Shale Oil Generation Conditions and Exploration Prospects of the Cretaceous Nenjiang Formation in the Changling Depression, Songliao Basin, China
Abstract
:1. Introduction
2. Geological Background of Shale Oil Generation in the Songliao Basin
3. Geologic Conditions for Shale Oil Generation
3.1. Regional Distribution of Shale Formation
3.2. Hydrocarbon Generation Conditions in Shale Formations
3.2.1. Abundance of Organic Matter
3.2.2. Types of Organic Matter
3.2.3. Thermal Evolution
3.2.4. Comprehensive Evaluation of Hydrocarbon Generation Potential
3.3. Shale Reservoir Conditions
3.3.1. Mineral Composition
3.3.2. Reservoir Space
Fractures
Pores
Porosity of the Reservoir
4. Assessment of Favorable Zones
4.1. Oil-Bearing Properties
4.2. Favorable Stratigraphic Intervals
5. Favorable Zone Prediction
6. Conclusions
- Through the analysis of TOC, free oil content (S1), and hydrocarbon generation potential (S1 + S2), it was determined that the Nen-1 Sub-Formation in the Changling Depression exhibits high organic matter abundance (TOC exceeding 2.0%) primarily composed of Type II1–I kerogen, indicating mature thermal evolution. Through the systematic evaluation of organic matter abundance, type, and maturity, it is revealed that the Nen-1 has the greatest hydrocarbon generation potential. The TOC is greater than 2.0%, the organic matter type can easily generate oil, and the key shale layers in the maturity stage (Ro > 0.7%) are mainly developed in the middle and top of the first and bottom of the Nen-2. This sub-formation demonstrates a high hydrocarbon generation potential, especially in its middle and bottom sections.
- Mineral composition analysis revealed that the Nen-1 and Nen-2 sub-formations are primarily composed of clay, quartz, feldspar, calcite, and pyrite, with minor amounts of dolomite, siderite, and anhydrite. The micro-fractures of the shale in the study area are moderately developed, and four types of micro-pores are developed: interlayer micro-pores, organic micro-pores, intra-clast micro-pores, and inter-crystal micro-pores. Among them, interlayer micro-pores and intra-clast micro-pores are the main types of micro-pores. The porosity of the Nen-2 is obviously higher than that of the Nen-1, but the permeability is very low. From the four influencing factors of shale brittleness, quartz content, natural fracture, and diagenesis, the fracability coefficient of oil and gas shale rock in the Changling Sag is low, which belongs to medium fracability, and hydraulic fracturing can play a certain role.
- The identified favorable zones for shale oil exploration are primarily located in the Heidimiao Sub-Depression and its surrounding areas. The favorable enrichment area of shale oil in the Nen-2 is concentrated in the northwest of the Heidimiao Sub-Sag, and the favorable enrichment area of shale oil in the Nen-1 is concentrated in the northeast of the Heidimiao Sub-Sag.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kinley, T.J.; Cook, L.W.; Breyer, J.A.; Jarvie, D.M.; Busbey, A.B. Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico. AAPG Bull. 2008, 92, 967–991. [Google Scholar] [CrossRef]
- Kuhn, P.P.; di Primio, R.; Hill, R.; Lawrence, J.R.; Hotsfield, B. Three-dimensional modeling study of the low-permeability petroleum system of the Bakken Formation. AAPG Bull. 2012, 96, 1867–1897. [Google Scholar] [CrossRef]
- Jarvie, D.M. Shale resource systems for oil and gas: Part 2-Shale-oil resource systems. AAPG Mem. 2012, 97, 89–119. [Google Scholar]
- Kirschbaum, M.A.; Mercier, T.J. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming. AAPG Bull. 2013, 97, 899–921. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.B.; Wang, X. Geochemical characteristics and grouping of the crude oils in the Lishu fault depression, Songliao basin, NE China. J. Pet. Sci. Eng. 2013, 110, 32–39. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, M. Geochemical characteristics and significances of rearranged hopanes in hydrocarbon source rocks, Songliao Basin, NE China. J. Pet. Sci. Eng. 2015, 131, 138–149. [Google Scholar] [CrossRef]
- Wu, S.T.; Yang, Z.; Zhai, X.F.; Cui, J.W.; Bai, L.S.; Pan, S.Q.; Cui, J.G. An experimental study of organic matter, minerals and porosity evolution in shales within high-temperature and high-pressure constraints. Mar. Pet. Geol. 2019, 102, 377–390. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, B.Q.; Hu, Q.H.; Shu, Z.G.; Sun, M.D.; Bao, H. Laminae characteristics and influence on shale gas reservoir quality of lower Silurian Longmaxi Formation in the Jiaoshiba area of the Sichuan Basin, China. Mar. Pet. Geol. 2019, 109, 839–851. [Google Scholar] [CrossRef]
- Atchley, S.C.; Crass, B.T.; Prince, K.C. The prediction of organic-rich reservoir facies within the Late Pennsylvanian Cline shale(also known as Wolfcamp D), Midland Basin, Texas. AAPG Bull. 2021, 105, 29–52. [Google Scholar] [CrossRef]
- He, T.H.; Li, W.H.; Lu, S.F.; Yang, E.Q.; Jing, T.T.; Ying, J.F.; Zhu, P.F.; Wang, X.Z.; Pan, W.Q.; Chen, Z.H. Distribution and isotopic signature of 2-alkyl-1,3,4-trimethylbenzenes in the Lower Paleozoic source rocks and oils of Tarim Basin: Implications for the oil-source correlation. Pet. Sci. 2022, 19, 2572–2582. [Google Scholar] [CrossRef]
- EIA. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. 2013. Available online: https://www.eia.gov/analysis/studies/worldshalegas/archive/2013/pdf/fullreport_2013.pdf?zscb=48295627 (accessed on 12 September 2024).
- IHS. Unconventional Frontier: Prospects for Tight Oil in North America [EB/OL]. (2014-07-08) [2015-03-22]. Available online: http://www.ihs.com/products/cera/ (accessed on 12 September 2024).
- Hartenergy. North American Shale Quarterly [EB/OL]. (2015-03-01) [2016-5-12]. Available online: https://www.hartenergy.com/ (accessed on 12 September 2024).
- C&C. The Digital Analogs Knowledge System [DB/OL]. (2015-06-30) [2016-04-25]. Available online: https://ccreservoirs.com/daks/ (accessed on 12 September 2024).
- IHS. Exploration, Production, and Midstream Information and Analysis Spanning over 250 Countries [EB/OL]. (2016-02-01) [2021-12-27]. Available online: https://my.ihs.com/Energy (accessed on 12 September 2024).
- Jiang, L.; George, S.C.; Zhang, M. The occurrence and distribution of rearranged hopanes in crude oils from the Lishu Depression, Songliao Basin, China. Org. Geochem. 2018, 115, 205–219. [Google Scholar] [CrossRef]
- Cheng, Q.S.; Zhang, M.; Li, H.B. Anomalous distribution of steranes in deep lacustrine facies low maturity-maturity source rocks and oil of Funing formation in Subei Basin. J. Pet. Sci. Eng. 2019, 181, 106190. [Google Scholar] [CrossRef]
- Li, W.B.; Li, J.Q.; Lu, S.F.; Chen, G.H.; Pang, X.T.; Zhang, P.F.; He, T.H. Evaluation of gas-in-place content and gas-adsorbed ratio using carbon isotope fractionation model: A case study from Longmaxi shales in Sichuan Basin, China. Int. J. Coal Geol. 2022, 249, 103881. [Google Scholar] [CrossRef]
- Zou, C.N.; Ma, F.; Pan, S.Q.; Zhang, X.S.; Wu, S.T.; Fu, G.Y.; Wang, H.J.; Yang, Z. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China. Earth Sci. Front. 2023, 30, 128–142. [Google Scholar]
- Ma, Y.S.; Cai, X.Y.; Zhao, P.R.; Hu, Z.Q.; Liu, H.M.; Gao, B.; Wang, W.Q.; Li, Z.M.; Zhang, Z.L. Geological characteristics and exploration practices of continental shale oil in China. Acta Geol. Sin. 2002, 96, 155–171. [Google Scholar]
- Lu, S.F.; Huang, W.B.; Chen, F.W.; Li, J.J.; Wang, M.; Xue, H.T.; Wang, W.M.; Cai, X.Y. Classification and evaluation criteria of shale oil and gas resources: Discussion and application. Pet. Explor. Dev. 2012, 39, 249–256. [Google Scholar] [CrossRef]
- Jia, C.Z.; Zheng, M.; Zhang, Y.F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Pet. Explor. Dev. 2012, 39, 129–136. [Google Scholar] [CrossRef]
- Zou, C.N.; Yang, Z.; Zhu, R.K.; Zhang, G.S.; Hou, L.H.; Wu, S.T.; Tao, S.Z.; Yuan, X.J.; Dong, D.Z.; Wang, Y.M.; et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies. Acta Geol. Sin. 2015, 89, 979–1007. [Google Scholar]
- Ning, F.; Wang, X.J.; Hao, X.F.; Zhu, D.Y.; Zhu, D.S. Division of Matrix-and Fracture-Type shale oils in the Jiyang depression and their differences. Acta Geol. Sin. Engl. Ed. 2015, 89, 1963–1972. [Google Scholar]
- Kuang, L.C.; Hou, L.H.; Yang, Z.; Wu, S.T. Key parameters and methods of lacustrine shale oil reservoir characterization. Acta Pet. Sin. 2021, 42, 1–14. [Google Scholar]
- Sun, L.D.; Liu, H.; He, W.Y.; Li, G.X.; Zhang, Y.C.; Zhu, R.K.; Jin, X.; Meng, S.W.; Jiang, H. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Pet. Explor. Dev. 2021, 48, 453–463. [Google Scholar] [CrossRef]
- Fu, J.H.; Li, S.X.; Guo, Q.H.; Guo, W.; Zhou, X.P.; Liu, J.Y. Enrichment conditions and favorable area optimization of continental shale oil in Ordos Basin. Acta Geol. Sin. 2022, 43, 1702–1716. [Google Scholar]
- He, W.Y.; Meng, Q.A.; Feng, Z.H.; Zhang, J.Y.; Wang, R. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin. Acta Pet. Sin. 2022, 43, 1–14. [Google Scholar]
- Li, G.X.; Zhu, R.K.; Zhang, Y.S.; Chen, D.; Cui, J.W.; Jiang, Y.H.; Wu, K.Y.; Sheng, J.; Xiang, C.G.; Liu, H. Geological characteristics, evaluation eriteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NE China. Pet. Explor. Dev. 2022, 49, 18–31. [Google Scholar] [CrossRef]
- Qian, X.K.; Liu, C.Q.; Jiang, X.F.; Xu, J.S.; Dai, J.Q. Overview of the domestic and foreign oil and gas industry development in 2019 and outlook for 2020. Int. Pet. Econ. 2020, 28, 2–9. [Google Scholar]
- Zhao, W.Z.; Hu, S.Y.; Hou, L.H.; Yang, T.; Li, X.; Guo, B.C.; Yang, Z. Types and resource potential of continental shale oil in China and its boundary with tight oil. Pet. Explor. Dev. 2020, 47, 1–10. [Google Scholar] [CrossRef]
- Zou, C.N.; Pan, S.Q.; Zhao, Q. On the connotation, challenge and significance of China’s “energy independence” strategy. Pet. Explor. Dev. 2020, 47, 416–426. [Google Scholar] [CrossRef]
- Li, M.W.; Jin, Z.J.; Dong, M.Z.; Ma, X.X.; Li, Z.M.; Jiang, Q.G.; Bao, Y.J.; Tao, G.L.; Qian, M.H.; Liu, P.; et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation. Pet. Geol. Exp. 2020, 42, 489–505. [Google Scholar]
- Zhao, W.Z.; Hu, S.Y.; Hou, L.H. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China. Pet. Explor. Dev. 2018, 45, 537–545. [Google Scholar] [CrossRef]
- Cui, J.W.; Zhu, R.K.; Hou, L.H.; Wu, S.T.; Mao, Z.G.; Li, S. Shale In-situ mining technology status quo of challenges and opportunities. Unconv. Oil Gas 2018, 5, 103–114. [Google Scholar]
- Kang, Z.Q.; Zhao, Y.S.; Yang, D. Review of oil shale in-situ conversion technology. Appl. Energy 2020, 269, 115121. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y.; Liu, Y.; He, J.L.; Gao, Y.F.; Wang, H.L.; Fan, J.; Fu, X.F. Prediction of low-maturity shale oil produced by in situ conversion: A case study of the first and second members of Nenjiang Formation in the central Depression, southern Songliao Basin, northeast China. Pet. Geol. Exp. 2020, 42, 533–544. [Google Scholar]
- Fowler, T.D.; Vinegar, H.J. Oil shale ICP-Colorado field pilots. In Proceedings of the SPE Western Regional Meeting, San Jose, CA, USA, 24–26 March 2009. [Google Scholar]
- Leverette, H.M. Status and plans for the U.S. department of interior program for development of oil shale and oil sands. In Proceedings of the 31st Oil Shale Symposium, Golden, CO, USA, 17–21 October 2011. [Google Scholar]
- Lu, S.F.; Wang, J.; Li, W.B.; Cao, Y.X.; Chen, F.W.; Li, J.J.; Xue, H.T.; Wang, M. Economic feasibility and efficiency enhancement approaches for in situ upgrading of low-maturity organic-rich shale from an energy consumption ratio perspective. Earth Sci. Front. 2023, 30, 281–295. [Google Scholar]
- Jia, J.L.; Bechtel, A.; Liu, Z.J.; Strobl, S.A.I.; Sun, P.C.; Sachsenhofer, R.F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses. Int. J. Coal Geol. 2013, 113, 11–26. [Google Scholar] [CrossRef]
- Liu, B.; Song, Y.; Ye, X.; Zhu, K.; Yan, M.; Li, W.; Li, C.; Li, Z.H.; Tian, W.C. Algal-microbial community, paleoenvironment, and shale oil potential of lacustrine organic-rich shale in the Upper Cretaceous Nenjiang Formation of the southern central Depression, Songliao Basin (NE China). ACS Earth Space Chem. 2021, 5, 2957–2969. [Google Scholar] [CrossRef]
- Xie, T. Study on Micropore Characteristics and Controlling Factors of Cretaceous Qingshankou Formation Shale in Songliao Basin. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2020. [Google Scholar]
- Feng, Z.; Huo, Q.L.; Wang, X.; Zeng, H.S.; Fu, L. Organic geochemical characteristics and paleosedimetary environments of the source rocks in member 1 of Qingshankou formation. Pet. Geol. Oilfield Dev. Daqing 2015, 34, 1–7. [Google Scholar]
- Zhang, D.Q. Study on Hydrocarbon Accumulation Conditions of Upper Cretaceous Nenjiang Formation in Chang-Ling Depression, Southern Songliao Basin. Master’s Thesis, Jilin University, Changchun, China, 2018. [Google Scholar]
- Li, L. Study on Shale Reservoir Characteristics of the First Member of Qingshankou Formation in Changling Sag, Southern Songliao Basin. Master’s Thesis, Jilin University, Changchun, China, 2022. [Google Scholar]
- He, B.Y.; Cui, W.B.; Zhang, J.Y. Geological characteristics and exploration breakthroughs of the middle to low mature shale oil of Nenjiang Formation in northern Songliao Basin. Acta Pet. Sin. 2024, 45, 900–913. [Google Scholar]
- Mao, J.L.; Jing, T.Y.; Han, X.; Shang, C.; Huang, S.Q.; Ma, M.X. Petrology types and organic geochemical characteristics of shale in the Western Depression, Liaohe. Earth Sci. Front. 2016, 23, 185–194. [Google Scholar]
- He, L. Organic Matter Enrichment and Evolution of Sedimentary Environment of the Wufeng-Longmaxi Shale in Southeastern Margins of the Sichuan Basin; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences: Guangzhou, China, 2020. [Google Scholar]
- Cui, H.S.; Guo, W.; Zhao, X.B.; Lin, B.; Wang, S.H. Sedimentary geochemical response of paleoenvironment of Nenjiang Formation in southeastern uplift of Songliao Basin. In Proceedings of the 14th Annual Meeting of Chinese Society of Mineral and Rock Geochemistry, Nanjing, China, 21–25 April 2013. [Google Scholar]
- Zhang, J.C.; Jin, Z.J.; Yuan, M.S. Reservoiring mechanism of shale gas and its distribution. Nat. Gas Ind. 2004, 24, 15–18. [Google Scholar]
- Yang, A.R.; Jia, Y.Y.; Tan, J.J.; Huang, Q.; Yi, A.; Yu, Z.Y. Research on continental shale oil forming conditions and exploration potential analysis in Nanyang depression. Pet. Geol. Eng. 2013, 27, 8–11. [Google Scholar]
- Wang, Y.M.; Xiong, Y.Q.; Wang, L.W.; Miao, H.B. Hydrogen isotopic compositions of n-alkanes in crude oils and extracts of Upper Cretaceous from southern Songliao Basin. Geochimica 2006, 35, 602–608. [Google Scholar]
- Zhu, J.X.; Zhang, X.W.; Luo, X.; Jia, Y.Y.; Dan, L.; Wu, Y.B. Continental shale oil resources and favorable area evaluation of Biyang depression. Pet. Geol. Eng. 2015, 29, 38–41. [Google Scholar]
- Qin, M.H.; Wang, Z.P. Optimization of the favorable area and analysis of the resource potential for the upper cretaceous shale oil in Changling Depression, Songliao Basin. Sci. Technol. Eng. 2014, 14, 209–215. [Google Scholar]
- Zou, C.; Yang, Z.; Cui, J.W.; Zhu, R.K.; Hou, L.H.; Tao, S.Z.; Yuan, X.J.; Wu, S.T.; Lin, S.H.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 14–26. [Google Scholar] [CrossRef]
- Wu, L.Y. Rapid Quantitative Evaluation of Oil Rock Pyrolysis; Science Press: Beijing, China, 1986. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Wang, X.; Liu, Y.H.; Zhang, M.; Hu, S.Y.; Liu, H.J. Conditions of Formation and Accumulation for Shale Gas. Nat. Gas Geosci. 2010, 21, 351–355. [Google Scholar]
- Xiao, X.M.; Song, Z.G.; Zhu, Y.M.; Tian, H.; Yi, H.W. Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area. J. China Coal Soc. 2013, 38, 721–727. [Google Scholar]
- Zhang, J.C.; Lin, L.M.; Li, Y.X.; Tang, X.; Zhu, L.L.; Xing, Y.W.; Jiang, S.L.; Jing, T.Y.; Yang, S.Y. Classification and evaluation of shale oil. Earth Sci. Front. 2012, 19, 322–331. [Google Scholar]
Micropore Type | Pore Carrier | Shape | Dimension | Relative Abundance | Connectivity |
---|---|---|---|---|---|
Interlayer microporosity | Illite/montmorillonite mixed interlayer | Spindle, ong strip, triangle | 156.6 nm~5.6 μm | high | low |
Illite interlayer | Long strip, long form | 1.81 μm~17.05 μm | low | mid | |
Pyrite interlayer | Long strip | 4.3 μm~40.3 μm | low | high | |
Organic microporosity | Organic matter itself | Long strip, fusiform | 521.5 nm~9.18 μm | low | low |
Between organic matter and detrital structure | Long strip, oval | 4.3 μm~11.96 μm | mid | mid | |
Micropores in biodebris | Higher plant debris | Roundness, long strip | 262.7 nm~13.37 μm | mid | mid |
Animal debris | Long strip | 101.5 nm~8.47 μm | mid | mid | |
Cysts, spores | Bubble, irregular | 638.8 nm~114.65 μm | high | mid | |
Intercrystalline micropore | Pyrite | Square, oval irregular | 358 nm~9.19 μm | high | high |
Calcite | Oval, roundness | 1 μm, 200 nm | low | low | |
Gypsum | Long strip | 2.6 μm | low | low |
Layer | Depth (m) | Permeability (md) | Apparent Density (g/cm3) | Porosity (%) |
---|---|---|---|---|
Nen 2 | 1764.00 | 0.000872 | 2.42 | 8.08 |
Nen 2 | 1768.00 | / | 2.35 | 9.63 |
Nen 2 | 1772.00 | 0.000664 | 2.36 | 10.91 |
Nen 2 | 1776.00 | / | 2.49 | 9.47 |
Nen 2 | 1816.00 | / | 2.40 | 5.04 |
Nen 1 | 1820.00 | / | 2.44 | 4.40 |
Nen 1 | 1824.00 | / | 2.36 | 0.51 |
Nen 1 | 1828.00 | / | 2.37 | 0.20 |
Nen 1 | 1834.00 | / | 2.37 | 0.32 |
Nen 1 | 1838.00 | / | 2.40 | 0.57 |
Nen 1 | 1842.00 | / | 2.38 | 0.40 |
Nen 1 | 1846.00 | / | 2.31 | 0.43 |
Nen 1 | 1850.00 | 0.002370 | 2.38 | 0.54 |
Nen 1 | 1854.00 | / | 2.32 | 0.21 |
Nen 1 | 1858.00 | 0.004270 | 2.33 | 0.14 |
Nen 1 | 1866.00 | / | 2.41 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, W.; Lin, S.; Ke, X.; Zhang, M.; He, T. Shale Oil Generation Conditions and Exploration Prospects of the Cretaceous Nenjiang Formation in the Changling Depression, Songliao Basin, China. Minerals 2024, 14, 942. https://doi.org/10.3390/min14090942
Zhang W, Zhang W, Lin S, Ke X, Zhang M, He T. Shale Oil Generation Conditions and Exploration Prospects of the Cretaceous Nenjiang Formation in the Changling Depression, Songliao Basin, China. Minerals. 2024; 14(9):942. https://doi.org/10.3390/min14090942
Chicago/Turabian StyleZhang, Wenjun, Wenyu Zhang, Shumin Lin, Xing Ke, Min Zhang, and Taohua He. 2024. "Shale Oil Generation Conditions and Exploration Prospects of the Cretaceous Nenjiang Formation in the Changling Depression, Songliao Basin, China" Minerals 14, no. 9: 942. https://doi.org/10.3390/min14090942
APA StyleZhang, W., Zhang, W., Lin, S., Ke, X., Zhang, M., & He, T. (2024). Shale Oil Generation Conditions and Exploration Prospects of the Cretaceous Nenjiang Formation in the Changling Depression, Songliao Basin, China. Minerals, 14(9), 942. https://doi.org/10.3390/min14090942