 | 51 | 1.0 | 51.0 | 3.7 | 100 |
Lb5–17 | 3.4 | 357 | 336 | 1.06 | 0.049 | 0.0054 | 0.0539 | 0.0058 | 0.00795 | 0.0002 | 51 | 1.3 | 52.9 | 5.6 | 96 |
Lb5–18 | 4.5 | 384 | 459 | 0.84 | 0.0476 | 0.0036 | 0.0533 | 0.0038 | 0.0079 | 0.00016 | 50.7 | 1.0 | 52.5 | 3.7 | 97 |
Monzogranite (L–1–b6) | |||||||||||||||
Lb6–1 | 20.6 | 2710 | 1723 | 1.57 | 0.0472 | 0.002 | 0.054 | 0.0021 | 0.00806 | 0.00011 | 51.7 | 0.7 | 53.4 | 2.0 | 97 |
Lb6–2 | 29.7 | 4200 | 2521 | 1.67 | 0.0486 | 0.002 | 0.0544 | 0.0021 | 0.00803 | 0.00011 | 51.5 | 0.7 | 53.8 | 2.0 | 96 |
Lb6–3 | 10.2 | 1203 | 930 | 1.29 | 0.0485 | 0.0032 | 0.0544 | 0.0037 | 0.00788 | 0.00015 | 50.6 | 1.0 | 53.6 | 3.5 | 94 |
Lb6–4 | 22.6 | 3172 | 1854 | 1.71 | 0.0481 | 0.0024 | 0.0541 | 0.0025 | 0.00804 | 0.00012 | 51.6 | 0.8 | 53.5 | 2.4 | 96 |
Lb6–5 | 2.1 | 191 | 197 | 0.97 | 0.0499 | 0.0074 | 0.0565 | 0.0081 | 0.00804 | 0.00028 | 51.6 | 1.8 | 55.1 | 7.7 | 93 |
Lb6–6 | 13 | 1552 | 1192 | 1.3 | 0.0543 | 0.0031 | 0.0593 | 0.0031 | 0.00791 | 0.00012 | 50.8 | 0.8 | 58.4 | 3.0 | 86 |
Lb6–7 | 22.8 | 3270 | 2006 | 1.63 | 0.0468 | 0.0026 | 0.049 | 0.0026 | 0.0078 | 0.00013 | 50.1 | 0.8 | 48.5 | 2.5 | 97 |
Lb6–8 | 25.3 | 3547 | 2138 | 1.66 | 0.0486 | 0.0019 | 0.0523 | 0.0019 | 0.00793 | 0.00011 | 50.9 | 0.7 | 51.7 | 1.8 | 98 |
Lb6–9 | 7.6 | 910 | 706 | 1.29 | 0.0495 | 0.0045 | 0.054 | 0.0051 | 0.00798 | 0.00015 | 51.2 | 1.0 | 53.1 | 4.8 | 96 |
Lb6–10 | 8.2 | 1077 | 713 | 1.51 | 0.046 | 0.0037 | 0.0495 | 0.004 | 0.00799 | 0.00016 | 51.3 | 1.0 | 48.9 | 3.9 | 95 |
Lb6–11 | 18.1 | 2709 | 1532 | 1.77 | 0.0494 | 0.0023 | 0.0525 | 0.0024 | 0.00776 | 0.00011 | 49.8 | 0.7 | 51.8 | 2.3 | 96 |
Lb6–12 | 8.3 | 616 | 869 | 0.71 | 0.0522 | 0.0033 | 0.0551 | 0.0034 | 0.0079 | 0.00014 | 50.7 | 0.9 | 54.3 | 3.2 | 93 |
Lb6–13 | 24 | 3362 | 2164 | 1.55 | 0.0474 | 0.0022 | 0.0494 | 0.0023 | 0.00777 | 0.00012 | 49.9 | 0.8 | 48.9 | 2.2 | 98 |
Lb6–14 | 18.8 | 2390 | 1713 | 1.4 | 0.0498 | 0.0024 | 0.0528 | 0.0024 | 0.0078 | 0.00012 | 50.1 | 0.7 | 52.2 | 2.3 | 96 |
Lb6–15 | 6.9 | 477 | 766 | 0.62 | 0.049 | 0.0031 | 0.0515 | 0.0032 | 0.00777 | 0.00015 | 49.9 | 1.0 | 50.9 | 3.1 | 98 |
Lb6–16 | 12 | 784 | 1320 | 0.59 | 0.0492 | 0.003 | 0.0531 | 0.0029 | 0.00775 | 0.00012 | 49.8 | 0.8 | 52.4 | 2.8 | 95 |
Lithology | Monzogranite | Syenogranite | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | D–2–b1 | D–2–b2 | L–1–b2 | L–1–b3 | L–1–b6 | L–1–b7 | N–1–b3 | N–2–b1 | N–2–b2 | N–2–b3 | N–2–b4 | D–2–b3 | D–2–b4 | L–1–b1 | L–1–b4 | L–1–b5 | L–1–b8 | L–2–b09 | L–2–b10 | N–1–b2 | N–1–b4 | N–1–b5 | N–2–b6 |
Major element oxides (wt.%) | |||||||||||||||||||||||
SiO2 | 69.34 | 68.71 | 65.09 | 64.41 | 65.45 | 65.38 | 67.25 | 68.74 | 68.37 | 68.62 | 68.39 | 73.43 | 72.01 | 72.90 | 71.29 | 73.96 | 72.22 | 72.58 | 70.90 | 70.90 | 70.78 | 70.28 | 70.31 |
TiO2 | 0.37 | 0.32 | 0.67 | 0.65 | 0.68 | 0.66 | 0.55 | 0.50 | 0.53 | 0.46 | 0.36 | 0.44 | 0.38 | 0.49 | 0.45 | 0.49 | 0.30 | 0.35 | 0.31 | 0.47 | 0.41 | 0.31 | 0.43 |
Al2O3 | 14.44 | 14.67 | 15.07 | 15.59 | 15.26 | 15.79 | 14.58 | 13.90 | 13.81 | 13.95 | 14.22 | 12.79 | 13.66 | 12.74 | 13.44 | 12.80 | 13.51 | 13.59 | 13.79 | 13.28 | 13.24 | 13.88 | 13.38 |
Fe2O3 | 2.74 | 2.50 | 4.72 | 4.69 | 4.81 | 4.75 | 4.06 | 3.60 | 3.92 | 3.43 | 2.77 | 2.83 | 2.61 | 2.96 | 3.35 | 2.97 | 2.38 | 2.70 | 2.51 | 3.35 | 3.17 | 2.41 | 3.34 |
FeO | 1.80 | 2.01 | 3.74 | 3.70 | 4.02 | 1.37 | 2.87 | 2.41 | 2.59 | 2.48 | 1.76 | 1.87 | 1.58 | 1.94 | 2.87 | 2.44 | 1.37 | 2.05 | 1.98 | 2.30 | 1.80 | 1.90 | 2.37 |
MnO | 0.09 | 0.09 | 0.09 | 0.10 | 0.11 | 0.12 | 0.09 | 0.06 | 0.06 | 0.06 | 0.05 | 0.08 | 0.08 | 0.07 | 0.08 | 0.08 | 0.06 | 0.08 | 0.06 | 0.08 | 0.05 | 0.04 | 0.06 |
MgO | 0.45 | 0.40 | 1.08 | 0.93 | 1.12 | 0.94 | 0.97 | 0.87 | 1.00 | 0.95 | 0.70 | 0.68 | 0.53 | 0.69 | 0.79 | 0.69 | 0.33 | 0.59 | 0.37 | 0.81 | 0.68 | 0.59 | 0.79 |
CaO | 1.45 | 1.17 | 2.94 | 2.37 | 3.01 | 2.40 | 1.94 | 1.25 | 2.35 | 2.38 | 1.36 | 1.63 | 1.51 | 1.23 | 1.03 | 1.24 | 1.47 | 1.91 | 1.59 | 1.38 | 1.35 | 1.68 | 1.02 |
Na2O | 2.89 | 2.98 | 3.33 | 3.76 | 3.38 | 3.78 | 2.69 | 1.90 | 2.80 | 2.76 | 2.20 | 2.43 | 2.69 | 2.45 | 1.80 | 2.45 | 2.98 | 3.31 | 3.10 | 2.06 | 2.48 | 2.69 | 1.79 |
K2O | 6.73 | 7.10 | 5.22 | 5.79 | 5.32 | 5.85 | 6.37 | 6.18 | 5.15 | 5.57 | 6.80 | 5.68 | 6.48 | 4.87 | 6.15 | 4.87 | 6.14 | 4.33 | 6.02 | 6.10 | 6.02 | 6.61 | 6.14 |
P2O5 | 0.09 | 0.06 | 0.24 | 0.22 | 0.25 | 0.22 | 0.17 | 0.15 | 0.18 | 0.15 | 0.12 | 0.14 | 0.12 | 0.08 | 0.11 | 0.08 | 0.06 | 0.12 | 0.06 | 0.14 | 0.13 | 0.10 | 0.10 |
LOI | 0.67 | 0.86 | 0.65 | 0.30 | 0.72 | 0.44 | 1.02 | 1.93 | 0.78 | 0.77 | 1.47 | 0.71 | 0.64 | 1.07 | 0.57 | 0.56 | 0.58 | 0.47 | 0.43 | 1.58 | 0.98 | 0.58 | 1.98 |
Total | 99.26 | 98.86 | 99.09 | 98.80 | 100.11 | 100.33 | 99.67 | 99.08 | 98.95 | 99.11 | 98.44 | 100.85 | 100.71 | 99.55 | 99.05 | 100.18 | 100.02 | 100.03 | 99.14 | 100.13 | 99.29 | 99.17 | 99.34 |
K2O + Na2O | 9.62 | 10.08 | 8.55 | 9.55 | 8.7 | 9.63 | 9.06 | 8.08 | 7.95 | 8.33 | 9 | 8.11 | 9.17 | 7.32 | 7.95 | 7.32 | 9.12 | 7.64 | 9.12 | 8.16 | 8.5 | 9.3 | 7.93 |
K2O/Na2O | 2.33 | 2.39 | 1.57 | 1.54 | 1.57 | 1.55 | 2.37 | 3.26 | 1.84 | 2.02 | 3.09 | 2.33 | 2.41 | 1.99 | 3.42 | 1.99 | 2.06 | 1.31 | 1.94 | 2.96 | 2.43 | 2.45 | 3.44 |
A/NK | 1.20 | 1.17 | 1.36 | 1.25 | 1.35 | 1.26 | 1.29 | 1.42 | 1.36 | 1.32 | 1.30 | 1.26 | 1.19 | 1.37 | 1.40 | 1.38 | 1.17 | 1.34 | 1.19 | 1.33 | 1.25 | 1.20 | 1.40 |
A/CNK | 0.98 | 1.00 | 0.92 | 0.93 | 0.91 | 0.93 | 0.98 | 1.15 | 0.96 | 0.94 | 1.06 | 0.98 | 0.96 | 1.11 | 1.17 | 1.11 | 0.95 | 1.00 | 0.95 | 1.06 | 1.02 | 0.95 | 1.17 |
Mg# | 15.68 | 14.28 | 19.38 | 17.24 | 19.28 | 22.97 | 20.86 | 21.62 | 22.58 | 23.25 | 22.78 | 21.46 | 19.42 | 20.98 | 19.28 | 19.27 | 14.48 | 19.08 | 13.48 | 21.30 | 20.79 | 20.51 | 20.66 |
Trace elements (ppm) | |||||||||||||||||||||||
Li | 31.7 | 35.3 | 31.9 | 29.4 | 22.4 | 33.2 | 45.9 | 42.5 | 36.3 | 32.6 | 29.7 | 21.4 | 28.7 | 27.8 | 24.9 | 39.5 | 31.9 | 77.2 | 30.8 | 38.1 | 33.2 | 31.1 | 40.2 |
Be | 4.58 | 4.57 | 4.18 | 5.61 | 4.32 | 5.28 | 4.57 | 4.21 | 4.42 | 4.25 | 3.52 | 2.87 | 3.84 | 2.90 | 5.01 | 4.64 | 4.72 | 5.93 | 4.82 | 3.99 | 3.90 | 4.07 | 3.57 |
B | 6.17 | 6.97 | 6.44 | 6.96 | 6.17 | 6.46 | 6.26 | 6.94 | 7.04 | 6.35 | 6.32 | 6.41 | 6.21 | 5.43 | 7.53 | 7.26 | 6.39 | 7.21 | 4.92 | 5.94 | 6.16 | 6.39 | 6.02 |
Sc | 4.07 | 2.94 | 7.00 | 4.55 | 11.98 | 1.52 | 5.33 | 4.71 | 6.05 | 5.78 | 3.56 | 3.43 | 3.12 | 3.78 | 5.06 | 3.97 | 2.28 | 1.44 | 2.10 | 4.53 | 3.57 | 3.05 | 4.40 |
V | 16.1 | 13.0 | 46.4 | 29.8 | 113.2 | 9.8 | 33.9 | 29.9 | 36.0 | 33.2 | 24.1 | 25.3 | 21.5 | 26.4 | 30.6 | 25.5 | 10.3 | 24.8 | 11.6 | 29.3 | 22.4 | 19.2 | 27.6 |
Cr | 3.02 | 2.52 | 2.46 | 2.26 | 1.72 | 2.06 | 6.68 | 7.08 | 6.64 | 6.06 | 5.37 | 2.67 | 1.53 | 3.96 | 2.10 | 4.85 | 1.78 | 1.52 | 2.42 | 6.65 | 6.11 | 3.74 | 6.18 |
Co | 1.78 | 1.34 | 5.86 | 4.12 | 13.48 | 1.18 | 5.03 | 4.39 | 5.10 | 4.48 | 3.23 | 3.30 | 2.48 | 4.16 | 4.36 | 4.12 | 1.21 | 3.15 | 1.52 | 4.18 | 3.21 | 2.63 | 4.21 |
Ni | 0.93 | 0.67 | 1.26 | 0.94 | 1.77 | 0.58 | 1.95 | 1.93 | 1.98 | 1.81 | 1.41 | 1.30 | 0.70 | 2.10 | 0.83 | 2.06 | 0.60 | 0.85 | 0.63 | 2.61 | 1.55 | 1.42 | 2.07 |
Cu | 1.35 | 0.45 | 1.49 | 0.86 | 4.33 | 0.55 | 1.93 | 2.68 | 2.67 | 2.45 | 1.51 | 2.11 | 1.54 | 2.63 | 1.02 | 1.54 | 0.65 | 0.66 | 0.67 | 1.53 | 1.43 | 1.71 | 1.33 |
Zn | 22.7 | 16.2 | 53.8 | 44.2 | 76.2 | 18.8 | 46.6 | 39.6 | 47.7 | 37.9 | 25.5 | 31.1 | 23.9 | 38.6 | 48.7 | 46.7 | 16.8 | 43.2 | 24.2 | 40.4 | 34.3 | 26.9 | 38.1 |
Ga | 17.2 | 17.4 | 18.6 | 18.0 | 20.0 | 16.7 | 19.5 | 17.5 | 18.2 | 18.0 | 17.5 | 14.1 | 14.5 | 17.1 | 18.6 | 17.9 | 16.4 | 17.2 | 17.4 | 17.2 | 17.2 | 17.2 | 17.3 |
Rb | 223 | 250 | 153 | 140 | 128 | 209 | 251 | 214 | 202 | 183 | 223 | 144 | 195 | 158 | 162 | 185 | 209 | 179 | 201 | 231 | 224 | 236 | 266 |
Sr | 125 | 110 | 327 | 359 | 506 | 107 | 200 | 128 | 198 | 188 | 168 | 166 | 167 | 113 | 373 | 152 | 84 | 163 | 98 | 147 | 122 | 190 | 125 |
Y | 44.3 | 42.3 | 42.6 | 45.8 | 44.5 | 32.8 | 34.8 | 31.4 | 40.2 | 34.0 | 24.5 | 22.0 | 56.2 | 29.4 | 45.3 | 60.9 | 40.3 | 32.5 | 39.0 | 32.2 | 31.7 | 29.3 | 32.5 |
Zr | 383 | 344 | 397 | 379 | 304 | 277 | 405 | 342 | 332 | 251 | 230 | 250 | 213 | 270 | 382 | 337 | 289 | 194 | 381 | 297 | 238 | 216 | 304 |
Nb | 29.6 | 29.6 | 28.8 | 38.2 | 31.7 | 25.4 | 26.2 | 23.0 | 26.2 | 22.0 | 17.2 | 20.8 | 23.0 | 22.0 | 37.4 | 30.8 | 30.1 | 20.3 | 27.8 | 23.9 | 23.7 | 17.4 | 24.0 |
Sn | 5.58 | 13.0 | 5.90 | 6.78 | 4.61 | 5.65 | 6.43 | 5.29 | 5.37 | 3.29 | 11.9 | 7.28 | 4.98 | 4.46 | 7.59 | 6.56 | 5.72 | 12.0 | 10.3 | 5.19 | 5.03 | 3.66 | 5.35 |
Cs | 6.75 | 6.73 | 7.76 | 9.03 | 4.20 | 6.14 | 8.51 | 7.07 | 6.77 | 5.40 | 6.68 | 4.35 | 4.27 | 3.60 | 9.89 | 7.96 | 5.53 | 13.34 | 5.18 | 7.20 | 8.24 | 6.68 | 8.33 |
Ba | 646 | 566 | 1131 | 1286 | 1354 | 399 | 834 | 701 | 568 | 649 | 853 | 450 | 434 | 483 | 1374 | 605 | 363 | 227 | 285 | 719 | 564 | 799 | 783 |
La | 110 | 107 | 141 | 157 | 117 | 84.5 | 99.9 | 100 | 95.6 | 85.9 | 55.3 | 73.0 | 171 | 74.8 | 130 | 94.7 | 86.1 | 47.7 | 106 | 99.0 | 98.2 | 63.4 | 79.6 |
Ce | 192 | 195 | 244 | 284 | 223 | 169 | 185 | 181 | 180 | 159 | 99.3 | 139 | 211 | 132 | 227 | 175 | 188 | 86.4 | 184 | 178 | 174 | 110 | 136 |
Pr | 22.1 | 21.4 | 27.4 | 30.4 | 24.6 | 18.0 | 19.9 | 19.6 | 19.7 | 18.1 | 11.5 | 13.9 | 34.4 | 15.4 | 26.1 | 19.5 | 18.7 | 10.3 | 22.1 | 19.3 | 18.8 | 12.6 | 15.5 |
Nd | 76.3 | 73.0 | 93.0 | 102.5 | 87.4 | 62.1 | 67.0 | 65.2 | 67.9 | 61.8 | 39.9 | 47.1 | 118 | 52.3 | 88.6 | 67.2 | 66.0 | 36.9 | 75.2 | 64.2 | 61.0 | 42.8 | 51.2 |
Sm | 12.9 | 12.3 | 15.1 | 16.6 | 15.1 | 10.6 | 11.4 | 10.6 | 12.2 | 11.0 | 7.29 | 7.72 | 20.3 | 8.78 | 14.9 | 12.0 | 12.1 | 7.22 | 12.5 | 10.6 | 9.86 | 7.43 | 8.79 |
Eu | 1.57 | 1.36 | 2.25 | 2.62 | 2.78 | 1.10 | 1.39 | 1.22 | 1.30 | 1.40 | 1.20 | 1.32 | 2.27 | 1.30 | 2.69 | 1.38 | 1.08 | 1.02 | 1.11 | 1.13 | 0.97 | 1.19 | 1.01 |
Gd | 9.85 | 9.20 | 10.77 | 11.63 | 10.77 | 7.61 | 8.44 | 7.79 | 9.43 | 8.27 | 5.58 | 5.56 | 14.78 | 6.54 | 10.73 | 9.68 | 9.13 | 5.75 | 8.79 | 7.83 | 7.39 | 5.70 | 6.62 |
Tb | 1.42 | 1.41 | 1.48 | 1.59 | 1.48 | 1.09 | 1.21 | 1.10 | 1.37 | 1.20 | 0.82 | 0.79 | 2.14 | 0.96 | 1.47 | 1.42 | 1.39 | 0.90 | 1.28 | 1.12 | 1.06 | 0.85 | 0.99 |
Dy | 7.76 | 7.72 | 7.96 | 8.51 | 7.99 | 5.93 | 6.46 | 5.88 | 7.52 | 6.45 | 4.60 | 4.22 | 11.25 | 5.47 | 7.88 | 8.27 | 7.61 | 5.11 | 6.96 | 6.04 | 5.81 | 4.70 | 5.48 |
Ho | 1.53 | 1.51 | 1.53 | 1.64 | 1.59 | 1.16 | 1.24 | 1.13 | 1.43 | 1.23 | 0.88 | 0.80 | 2.08 | 1.07 | 1.54 | 1.75 | 1.47 | 1.02 | 1.36 | 1.17 | 1.12 | 0.93 | 1.10 |
Er | 4.05 | 4.03 | 4.08 | 4.34 | 4.21 | 3.11 | 3.32 | 3.03 | 3.81 | 3.23 | 2.37 | 2.09 | 5.28 | 2.82 | 4.03 | 4.97 | 3.93 | 2.88 | 3.62 | 3.08 | 2.98 | 2.49 | 2.98 |
Tm | 0.593 | 0.604 | 0.602 | 0.649 | 0.628 | 0.474 | 0.484 | 0.446 | 0.555 | 0.464 | 0.353 | 0.302 | 0.753 | 0.414 | 0.604 | 0.759 | 0.578 | 0.468 | 0.532 | 0.454 | 0.440 | 0.365 | 0.447 |
Yb | 3.65 | 3.77 | 3.67 | 4.07 | 3.93 | 3.01 | 3.03 | 2.75 | 3.40 | 2.83 | 2.24 | 1.90 | 4.73 | 2.53 | 3.69 | 4.60 | 3.63 | 3.28 | 3.24 | 2.83 | 2.70 | 2.22 | 2.75 |
Lu | 0.540 | 0.532 | 0.539 | 0.598 | 0.579 | 0.441 | 0.446 | 0.409 | 0.493 | 0.405 | 0.324 | 0.289 | 0.665 | 0.361 | 0.551 | 0.698 | 0.514 | 0.501 | 0.460 | 0.409 | 0.396 | 0.332 | 0.412 |
Hf | 9.69 | 8.70 | 9.73 | 9.20 | 7.61 | 7.68 | 10.50 | 8.97 | 8.71 | 6.66 | 6.17 | 6.80 | 5.67 | 6.60 | 8.98 | 8.92 | 8.16 | 5.78 | 10.00 | 7.78 | 6.32 | 5.72 | 8.18 |
Ta | 1.93 | 2.52 | 1.49 | 2.09 | 1.68 | 2.08 | 1.71 | 1.69 | 1.70 | 1.46 | 1.20 | 1.27 | 1.47 | 1.41 | 2.00 | 2.09 | 2.25 | 2.45 | 1.91 | 1.79 | 1.68 | 1.37 | 1.92 |
W | 0.267 | 0.354 | 0.825 | 0.423 | 0.494 | 0.222 | 1.007 | 0.290 | 0.267 | 0.931 | 0.460 | 0.189 | 0.287 | 0.378 | 0.508 | 0.433 | 0.241 | 0.246 | 0.179 | 0.372 | 0.668 | 0.781 | 1.906 |
Tl | 1.35 | 1.49 | 1.24 | 1.24 | 1.03 | 1.31 | 1.65 | 1.53 | 1.40 | 1.29 | 1.39 | 0.82 | 1.11 | 1.03 | 1.37 | 1.29 | 1.40 | 1.50 | 1.27 | 1.52 | 1.46 | 1.47 | 1.82 |
Pb | 29.32 | 31.74 | 29.31 | 24.89 | 27.78 | 28.31 | 34.10 | 31.68 | 30.01 | 28.78 | 35.51 | 23.85 | 29.00 | 28.40 | 34.16 | 29.22 | 26.02 | 37.18 | 27.89 | 34.07 | 30.74 | 37.11 | 31.87 |
Bi | 0.171 | 0.158 | 0.167 | 0.126 | 0.131 | 0.220 | 0.085 | 0.121 | 0.109 | 0.063 | 0.104 | 0.113 | 0.225 | 0.250 | 0.455 | 0.121 | 0.134 | 0.240 | 0.155 | 0.074 | 0.087 | 0.071 | 0.067 |
Th | 43.14 | 35.42 | 52.57 | 53.60 | 35.07 | 56.91 | 59.14 | 42.71 | 55.26 | 43.70 | 41.95 | 25.10 | 43.84 | 22.86 | 36.57 | 38.95 | 42.07 | 27.32 | 45.62 | 46.64 | 69.34 | 36.04 | 49.56 |
U | 3.80 | 3.41 | 4.21 | 4.38 | 5.05 | 5.73 | 5.43 | 3.93 | 6.10 | 5.01 | 4.95 | 3.26 | 4.70 | 3.68 | 3.50 | 3.99 | 3.53 | 2.83 | 8.30 | 3.96 | 7.28 | 3.07 | 5.03 |
ΣREE | 444 | 439 | 553 | 626 | 501 | 368 | 409 | 400 | 405 | 361 | 232 | 298 | 599 | 304 | 521 | 402 | 401 | 210 | 427 | 395 | 384 | 255 | 313 |
LREE | 414 | 410 | 523 | 593 | 470 | 346 | 384 | 377 | 377 | 337 | 215 | 283 | 557 | 284 | 490 | 370 | 372 | 190 | 401 | 372 | 362 | 237 | 292 |
HREE | 29.4 | 28.8 | 30.6 | 33.0 | 31.2 | 22.8 | 24.6 | 22.5 | 28.0 | 24.1 | 17.2 | 16.0 | 41.7 | 20.2 | 30.5 | 32.2 | 28.3 | 19.9 | 26.2 | 22.9 | 21.9 | 17.6 | 20.8 |
LREE/HREE | 14.1 | 14.3 | 17.1 | 18.0 | 15.1 | 15.2 | 15.6 | 16.8 | 13.5 | 14.0 | 12.5 | 17.7 | 13.4 | 14.1 | 16.1 | 11.5 | 13.2 | 9.5 | 15.3 | 16.2 | 16.6 | 13.5 | 14.1 |
(La/Yb)N | 20.3 | 19.2 | 25.9 | 26.1 | 20.2 | 18.9 | 22.2 | 24.6 | 19.0 | 20.5 | 16.6 | 26.0 | 24.4 | 19.9 | 23.8 | 13.9 | 16.0 | 9.8 | 22.1 | 23.6 | 24.5 | 19.2 | 19.5 |
δEu | 0.43 | 0.39 | 0.54 | 0.58 | 0.67 | 0.38 | 0.43 | 0.41 | 0.37 | 0.45 | 0.57 | 0.62 | 0.4 | 0.53 | 0.65 | 0.39 | 0.32 | 0.48 | 0.32 | 0.38 | 0.35 | 0.56 | 0.41 |
δCe | 0.94 | 0.98 | 0.94 | 0.99 | 1.00 | 1.04 | 1.00 | 0.98 | 1.00 | 0.97 | 0.95 | 1.05 | 0.66 | 0.93 | 0.94 | 0.98 | 1.13 | 0.94 | 0.91 | 0.98 | 0.97 | 0.94 | 0.93 |
(Gd/Yb)N | 2.18 | 1.97 | 2.37 | 2.31 | 2.21 | 2.04 | 2.25 | 2.29 | 2.24 | 2.36 | 2.01 | 2.37 | 2.52 | 2.09 | 2.35 | 1.70 | 2.03 | 1.42 | 2.19 | 2.23 | 2.21 | 2.07 | 1.94 |
TZr (°C) | 915 | 904 | 907 | 903 | 878 | 871 | 918 | 915 | 897 | 866 | 867 | 873 | 854 | 890 | 929 | 914 | 885 | 848 | 913 | 895 | 869 | 854 | 904 |
Rb/Sr | 1.78 | 2.28 | 0.47 | 0.39 | 0.25 | 1.96 | 1.26 | 1.67 | 1.02 | 0.97 | 1.33 | 0.87 | 1.17 | 1.40 | 0.43 | 1.22 | 2.50 | 1.10 | 2.04 | 1.57 | 1.84 | 1.25 | 2.13 |
Rb/Ba | 0.35 | 0.44 | 0.14 | 0.11 | 0.09 | 0.52 | 0.30 | 0.31 | 0.36 | 0.28 | 0.26 | 0.32 | 0.45 | 0.33 | 0.12 | 0.31 | 0.58 | 0.79 | 0.70 | 0.32 | 0.40 | 0.30 | 0.34 |
Spot No. | Age | 176Hf/177Hf | 2σ | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | εHf(0) | εHf(t) | TDM1 (Ma) | fLu/Hf | TDM2 (Ma) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Syenogranite (L-1-b5) | ||||||||||||
LB5–1 | 50.5 | 0.282481 | 0.000019 | 0.02468 | 0.00023 | 0.0009497 | 0.000009 | −10.3 | −9.2 | 1089 | −0.97 | 1710 |
LB5–2 | 50.5 | 0.282510 | 0.000019 | 0.0383 | 0.00032 | 0.001471 | 0.000011 | −9.3 | −8.2 | 1063 | −0.96 | 1646 |
LB5–3 | 50.5 | 0.282492 | 0.000024 | 0.0258 | 0.00053 | 0.00097 | 0.000018 | −9.9 | −8.8 | 1074 | −0.97 | 1685 |
LB5–4 | 50.5 | 0.282494 | 0.000024 | 0.0169 | 0.00039 | 0.000667 | 0.000014 | −9.8 | −8.7 | 1063 | −0.98 | 1680 |
LB5–5 | 50.5 | 0.282462 | 0.00002 | 0.01852 | 0.00042 | 0.000717 | 0.000015 | −11.0 | −9.9 | 1108 | −0.98 | 1752 |
LB5–6 | 50.5 | 0.282484 | 0.000023 | 0.01771 | 0.00017 | 0.0006943 | 0.0000069 | −10.2 | −9.1 | 1077 | −0.98 | 1702 |
LB5–7 | 50.5 | 0.282480 | 0.000016 | 0.016873 | 0.000065 | 0.0006894 | 0.0000018 | −10.3 | −9.2 | 1083 | −0.98 | 1711 |
LB5–8 | 50.5 | 0.282478 | 0.000025 | 0.0289 | 0.00072 | 0.00109 | 0.000025 | −10.4 | −9.3 | 1097 | −0.97 | 1717 |
LB5–9 | 50.5 | 0.282502 | 0.000022 | 0.016905 | 0.000087 | 0.0006552 | 0.0000027 | −9.5 | −8.5 | 1051 | −0.98 | 1662 |
LB5–10 | 50.5 | 0.282531 | 0.00002 | 0.02639 | 0.00044 | 0.001028 | 0.000016 | −8.5 | −7.5 | 1021 | −0.97 | 1598 |
LB5–11 | 50.5 | 0.282488 | 0.000022 | 0.01948 | 0.00071 | 0.000755 | 0.000025 | −10.0 | −9.0 | 1073 | −0.98 | 1694 |
LB5–12 | 50.5 | 0.282503 | 0.000018 | 0.01847 | 0.00027 | 0.000718 | 0.00001 | −9.5 | −8.4 | 1051 | −0.98 | 1660 |
LB5–13 | 50.5 | 0.282529 | 0.000024 | 0.01981 | 0.00034 | 0.000778 | 0.000012 | −8.6 | −7.5 | 1017 | −0.98 | 1602 |
LB5–14 | 50.5 | 0.282502 | 0.000018 | 0.03388 | 0.00087 | 0.001345 | 0.000032 | −9.5 | −8.5 | 1070 | −0.96 | 1663 |
LB5–15 | 50.5 | 0.282510 | 0.000019 | 0.01713 | 0.00063 | 0.000672 | 0.000023 | −9.3 | −8.2 | 1040 | −0.98 | 1644 |
LB5–16 | 50.5 | 0.282492 | 0.000019 | 0.01871 | 0.0005 | 0.000727 | 0.000019 | −9.9 | −8.8 | 1067 | −0.98 | 1685 |
LB5–17 | 50.5 | 0.282516 | 0.000021 | 0.03623 | 0.00053 | 0.001348 | 0.000018 | −9.1 | −8.0 | 1051 | −0.96 | 1632 |
LB5–18 | 50.5 | 0.282490 | 0.000022 | 0.01781 | 0.00062 | 0.000698 | 0.000022 | −10.0 | −8.9 | 1069 | −0.98 | 1689 |
Monzogranite (L-1-b6) | ||||||||||||
LB6–1 | 50.7 | 0.282583 | 0.000027 | 0.0794 | 0.001 | 0.002986 | 0.000037 | −6.7 | −5.7 | 999 | −0.91 | 1485 |
LB6–2 | 50.7 | 0.282584 | 0.000027 | 0.0844 | 0.0019 | 0.003188 | 0.000077 | −6.6 | −5.6 | 1004 | −0.90 | 1483 |
LB6–3 | 50.7 | 0.282553 | 0.000024 | 0.05947 | 0.00049 | 0.002235 | 0.000018 | −7.7 | −6.7 | 1022 | −0.93 | 1550 |
LB6–4 | 50.7 | 0.282635 | 0.000036 | 0.0921 | 0.0013 | 0.00352 | 0.000046 | −4.8 | −3.9 | 936 | −0.89 | 1369 |
LB6–5 | 50.7 | 0.282484 | 0.000021 | 0.01844 | 0.00012 | 0.0007182 | 0.0000044 | −10.2 | −9.1 | 1078 | −0.98 | 1702 |
LB6–6 | 50.7 | 0.282555 | 0.000025 | 0.05985 | 0.00072 | 0.002292 | 0.000025 | −7.7 | −6.6 | 1021 | −0.93 | 1546 |
LB6–7 | 50.7 | 0.282608 | 0.000025 | 0.0651 | 0.0011 | 0.002453 | 0.000036 | −5.8 | −4.8 | 948 | −0.93 | 1427 |
LB6–8 | 50.7 | 0.282593 | 0.000027 | 0.05429 | 0.00049 | 0.002065 | 0.000015 | −6.3 | −5.3 | 960 | −0.94 | 1460 |
LB6–9 | 50.7 | 0.282512 | 0.000022 | 0.0393 | 0.0025 | 0.001496 | 0.000091 | −9.2 | −8.1 | 1061 | −0.95 | 1641 |
LB6–10 | 50.7 | 0.282544 | 0.000024 | 0.05179 | 0.00073 | 0.001955 | 0.000024 | −8.1 | −7.0 | 1028 | −0.94 | 1570 |
LB6–11 | 50.7 | 0.282473 | 0.000023 | 0.012587 | 0.000041 | 0.0004995 | 0.000001 | −10.6 | −9.5 | 1087 | −0.98 | 1727 |
LB6–12 | 50.7 | 0.282528 | 0.000023 | 0.02217 | 0.00011 | 0.0008608 | 0.0000036 | −8.6 | −7.5 | 1020 | −0.97 | 1604 |
LB6–13 | 50.7 | 0.282531 | 0.000023 | 0.02024 | 0.0002 | 0.0008049 | 0.000007 | −8.5 | −7.4 | 1015 | −0.98 | 1597 |
LB6–14 | 50.7 | 0.282580 | 0.000028 | 0.1117 | 0.0021 | 0.004172 | 0.000083 | −6.8 | −5.8 | 1038 | −0.87 | 1494 |
LB6–15 | 50.7 | 0.282575 | 0.000021 | 0.05473 | 0.00065 | 0.002061 | 0.000023 | −7.0 | −5.9 | 986 | −0.94 | 1501 |
LB6–16 | 50.7 | 0.282540 | 0.000022 | 0.01801 | 0.00022 | 0.0007061 | 0.0000092 | −8.2 | −7.1 | 1000 | −0.98 | 1577 |
LB6–17 | 50.7 | 0.282582 | 0.000026 | 0.1076 | 0.0014 | 0.004024 | 0.000056 | −6.7 | −5.7 | 1031 | −0.88 | 1489 |
LB6–18 | 50.7 | 0.282584 | 0.000021 | 0.04736 | 0.00065 | 0.001791 | 0.000025 | −6.6 | −5.6 | 966 | −0.95 | 1480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Pan, Z.; Ming, T.; Li, R.; He, X.; Wen, H.; Yu, W. Petrogenesis of Eocene A-Type Granite Associated with the Yingpanshan–Damanbie Regolith-Hosted Ion-Adsorption Rare Earth Element Deposit in the Tengchong Block, Southwest China. Minerals 2024, 14, 933. https://doi.org/10.3390/min14090933
Tang Z, Pan Z, Ming T, Li R, He X, Wen H, Yu W. Petrogenesis of Eocene A-Type Granite Associated with the Yingpanshan–Damanbie Regolith-Hosted Ion-Adsorption Rare Earth Element Deposit in the Tengchong Block, Southwest China. Minerals. 2024; 14(9):933. https://doi.org/10.3390/min14090933
Chicago/Turabian StyleTang, Zhong, Zewei Pan, Tianxue Ming, Rong Li, Xiaohu He, Hanjie Wen, and Wenxiu Yu. 2024. "Petrogenesis of Eocene A-Type Granite Associated with the Yingpanshan–Damanbie Regolith-Hosted Ion-Adsorption Rare Earth Element Deposit in the Tengchong Block, Southwest China" Minerals 14, no. 9: 933. https://doi.org/10.3390/min14090933
APA StyleTang, Z., Pan, Z., Ming, T., Li, R., He, X., Wen, H., & Yu, W. (2024). Petrogenesis of Eocene A-Type Granite Associated with the Yingpanshan–Damanbie Regolith-Hosted Ion-Adsorption Rare Earth Element Deposit in the Tengchong Block, Southwest China. Minerals, 14(9), 933. https://doi.org/10.3390/min14090933