Coal-Hosted Al-Ga-Li-REE Deposits in China: A Review
Abstract
:1. Introduction
2. Overview of Coal-Hosted Al-Ga-Li-REE Deposits
3. Geological Setting of the Jungar and Daqingshan Coalfields
3.1. Jungar Coalfield
3.2. Daqingshan Coalfield
4. Discovery of the Jungar Coal-Hosted Ore Deposit of Critical Metals
5. Abundance and Modes of Occurrence of Critical Elements in Coals
5.1. Critical Metals in the Coals from the Heidaigou Mine, Jungar Coalfield
5.2. Critical Metals in the Coals from the Haerwusu Mine, Jungar Coalfield
5.3. Critical Metals in the Coals from the Guanbanwusu Mine, Jungar Coalfield
5.4. Critical Metals in the Coals from the Laosangou Mine, Jungar Coalfield
5.5. Critical Metals in the Coals from the Adaohai Mine, Daqingshan Coalfield
6. Benefits of Recovery of Critical Metals from Coal Combustion By-Products
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finkelman, R.B.; Dai, S.F.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Dai, S.F.; Finkelman, R.B.; French, D.; Hower, J.C.; Graham, I.T.; Zhao, F.H. Modes of occurrence of elements in coal: A critical evaluation. Earth-Sci. Rev. 2021, 222, 103815. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.; Tang, Y.G.; Yue, M.; Hao, L.M. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int. J. Coal Geol. 2005, 61, 119–137. [Google Scholar] [CrossRef]
- Wang, R.; Dai, S.; Spiro, B.F.; Nechaev, V.P.; French, D.; Graham, I.T.; Zhou, M.; Liu, J.; Di, S.; Tian, X. Multi-stage hydrothermal activity affecting the early Jurassic K7 coal seam from the Gaosheng coal Mine, Sichuan Basin, southwest China: Evidence from whole-rock geochemistry and C-O-Sr isotopes in authigenic carbonates. J. Asian Earth Sci. 2025, 278, 106410. [Google Scholar] [CrossRef]
- Zhou, M.; Dai, S.; Wang, X.; Zhao, L.; Nechaev, V.P.; French, D.; Graham, I.T.; Zheng, J.; Wang, Y.; Dong, M. Critical element (Nb-Ta-Zr-Hf-REE-Ga-Th-U) mineralization in Late Triassic coals from the Gaosheng Mine, Sichuan Basin, southwestern China: Coupled effects of products of sediment-source-region erosion and acidic water infiltration. Int. J. Coal Geol. 2022, 262, 104101. [Google Scholar] [CrossRef]
- Dai, S.F.; Li, W.W.; Tang, Y.G.; Zhang, Y.; Feng, P. The sources, pathway, and preventive measures for fluorosis in Zhijin County, Guizhou, China. Appl. Geochem. 2007, 22, 1017–1024. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Chou, C.L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y.P. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Ma, S.M. The cause of endemic fluorosis in western Guizhou Province, Southwest China. Fuel 2004, 83, 2095–2098. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Gross, P.M.K. The types of data needed for assessing the environmental and human health impacts of coal. Int. J. Coal Geol. 1999, 40, 91–101. [Google Scholar] [CrossRef]
- Dai, S.F.; Zeng, R.S.; Sun, Y.Z. Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. Int. J. Coal Geol. 2006, 66, 217–226. [Google Scholar] [CrossRef]
- Dai, S.F.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.F.; Yan, X.Y.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.B.; Zhao, L.X.; Ren, D.Y.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, X.B.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.K.; Huang, W.H.; Li, T.; Li, X.; Liu, H.D.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90, 72–99. [Google Scholar] [CrossRef]
- Seredin, V.V. Rare earth element-bearing coals from the Russian Far East deposits. Int. J. Coal Geol. 1996, 30, 101–129. [Google Scholar] [CrossRef]
- Seredin, V.V. Anomalous trace elements contents in the Spetsugli germanium deposit (Pavlovka brown coal deposit) southern Primorye: Communication 1. Antimony. Lithol. Miner. Resour. 2003, 38, 154–161. [Google Scholar] [CrossRef]
- Hou, Y.J.; Dai, S.F.; Nechaev, V.P.; Finkelman, R.B.; Wang, H.D.; Zhang, S.W.; Di, S.B. Mineral matter in the Pennsylvanian coal from the Yangquan Mining District, northeastern Qinshui Basin, China: Enrichment of critical elements and a Se-Mo-Pb-Hg assemblage. Int. J. Coal Geol. 2023, 266, 104178. [Google Scholar] [CrossRef]
- Seredin, V.V. From coal science to metal production and environmental protection: A new story of success Commentary. Int. J. Coal Geol. 2012, 90, 1–3. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.F. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Seredin, V.V.; Finkelman, R.B. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, P.P.; Ward, C.R.; Tang, Y.G.; Song, X.L.; Jiang, J.H.; Hower, J.C.; Li, T.; Seredin, V.V.; Wagner, N.J.; et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N-2-CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 2015, 152, 19–46. [Google Scholar] [CrossRef]
- Hower, J.C.; Qian, D.L.; Briot, N.J.; Hood, M.M.; Eble, C.F. Mineralogy of a rare earth element-rich Manchester coal lithotype, Clay County, Kentucky. Int. J. Coal Geol. 2020, 220, 103413. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Chekryzhov, I.Y.; Verkhoturov, A.A.; Spears, D.A.; Melkiy, V.A.; Zarubina, N.V.; Blokhin, M.G. Geochemistry and rare-metal potential of coals of the Sakhalin coal basin, Sakhalin island, Russia. Int. J. Coal Geol. 2023, 268, 104197. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.H.; Spiro, B.; Hao, R.L.; Mu, N.A.; Wen, L.; Hao, H.D. Distribution of Li, Ga, Nb, and REEs in coal as determined by LA-ICP-MS imaging: A case study from Jungar coalfield, Ordos Basin, China. Int. J. Coal Geol. 2023, 267, 104184. [Google Scholar] [CrossRef]
- Palozzi, J.; Bailey, J.G.; Tran, Q.A.; Stanger, R. A characterization of rare earth elements in coal ash generated during the utilization of Australian coals. Intl J. Coal Prep. 2023, 43, 2106–2135. [Google Scholar] [CrossRef]
- Shen, M.L.; Dai, S.F.; Nechaev, V.P.; French, D.; Graham, I.T.; Liu, S.D.; Chekryzhov, I.Y.; Tarasenko, I.A.; Zhang, S.W. Provenance changes for mineral matter in the latest Permian coals from western Guizhou, southwestern China, relative to tectonic and volcanic activity in the Emeishan Large Igneous Province and Paleo-Tethys region. Gondwana Res. 2023, 113, 71–88. [Google Scholar] [CrossRef]
- Wu, J.Y.; Yang, Y.; Tou, F.Y.; Yan, X.Y.; Dai, S.F.; Hower, J.C.; Saikia, B.K.; Kersten, M.; Hochella, M.F. Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. J. Hazard. Mater. 2023, 445, 130482. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Lv, D.W.; Hower, J.C.; Wang, L.J.; Shen, Y.Y.; Zhang, A.C.; Xu, J.C.; Gao, J. Geochronology, mineralogy, and geochemistry of tonsteins from the Pennsylvanian Taiyuan Formation of the Jungar Coalfield, Ordos Basin, North China. Int. J. Coal Geol. 2023, 267, 104183. [Google Scholar] [CrossRef]
- Hower, J.C.; Warwick, P.D.; Scanlon, B.R.; Reedy, R.C.; Childress, T.M. Distribution of rare earth and other critical elements in lignites from the Eocene Jackson Group, Texas. Int. J. Coal Geol. 2023, 275, 104302. [Google Scholar] [CrossRef]
- Arnold, B.J. A review of element partitioning in coal preparation. Int. J. Coal Geol. 2023, 274, 104296. [Google Scholar] [CrossRef]
- Di, S.B.; Dai, S.F.; Nechaev, V.P.; French, D.; Graham, I.T.; Zhao, L.; Finkelman, R.B.; Wang, H.D.; Zhang, S.W.; Hou, Y.J. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao Surface Mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions. Int. J. Coal Geol. 2023, 273, 104262. [Google Scholar] [CrossRef]
- Yang, P.; Dai, S.F.; Nechaev, V.P.; Song, X.L.; Chekryzhov, I.Y.; Tarasenko, I.A.; Tian, X.; Yao, M.D.; Kang, S.; Zheng, J.T. Modes of occurrence of critical metals (Nb-Ta-Zr-Hf-REY-Ga) in altered volcanic ashes in the Xuanwei Formation, eastern Yunnan Province, SW China: A quantitative evaluation based on sequential chemical extraction. Ore Geol. Rev. 2023, 160, 105617. [Google Scholar] [CrossRef]
- Yang, T.Y.; Shen, Y.L.; Lu, L.; Jin, J.; Huang, W.; Li, F.Y.; Zhang, Y.F.; Hu, J.C.; Zeng, L.J. Geological factors for the enrichment of critical elements within the Lopingian (Late Permian) coal-bearing strata in western Guizhou, Southwestern China: Constrained with whole-rock and zircon geochemistry. Int. J. Coal Geol. 2024, 282, 105617. [Google Scholar] [CrossRef]
- Zhang, S.; Xiu, W.; Sun, B.; Liu, Q.F. Provenance of multi-stage volcanic ash recorded in the Late Carboniferous coal in the Jungar Coalfield, North China, and their contribution to the enrichment of critical metals in the coal. Int. J. Coal Geol. 2023, 273, 104265. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, T.C.; Sun, B.; Li, L.; Ma, X.J.; Shi, S.L.; Liu, Q.F. Formation of boehmite through desilication of volcanic-ash-altered kaolinite and its retention for gallium: Contribution to enrichment of aluminum and gallium in coal. Int. J. Coal Geol. 2024, 281, 104404. [Google Scholar] [CrossRef]
- Seredin, V.V.; Chekryzhov, I.Y. Ore Potentiality of the Vanchin Graben, Primorye, Russia. Geol. Ore Depos. 2011, 53, 202–220. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.F.; Sun, Y.Z.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Hower, J.C.; Finkelman, R.B.; Eble, C.F.; Arnold, B.J. Understanding coal quality and the critical importance of comprehensive coal analyses. Int. J. Coal Geol. 2022, 263, 104120. [Google Scholar] [CrossRef]
- Dai, S.F.; Seredin, V.V.; Ward, C.R.; Jiang, J.H.; Hower, J.C.; Song, X.L.; Jiang, Y.F.; Wang, X.B.; Gornostaeva, T.; Li, X.; et al. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. Int. J. Coal Geol. 2014, 121, 79–97. [Google Scholar] [CrossRef]
- Liu, J.J.; Dai, S.F.; Berti, D.; Eble, C.F.; Dong, M.J.; Gao, Y.; Hower, J.C. Rare Earth and Critical Element Chemistry of the Volcanic Ash-fall Parting in the Fire Clay Coal, Eastern Kentucky, USA. Clays Clay Miner. 2023, 71, 309–339. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Wang, W.; Nechaev, V.P.; French, D.; Graham, I.; Lang, Y.B.; Li, Z.P.; Dai, S.F. Enrichment of critical metals (Li, Ga, and rare earth elements) in the early Permian coal seam from the Jincheng Coalfield, southeastern Qinshui Basin, northern China: With an emphasis on cookeite as the Li host. Ore Geol. Rev. 2024, 167, 105939. [Google Scholar] [CrossRef]
- Dai, S.F.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.Y.; Wang, X.B. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Dai, S.F.; Liu, J.J.; Ward, C.R.; Hower, J.C.; Xie, P.P.; Jiang, Y.F.; Hood, M.M.; O’Keefe, J.M.K.; Song, H.J. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol. Rev. 2015, 71, 318–349. [Google Scholar] [CrossRef]
- Dai, S.F.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.W.; Zhang, W.G.; Song, W.J.; Wang, P.P. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Etschmann, B.; Liu, W.H.; Li, K.; Dai, S.F.; Reith, F.; Falconer, D.; Kerr, G.; Paterson, D.; Howard, D.; Kappen, P.; et al. Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. Chem. Geol. 2017, 463, 29–49. [Google Scholar] [CrossRef]
- Liu, J.J.; Spiro, B.F.; Dai, S.F.; French, D.; Graham, I.T.; Wang, X.B.; Zhao, L.; Zhao, J.T.; Zeng, R.S. Strontium isotopes in high- and low-Ge coals from the Shengli Coalfield, Inner Mongolia, northern China: New indicators for Ge source. Int. J. Coal Geol. 2021, 233, 103642. [Google Scholar] [CrossRef]
- Wei, Q.; Cui, C.N.; Dai, S.F. Organic-association of Ge in the coal-hosted ore deposits: An experimental and theoretical approach. Ore Geol. Rev. 2020, 117, 103291. [Google Scholar] [CrossRef]
- Chitlango, F.Z.; Wagner, N.J.; Moroeng, O.M. Characterization and pre-concentration of rare earth elements in density fractionated samples from the Waterberg Coalfield, South Africa. Int. J. Coal Geol. 2023, 275, 104299. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B.; Hower, J.C.; French, D.; Graham, I.T.; Zhao, L. (Eds.) Chapter 10—Critical elements in coal. In Inorganic Geochemistry of Coal; Elsevier: Amsterdam, The Netherlands, 2023; pp. 235–380. [Google Scholar]
- Willard, D.A.; Ruppert, L.F. Broadening the perspectives of sedimentary organic matter analysis to understand Earth system response to change. Int. J. Coal Geol. 2023, 274, 104281. [Google Scholar] [CrossRef]
- Xu, F.; Qin, S.J.; Li, S.Y.; Wen, H.J.; Lv, D.W.; Wang, Q.; Kang, S. The migration and mineral host changes of lithium during coal combustion: Experimental and thermodynamic calculation study. Int. J. Coal Geol. 2023, 275, 104298. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Chou, C.L.; Li, S.S.; Jiang, Y.F. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Li, S.S. Discovery of the superlarge gallium ore deposit in Jungar, Inner Mongolia, North China. Chin. Sci. Bull. 2006, 51, 2243–2252. [Google Scholar] [CrossRef]
- Dai, S.F.; Jiang, Y.F.; Ward, C.R.; Gu, L.D.; Seredin, V.V.; Liu, H.D.; Zhou, D.; Wang, X.B.; Sun, Y.Z.; Zou, J.H.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Dai, S.F.; Li, D.; Chou, C.L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.W.; Sun, Y.Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Yuan, D.E.; Wang, X.M.; Yan, D.T.; Li, J.; Li, B.Q.; Liu, B.; Liu, Z.X.; Zhang, L.W. An original set of nanometer-scale mineralogical analyses of cookeite and the implications for Li enrichment: No. 2 coal, Mengjin Mine, western Henan. Int. J. Coal Geol. 2024, 283, 104445. [Google Scholar] [CrossRef]
- Moroeng, O.M.; Murathi, B.; Wagner, N.J. Enrichment of rare earth elements in epigenetic dolomite occurring in contact metamorphosed Witbank coals (South Africa). Int. J. Coal Geol. 2024, 282, 104405. [Google Scholar] [CrossRef]
- Dai, S.F.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Strzałkowska, E. Rare earth elements and other critical elements in the magnetic fraction of fly ash from several Polish power plants. Int. J. Coal Geol. 2022, 258, 104015. [Google Scholar] [CrossRef]
- Mokoena, B.K.; Mokhahlane, L.S.; Clarke, S. Effects of acid concentration on the recovery of rare earth elements from coal fly ash. Int. J. Coal Geol. 2022, 259, 104037. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, S.; Zou, J.; French, D.; Graham, I.T. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. Int. J. Coal Geol. 2019, 203, 1–14. [Google Scholar] [CrossRef]
- Liu, C.; Chang, Y.; Sun, B.; Wang, X.; Qi, F. Detrital material controlling the enrichment of critical element Li in No. 9 coal seam of the Ningwu Coalfield, northeastern Shanxi Province, China: Heavy mineral and detrital zircon constraints. Int. J. Coal Geol. 2024, 294, 104605. [Google Scholar] [CrossRef]
- Sun, B.; Guo, Z.; Liu, C.; Kong, Y.; French, D.; Zhu, Z. Lithium isotopic composition of two high-lithium coals and their fractions with different lithium occurrence modes, Shanxi Province, China. Int. J. Coal Geol. 2023, 277, 104338. [Google Scholar] [CrossRef]
- Sun, B.; Zeng, F.; Moore, T.A.; Rodrigues, S.; Liu, C.; Wang, G. Geochemistry of two high-lithium content coal seams, Shanxi Province, China. Int. J. Coal Geol. 2022, 260, 104059. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, D.; Zhao, F.; Zhang, S.; Zhang, Q.; Emmanuel, N.N.; Zhong, L. Mineralogical and geochemical characteristics of coal from the Southeastern Qinshui Basin: Implications for the enrichment and economic value of Li and REY. Int. J. Coal Geol. 2022, 264, 104136. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.; Mu, N. Mineralogy and elemental geochemistry of Permo-Carboniferous Li-enriched coal in the southern Ordos Basin, China: Implications for modes of occurrence, controlling factors and sources of Li in coal. Ore Geol. Rev. 2022, 141, 104686. [Google Scholar] [CrossRef]
- Dai, S.F.; Yang, J.Y.; Ward, C.R.; Hower, J.C.; Liu, H.D.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Dai, S.F.; Zhang, W.G.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.J.; Wang, X.B.; Li, X.; Zhao, L.X.; Kang, H.; et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 2013, 109, 77–100. [Google Scholar] [CrossRef]
- Shao, L.Y.; Zhang, P.F.; Gayer, R.A.; Chen, J.L.; Dai, S.F. Coal in a carbonate sequence stratigraphic framework: The Upper Permian Heshan Formation in central Guangxi, southern China. J. Geol. Soc. 2003, 160, 285–298. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Ward, C.R.; Yan, X.; Guo, W.; French, D.; Graham, I.T. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geol. Rev. 2017, 88, 235–250. [Google Scholar] [CrossRef]
- Dai, S.F.; Zhang, W.G.; Ward, C.R.; Seredin, V.V.; Hower, J.C.; Li, X.; Song, W.J.; Wang, X.B.; Kang, H.; Zheng, L.C.; et al. Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 2013, 105, 60–84. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Zhou, Y.P.; Chou, C.L.; Wang, X.B.; Zhao, L.; Zhu, X.W. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol. 2008, 255, 182–194. [Google Scholar] [CrossRef]
- Dai, S.; Zheng, X.; Wang, X.; Finkelman, R.B.; Jiang, Y.; Ren, D.; Yan, X.; Zhou, Y. Stone coal in China: A review. Int. Geol. Rev. 2018, 60, 736–753. [Google Scholar] [CrossRef]
- Wang, N.; Esterle, J.S.; Rodrigues, S.; Hower, J.C.; Dai, S. Insights on the regional thermal evolution from semianthracite petrology of the Fengfeng coalfield, China. Int. J. Coal Geol. 2024, 290, 104548. [Google Scholar] [CrossRef]
- Xu, N.; Zhu, W.; Wang, R.; Li, Q.; Wang, Z.; Finkelman, R.B. Application of self-organizing maps to coal elemental data. Int. J. Coal Geol. 2023, 277, 104358. [Google Scholar] [CrossRef]
- Shang, N.D.; Liu, J.J.; Han, Q.C.; Jia, R.K.; Zhao, S.M. Mineralogy and geochemistry of the Middle Jurassic coal from the Hexi Mine, Shenfu Mining Area, Ordos Basin: With an emphasis on genetic indications of siderite. Int. J. Coal Geol. 2023, 279, 104384. [Google Scholar] [CrossRef]
- Wang, N.; Dai, S.; Esterle, J.; Moore, T.; Zhao, L. Geochemical and mineralogical responses to thermal alteration by an igneous intrusion in the Dashucun Coal Mine of the Fengfeng coalfield, Hebei, North China. Appl. Geochem. 2024, 160, 105877. [Google Scholar] [CrossRef]
- Dai, S.; Ward, C.R.; Graham, I.T.; French, D.; Hower, J.C.; Zhao, L.; Wang, X. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Sci. Rev. 2017, 175, 44–74. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, X.B.; Zhou, Y.P.; Hower, J.C.; Li, D.H.; Chen, W.M.; Zhu, X.W.; Zou, J.H. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem. Geol. 2011, 282, 29–44. [Google Scholar] [CrossRef]
- Liu, H.J. Sedimentary Facies and Paleogeographic Study of Junger Coalfield; Geology Press: Beijing, China, 1991. [Google Scholar]
- Wang, Q.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.; Zhao, L.; Zhang, S.; Liang, Y.; Hower, J.C. Transformation of organic to inorganic nitrogen in NH4+-illite-bearing and Ga-Al-REE-rich bituminous coals: Evidence from nitrogen isotopes and functionalities. Chem. Geol. 2024, 660, 122169. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.F.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J.H. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, J.H.; Guo, W.M.; Wang, P.P.; Ji, D.P. Mineralogy of the Pennsylvanian coal seam in the Datanhao mine, Daqingshan Coalfield, Inner Mongolia, China: Genetic implications for mineral matter in coal deposited in an intermontane basin. Int. J. Coal Geol. 2016, 167, 201–214. [Google Scholar] [CrossRef]
- Wang, S.L.; Ge, L.M. Geochemical Characteristics of Rare Earth Elements in Kaolin Rock from Daqingshan Coalfield. Coal Geol. Explor. 2007, 35, 5, (In Chinese with English Abstract). [Google Scholar]
- Zhang, H.; Jia, B.W. Microscopic characters of kaolinite from the dirt band in a mega-thick coalseam, daqingshan and their genetic significance. Acta Mineral. Sin. 2000, 20, 117–120. [Google Scholar]
- Zhong, R.; Sun, S.P.; Chen, F.; Fu, Z.M. The Discovery of Rhyo-tuffite in the Taiyuan Formation and Stratigraphic Correlation of the Daqingshan and Datong Coalfields. Acta Geosci. Sin. 1995, 16, 291–301. [Google Scholar]
- Zhou, A.C.; Jia, B.W. Analysisof Late Paleozoic Conglomerates from Daqing Mountain in Inner Mongolia. J. Taiyuan Univ. Technol. 2000, 31, 498–504, (In Chinese with English abstract). [Google Scholar]
- Jia, B.W.; Wu, Y.Q. The Provenance and Stratigraphic Significance of Volcanic Event Layers in Late Paleozoic Coal Measures from Daqingshan, Inner Mongolia. J. Coal Mine Res. North. China 1995, 10, 203–213. [Google Scholar]
- Zhong, R.; Chen, F. Coal-Bearing Construction in the Daqingshan Coalfield; Geological Press: Beijing, China, 1988; p. 64, (In Chinese with English Abstract). [Google Scholar]
- Hower, J.C.; Granite, E.J.; Mayfield, D.B.; Lewis, A.S.; Finkelman, R.B. Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Combustion Byproducts. Minerals 2016, 6, 32. [Google Scholar] [CrossRef]
- Dai, S.F.; Zhao, L.; Peng, S.P.; Chou, C.L.; Wang, X.B.; Zhang, Y.; Li, D.; Sun, Y.Y. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int. J. Coal Geol. 2010, 81, 320–332. [Google Scholar] [CrossRef]
- Kolker, A.; Scott, C.; Hower, J.C.; Vazquez, J.A.; Lopano, C.L.; Dai, S. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. Int. J. Coal Geol. 2017, 184, 1–10. [Google Scholar] [CrossRef]
- Liu, J.; Dai, S.; He, X.; Hower, J.C.; Sakulpitakphon, T. Size-Dependent Variations in Fly Ash Trace Element Chemistry: Examples from a Kentucky Power Plant and with Emphasis on Rare Earth Elements. Energy Fuels 2017, 31, 438–447. [Google Scholar] [CrossRef]
- Dai, S.F.; Li, T.J.; Jiang, Y.F.; Ward, C.R.; Hower, J.C.; Sun, J.H.; Liu, J.J.; Song, H.J.; Wei, J.P.; Li, Q.Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Wang, Q.; Dai, S.F.; French, D.; Spiro, B.; Graham, I.; Liu, J.J. Hydrothermally-altered coal from the Daqingshan Coalfield, Inner Mongolia, northern China: Evidence from stable isotopes of C within organic matter and C-O-Sr in associated carbonates. Int. J. Coal Geol. 2023, 276, 104330. [Google Scholar] [CrossRef]
- Dai, S.F.; Zou, J.H.; Jiang, Y.F.; Ward, C.R.; Wang, X.B.; Li, T.; Xue, W.F.; Liu, S.D.; Tian, H.M.; Sun, X.H.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol. 2012, 94, 250–270. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.W.; Zhang, H.; Feng, X.D.; Yuan, W.; Zhang, X.Y.; Wang, Y.; Guo, S.; Cai, H.G.; Li, W.H. The co-enrichment mechanism and resource potential of Al-Ga-Li-Nb(Ta)- Zr(Hf) in Laosangou coal exploration area, Jungar coalfield. Acta Geol. Sin. 2024, 98, 2299–2315. [Google Scholar]
- Seredin, V.V. A New Method for Primary Evaluation of the Outlook for Rare Earth Element Ores. Geol. Ore Depos. 2010, 52, 428–433. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mastalerz, M.; Drobniak, A.; Karacan, C.Ö. Machine learning and data augmentation approach for identification of rare earth element potential in Indiana Coals, USA. Int. J. Coal Geol. 2022, 259, 104054. [Google Scholar] [CrossRef]
- Di, S.B.; Dai, S.F.; Nechaev, V.P.; Zhang, S.W.; French, D.; Graham, I.T.; Spiro, B.; Finkelman, R.B.; Hou, Y.J.; Wang, Y.C.; et al. Granite-bauxite provenance of abnormally enriched boehmite and critical elements (Nb, Ta, Zr, Hf and Ga) in coals from the Eastern Surface Mine, Ningwu Coalfield, Shanxi Province, China. J. Geochem. Explor. 2022, 239, 107016. [Google Scholar] [CrossRef]
- Harrar, H.; Eterigho-Ikelegbe, O.; Modiga, A.; Bada, S. Mineralogy and distribution of rare earth elements in the Waterberg coalfield high ash coals. Miner. Eng. 2022, 183, 107611. [Google Scholar] [CrossRef]
- Hower, J.C.; Eble, C.F.; Hopps, S.D.; Morgan, T.D. Aspects of rare earth element geochemistry of the Pond Creek coalbed, Pike County, Kentucky. Int. J. Coal Geol. 2022, 261, 104082. [Google Scholar] [CrossRef]
- Moore, T.A.; Dai, S.F.; Huguet, C.; Pearse, J.; Liu, J.J.; Esterle, J.S.; Jia, R.K. Petrographic and geochemical characteristics of selected coal seams from the Late Cretaceous-Paleocene Guaduas Formation, Eastern Cordillera Basin, Colombia. Int. J. Coal Geol. 2022, 259, 104042. [Google Scholar] [CrossRef]
- Wang, N.; Dai, S.F.; Wang, X.B.; Nechaev, V.P.; French, D.; Graham, I.T.; Zhao, L.; Song, X.L. New insights into the origin of Middle to Late Permian volcaniclastics (Nb-Zr-REY-Ga-rich horizons) from eastern Yunnan, SW China. Lithos 2022, 420, 106702. [Google Scholar] [CrossRef]
- Zhang, J.; Falandysz, J.; Hanc, A.; Lorenc, W.; Wang, Y.Z.; Baralkiewicz, D. Occurrence, distribution, and associations of essential and non-essential elements in the medicinal and edible fungus “Fuling” from southern China. Sci. Total Environ. 2022, 831, 155011. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, X.; Dai, S. Lithium resources in coal-bearing strata: Occurrence, mineralization, and resource potential. J. Coal Soc. 2022, 47, 1750–1760, (In Chinese with English Abstract). [Google Scholar]
- Shao, P.; Hou, H.J.; Wang, W.L.; Qin, K.M.; Wang, W.F. Distribution and enrichment of Al-Li-Ga-REEs in the High-Alumina coal of the Datong Coalfield, Shanxi Province, China. Ore Geol. Rev. 2022, 140, 104597. [Google Scholar] [CrossRef]
- Talan, D.; Huang, Q.Q. A review study of rare Earth, Cobalt, Lithium, and Manganese in Coal-based sources and process development for their recovery. Miner. Eng. 2022, 189, 107897. [Google Scholar] [CrossRef]
- Wang, X.M.; Wang, X.M.; Pan, Z.J.; Pan, W.H.; Yin, X.B.; Chai, P.C.; Pan, S.D.; Yang, Q. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin, northern China, with emphasis on lithium enrichment. Int. J. Coal Geol. 2019, 214, 103254. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.F.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geol. Rev. 2019, 115, 103184. [Google Scholar] [CrossRef]
- Zhou, M.X.; Zhao, L.; Wang, X.B.; Nechaev, V.P.; French, D.; Spiro, B.F.; Graham, I.T.; Hower, J.C.; Dai, S.F. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geol. Rev. 2021, 139, 104582. [Google Scholar] [CrossRef]
- Liu, J.; Dai, S.; Song, H.; Nechaev, V.P.; French, D.; Spiro, B.F.; Graham, I.T.; Hower, J.C.; Shao, L.; Zhao, J. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield, western Guizhou, China. Int. J. Coal Geol. 2021, 247, 103855. [Google Scholar] [CrossRef]
- Spiro, B.F.; Liu, J.; Dai, S.; Zeng, R.; Large, D.; French, D. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. Int. J. Coal Geol. 2019, 215, 103304. [Google Scholar] [CrossRef]
- Dai, S.; Ji, D.; Ward, C.R.; French, D.; Hower, J.C.; Yan, X.; Wei, Q. Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. Int. J. Coal Geol. 2018, 197, 84–114. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Li, S.S.; Zhao, L.; Zhang, Y. Coal facies evolution of the main minable coal-bed in the Heidaigou Mine, Jungar Coalfield, Inner Mongolia, northern China. Sci. China Ser. D-Earth Sci. 2007, 50, 144–152. [Google Scholar] [CrossRef]
- Jiu, B.; Jin, Z.J.; Wang, Z.G.; Liu, R.C.; Hu, Q.T. Modes of occurrence of gallium in Al-Ga-rich coals in the Jungar Coalfield, Ordos Basin, China: Insights from LA-ICP-MS data. Int. J. Coal Geol. 2024, 282, 104436. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.G.; Yuan, W.; Liu, B.; Querol, X.; Font, O.; Moreno, N.; Li, J.F.; Gang, T.; Liang, G.K. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. Int. J. Coal Geol. 2016, 167, 157–175. [Google Scholar] [CrossRef]
- Wang, X.B.; Dai, S.F.; Sun, Y.Y.; Li, D.; Zhang, W.G.; Zhang, Y.; Luo, Y.B. Modes of occurrence of fluorine in the Late Paleozoic No. 6 coal from the Haerwusu Surface Mine, Inner Mongolia, China. Fuel 2011, 90, 248–254. [Google Scholar] [CrossRef]
- ASTM Standard D388-12; Classification of Coals by Rank. ASTM International: West Conshohocken, PA, USA, 2012.
- Dai, S.F.; Hou, X.Q.; Ren, D.Y.; Tang, Y.G. Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. Int. J. Coal Geol. 2003, 55, 139–150. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Tang, Y.G.; Shao, L.Y.; Li, S.S. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2002, 51, 237–250. [Google Scholar] [CrossRef]
- Liu, J.; Ward, C.R.; Graham, I.T.; French, D.; Dai, S.; Song, X. Modes of occurrence of non-mineral inorganic elements in lignites from the Mile Basin, Yunnan Province, China. Fuel 2018, 222, 146–155. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Yan, X.; Ji, D.; Yang, Y.; Hu, L. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel 2015, 156, 190–197. [Google Scholar] [CrossRef]
- Johnston, M.N.; Hower, J.C.; Dai, S.F.; Wang, P.P.; Xie, P.P.; Liu, J.J. Petrology and Geochemistry of the Harlan, Kellioka, and Darby Coals from the Louellen 7.5-Minute Quadrangle, Harlan County, Kentucky. Minerals 2015, 5, 894–918. [Google Scholar] [CrossRef]
- Finkelman, R.B. Trace and minor elements in coal. In Organic Geochemistry; Engel, M.H., Macko, S., Eds.; Plenum: New York, NY, USA, 1993; pp. 593–607. [Google Scholar]
- Palmer, C.A.; Tuncali, E.; Dennen, K.O.; Coburn, T.C.; Finkelman, R.B. Characterization of Turkish coals: A nationwide perspective. Int. J. Coal Geol. 2004, 60, 85–115. [Google Scholar] [CrossRef]
- Dai, S.F.; Chou, C.L.; Yue, M.; Luo, K.L.; Ren, D.Y. Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. Int. J. Coal Geol. 2005, 61, 241–258. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Finkelman, R.B. Potential health impacts of burning coal beds and waste banks. Int. J. Coal Geol. 2004, 59, 19–24. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.S.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L. Health impacts of coal and coal use: Possible solutions. Int. J. Coal Geol. 2002, 50, 425–443. [Google Scholar] [CrossRef]
- Davis, B.A.; Rodrigues, S.; Esterle, J.S.; Nguyen, A.D.; Duxbury, A.J.; Golding, S.D. Geochemistry of apatite in Late Permian coals, Bowen Basin, Australia. Int. J. Coal Geol. 2021, 237, 103708. [Google Scholar] [CrossRef]
- Hower, J.C.; Campbell, J.L.; Teesdale, W.J.; Nejedly, Z.; Robertson, J.D. Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. Int. J. Coal Geol. 2008, 75, 88–92. [Google Scholar] [CrossRef]
- Kolker, A. Minor element distribution in iron disulfides in coal: A geochemical review. Int. J. Coal Geol. 2012, 94, 32–43. [Google Scholar] [CrossRef]
- Matysek, D.; Jirásek, J. Mineralogy of the coal waste dumps from the Czech part of the Upper Silesian Basin: Emphasized role of halides for element mobility. Int. J. Coal Geol. 2022, 264, 104138. [Google Scholar] [CrossRef]
- Dai, S.F.; Luo, Y.B.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.D.; Zhao, C.L.; Tian, H.M.; Zou, J.H. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Dai, S.F.; Zhou, Y.P.; Zhang, M.Q.; Wang, X.B.; Wang, J.M.; Song, X.L.; Jiang, Y.F.; Luo, Y.B.; Song, Z.T.; Yang, Z.; et al. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. Int. J. Coal Geol. 2010, 83, 55–63. [Google Scholar] [CrossRef]
- Wang, N.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.T.; Song, X.; Chekryzhov, I.Y.; Tarasenko, I.A.; Budnitskiy, S.Y. Detrital UPb zircon geochronology, zircon LuHf and SrNd isotopic signatures of the Lopingian volcanic-ash-derived Nb-Zr-REY-Ga mineralized horizons from eastern Yunnan, SW China. Lithos 2024, 468–469, 107494. [Google Scholar] [CrossRef]
- Wang, N.; French, D.; Dai, S.; Graham, I.T.; Zhao, L.; Song, X.; Zheng, J.; Gao, Y.; Wang, Y. Origin of chamosite and berthierine: Implications for volcanic-ash-derived Nb-Zr-REY-Ga mineralization in the Lopingian sequences from eastern Yunnan, SW China. J. Asian Earth Sci. 2023, 253, 105703. [Google Scholar] [CrossRef]
- Wang, N.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.T.; Zhao, F.; Zuo, J. Isotopes of carbon and oxygen of siderite and their genetic indications for the Late Permian critical-metal tuffaceous deposits (Nb-Zr-REY-Ga) from Yunnan, southwestern China. Chem. Geol. 2022, 592, 120727. [Google Scholar] [CrossRef]
- Dai, S.; Nechaev, V.P.; Chekryzhov, I.Y.; Zhao, L.; Vysotskiy, S.V.; Graham, I.; Ward, C.R.; Ignatiev, A.V.; Velivetskaya, T.A.; Zhao, L.; et al. A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos 2018, 302–303, 359–369. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Graham, I.T.; Li, X.; Liu, H.; Song, X.; Hower, J.C.; Zhou, Y. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geol. Rev. 2017, 80, 116–140. [Google Scholar] [CrossRef]
- Zhao, L.X.; Dai, S.F.; Graham, I.T.; Wang, P.P. Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz. Minerals 2016, 6, 45. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Graham, I.T.; Li, X.; Zhang, B. New insights into the lowest Xuanwei Formation in eastern Yunnan Province, SW China: Implications for Emeishan large igneous province felsic tuff deposition and the cause of the end-Guadalupian mass extinction. Lithos 2016, 264, 375–391. [Google Scholar] [CrossRef]
- Anggara, F.; Patria, A.A.; Rahmat, B.; Wibisono, H.; Putera, M.Z.J.; Petrus, H.T.B.M.; Erviana, F.; Handini, E.; Amijaya, D.H. Signature characteristics of coal geochemistry from the Eocene Tanjung Formation and the Miocene Warukin Formation, Barito Basin: Insights into geological control on coal deposition and future critical element prospection. Int. J. Coal Geol. 2024, 282, 104423. [Google Scholar] [CrossRef]
- Karayiğit, A.İ.; Oskay, R.G.; Córdoba Sola, P.; Bulut, Y.; Eminağaoğlu, M. Mineralogical and elemental composition of the Middle Miocene coal seams from the Alpu coalfield (Eskişehir, Central Türkiye): Insights from syngenetic zeolite formation. Int. J. Coal Geol. 2024, 282, 104408. [Google Scholar] [CrossRef]
- Pearce, J.K.; Blach, T.; Dawson, G.K.W.; Southam, G.; Paterson, D.J.; Golding, S.D.; Bahadur, J.; Melnichenko, Y.B.; Rudolph, V. Cooper Basin REM gas shales after CO2 storage or acid reactions: Metal mobilisation and methane accessible pore changes. Int. J. Coal Geol. 2023, 273, 104271. [Google Scholar] [CrossRef]
- Shen, M.L.; Dai, S.F.; French, D.; Graham, I.T.; Spiro, B.F.; Wang, N.; Tian, X. Geochemical and mineralogical evidence for the formation of siderite in Late Permian coal-bearing strata from western Guizhou, SW China. Chem. Geol. 2023, 637, 121675. [Google Scholar] [CrossRef]
- Tuncer, A.; Karayigit, A.I.; Oskay, R.G.; Tunoğlu, C.; Kayseri-Özer, M.S.; Gümüş, B.A.; Bulut, Y.; Akbulut, A. A multi-proxy record of palaeoenvironmental and palaeoclimatic conditions during Plio-Pleistocene peat accumulation in the eastern flank of the Isparta Angle: A case study from the Şarkikaraağaç coalfield (Isparta, SW Central Anatolia). Int. J. Coal Geol. 2023, 265, 104149. [Google Scholar] [CrossRef]
- Dai, S.; Chou, C.L. Occurrence and origin of minerals in a chamosite-bearing coal of Late Permian age, Zhaotong, Yunnan, China. Am. Miner. 2007, 92, 1253–1261. [Google Scholar] [CrossRef]
- Dai, S.F.; Tian, L.W.; Chou, C.L.; Zhou, Y.P.; Zhang, M.Q.; Zhao, L.; Wang, J.M.; Yang, Z.; Cao, H.Z.; Ren, D.Y. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite. Int. J. Coal Geol. 2008, 76, 318–327. [Google Scholar] [CrossRef]
- Suchy, V.; Zacharias, J.; Sykorova, I.; Korinkova, D.; Pesek, J.; Brabcova, K.P.; Luo, Q.Y.; Filip, J.; Svetlik, I. Palaeo-thermal history of the Blanice Graben (the Bohemian Massif, Czech Republic): The origin of anthracite in a late-Variscan strike-slip basin. Int. J. Coal Geol. 2022, 263, 104129. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan coalfield, Hebei, China. Energy Fuels 2007, 21, 1663–1673. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Bostick, N.H.; Dulong, F.T.; Senftle, F.E.; Thorpe, A.N. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County, Colorado. Int. J. Coal Geol. 1998, 36, 223–241. [Google Scholar] [CrossRef]
- Sanders, M.M.; Rimmer, S.M. Revisiting the thermally metamorphosed coals of the Transantarctic Mountains, Antarctica. Int. J. Coal Geol. 2020, 228, 103550. [Google Scholar] [CrossRef]
- Rimmer, S.M.; Yoksoulian, L.E.; Hower, J.C. Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin. Int. J. Coal Geol. 2009, 79, 74–82. [Google Scholar] [CrossRef]
- Dai, S.F.; Hower, J.C.; Ward, C.R.; Guo, W.M.; Song, H.J.; O’Keefe, J.M.K.; Xie, P.P.; Hood, M.M.; Yan, X.Y. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144, 23–47. [Google Scholar] [CrossRef]
- Hower, J.C.; Groppo, J.G.; Eble, C.F.; Hopps, S.D.; Morgan, T.D. Was coal metamorphism an influence on the minor element chemistry of the Middle Pennsylvanian Springfield (No. 9) coal in Western Kentucky? Int. J. Coal Geol. 2023, 274, 104295. [Google Scholar] [CrossRef]
- Hower, J.C.; Gebremedhin, M.; Zourarakis, D.P.; Finkelman, R.B.; French, D.; Graham, I.T.; Schobert, H.H.; Zhao, L.; Dai, S. Is Hyperaccumulation A Viable Hypothesis for Organic Associations of Minor Elements in Coals? Earth-Sci. Rev. 2024, 254, 104802. [Google Scholar] [CrossRef]
- Xie, P.P.; Dai, S.F.; Hower, J.C.; Nechaev, V.P.; French, D.; Graham, I.T.; Wang, X.B.; Zhao, L.; Zuo, J.P. Nitrogen isotopic compositions in NH4+-mineral-bearing coal: Origin and isotope fractionation. Chem. Geol. 2021, 559, 119946. [Google Scholar] [CrossRef]
- Han, Q.; Liu, J.; Hower, J.C.; Moore, T.A.; Shang, N.; Zhao, S.; Jia, R.; Dai, S. Fire activities and their impacts on local ecosystems in the southern Ordos Basin during the Middle Jurassic: Evidence from pyrogenic PAHs and petrography of inertinite-rich coal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 636, 111972. [Google Scholar] [CrossRef]
- Liu, J.; Dai, S.; Hower, J.C.; Moore, T.A.; Moroeng, O.M.; Nechaev, V.P.; Petrenko, T.I.; French, D.; Graham, I.T.; Song, X. Stable isotopes of organic carbon, palynology, and petrography of a thick low-rank Miocene coal within the Mile Basin, Yunnan Province, China: Implications for palaeoclimate and sedimentary conditions. Org. Geochem. 2020, 149, 104103. [Google Scholar] [CrossRef]
- Sanders, M.M.; Rimmer, S.M.; Rowe, H.D. Carbon isotopic composition and organic petrography of thermally metamorphosed Antarctic coal: Implications for evaluation of δ13Corg excursions in paleo-atmospheric reconstruction. Int. J. Coal Geol. 2023, 267, 104182. [Google Scholar] [CrossRef]
- Bąk, K.; Szram, E.; Zielińska, M.; Misz-Kennan, M.; Fabiańska, M.; Bąk, M.; Górny, Z. Organic matter variations in the deep marginal basin of the Western Tethys and links to various environments in isotopic Albian–Cenomanian Boundary Interval. Int. J. Coal Geol. 2023, 266, 104181. [Google Scholar] [CrossRef]
- Zhou, M.X.; Dai, S.F.; Wang, Z.; Spiro, B.F.; Vengosh, A.; French, D.; Graham, I.T.; Zhao, F.H.; Zuo, J.P.; Zhao, J.T. The Sr isotope signature of Wuchiapingian semi-anthracites from Chongqing, southwestern China: Indication for hydrothermal effects. Gondwana Res. 2022, 103, 522–541. [Google Scholar] [CrossRef]
- Mills, S. Rare Earth Elements—Recovery from Coal Based Materials; ICSC/334; International Centre for Sustainable Carbon: London, UK, 2024; p. 96. [Google Scholar]
- Zhao, L.; Dai, S.; Finkelman, R.B.; French, D.; Graham, I.T.; Yang, Y.; Li, J.; Yang, P. Leaching behavior of trace elements from fly ashes of five Chinese coal power plants. Int. J. Coal Geol. 2020, 219, 103381. [Google Scholar] [CrossRef]
- Zhang, S.; Dai, S.; Finkelman, R.B.; Graham, I.T.; French, D.; Hower, J.C.; Li, X. Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel 2019, 255, 115710. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal geology in China: An overview. Int. Geol. Rev. 2018, 60, 531–534. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, X.; Zhao, W. Coal-Hosted Al-Ga-Li-REE Deposits in China: A Review. Minerals 2025, 15, 74. https://doi.org/10.3390/min15010074
Zhang Y, Liu X, Zhao W. Coal-Hosted Al-Ga-Li-REE Deposits in China: A Review. Minerals. 2025; 15(1):74. https://doi.org/10.3390/min15010074
Chicago/Turabian StyleZhang, Yanbo, Xiangyang Liu, and Wei Zhao. 2025. "Coal-Hosted Al-Ga-Li-REE Deposits in China: A Review" Minerals 15, no. 1: 74. https://doi.org/10.3390/min15010074
APA StyleZhang, Y., Liu, X., & Zhao, W. (2025). Coal-Hosted Al-Ga-Li-REE Deposits in China: A Review. Minerals, 15(1), 74. https://doi.org/10.3390/min15010074