Investigation of Interfacial Characteristics as a Key Aspect of the Justification of the Reagent Regime for Coal Flotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Research Object
2.2. Methodology of Quantum–Chemical Modeling of the Process of Reagent Anchoring
2.3. Methodology for Numerical Determination of the Surface Free Energy Value Using the Owens–Wendt–Rabel–Kaelble Method
2.4. Methodology for Potentiometric Determination of Interfacial Characteristics at the Solid–Liquid–Gas Interface
2.5. Flotation Tests
3. Results and Discussion
3.1. Investigation of the Mechanism of Action of Flotation Reagents Based on the Estimation of the Free Energy of the Surface of Minerals
- A change in the probability of the collision of a mineral aggregate with an air bubble due to a decrease in the energy of the hydrate barrier of water molecules at the mineral–liquid interface;
- A change in the probability of maintaining the mineral particle–air bubble contact by increasing the required work of adhesion for water.
3.2. Predicting the Efficiency of Fixation of Reagent Molecules on the Coal Surface Using Quantum–Chemical Modeling
3.3. Potentiometric Studies of Interfacial Characteristics in the Coal Flotation Process
3.4. Experimental Validation and Testing on Coal Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- BP Statistical Review of World Energy Statistical Review of World Energy. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 12 December 2024).
- Dvoynikov, M.V.; Leusheva, E.L. Modern trends in hydrocarbon resources development. J. Min. Inst. 2022, 258, 879–880. [Google Scholar]
- Blinova, E.; Ponomareko, T.; Tesovskaya, S. Key Corporate Sustainability Assessment Methods for Coal Companies. Sustainability 2023, 15, 5763. [Google Scholar] [CrossRef]
- Chanturia, V.A.; Shadrunova, I.V.; Gorlova, O.E. Innovative processes of deep and environmentally safe processing of technogenic raw materials in the conditions of new economic challenges. Sustain. Dev. Mt. Territ. 2021, 13, 224–237. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Luo, Z.; Duan, C.; Song, S. Progress in developments of dry coal beneficiation. Int. J. Coal Sci. Technol. 2014, 1, 103–112. [Google Scholar] [CrossRef]
- Hughes, N.; le Roux, M.; Campbell, Q.P.; Nakhaei, F. A review of the dry methods available for coal beneficiation. Miner. Eng. 2024, 216, 108847. [Google Scholar] [CrossRef]
- Bazhin, V.Y.; Kuskov, V.B.; Kuskova, Y.V. Processing of low-demand coal and other carbon-containing materials for energy production purposes. Inżynieria Miner. 2019, 21, 195–198. [Google Scholar] [CrossRef]
- Zubov, V.P.; Golubev, D.D. Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion. J. Min. Inst. 2021, 250, 534–541. [Google Scholar] [CrossRef]
- Karmakar, A.; Gopinathan, P.; Kumar, O.P.; Sethi, M.K.; Subramani, T.; Santosh, M.; Banerjee, P.K. Transformation in energy content of non-coking coals during differential settling beneficiation process: Implications for energy impact. Fuel 2024, 377, 132662. [Google Scholar] [CrossRef]
- Vasilenko, T.; Кirillov, А.; Islamov, A.; Doroshkevich, A.; Łudzik, K.; Chudoba, D.M.; Mita, C. Permeability of a coal seam with respect to fractal features of pore space of fossil coals. Fuel 2022, 329, 125113. [Google Scholar] [CrossRef]
- Chukaeva, M.A.; Matveeva, V.A.; Sverchkov, I.P. Complex processing of high-carbon ash and slag waste. J. Min. Inst. 2022, 253, 97–104. [Google Scholar] [CrossRef]
- Aleksandrova, T.; Nikolaeva, N.; Afanasova, A.; Chenlong, D.; Romashev, A.; Aburova, V.; Prokhorova, E. Increase in Recovery Efficiency of Iron-Containing Components from Ash and Slag Material (Coal Combustion Waste) by Magnetic Separation. Minerals 2024, 14, 136. [Google Scholar] [CrossRef]
- Tsareva, A.A.; Litvinova, T.E.; Gapanyuk, D.I.; Rode, L.S.; Poltoratskaya, M.E. Kinetic Calculation of Sorption of Ethyl Alcohol on Carbon Materials. Russ. J. Phys. Chem. A 2024, 98, 421–430. [Google Scholar] [CrossRef]
- Kondratev, S.A.; Khamzina, T.A. Improvement of concentrate quality in flotation of low-rank coal J. Min. Inst. 2024, 265, 65–77. [Google Scholar]
- Aleksandrova, T.N.; Kuskov, V.B.; Afanasova, A.V.; Kuznetsov, V.V. Improvement of the fine coking coal flotation technology. Obogashchenie Rud 2021, 3, 9–13. [Google Scholar] [CrossRef]
- Mao, Y.; Shen, P.; Dong, L.; Yu, X.; Xie, G.; Li, Y.; Liu, D. Role of oil droplet size on dynamic pore wetting of active carbon and particle-bubble interaction: New inspiration for enhancing the porous mineral floatability. Colloids Surf. A Physicochem. Eng. Asp. 2024, 698, 134611. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, M.; Lu, Y.; Zhang, H.; Von Lau, E. New insights for improving low-rank coal flotation performance via emulsified waste fried oil collector. Fuel 2024, 357, 129925. [Google Scholar] [CrossRef]
- Zhang, R.; Xing, Y.; Xia, Y.; Guo, F.; Ding, S.; Tan, J.; Gui, X. Synergistic adsorption mechanism of anionic and cationic surfactant mixtures on low-rank coal flotation. ACS Omega 2020, 5, 20630–20637. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Z.; Chen, L.; Tao, X.; Tang, L.; He, H. Wetting thermodynamics of low rank coal and attachment in flotation. Fuel 2017, 207, 214–225. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, H.; Pan, Y. Associations of gangue minerals in coal flotation tailing and their transportation behaviors in the flotation process. ACS Omega 2022, 7, 27542–27549. [Google Scholar] [CrossRef]
- Petrakov, D.G.; Loseva, A.V.; Alikhanov, N.T.; Jafarpour, H. Standards for selection of surfactant compositions used in completion and stimulation fluids. Int. J. Eng. 2023, 36, 1605–1610. [Google Scholar] [CrossRef]
- Niu, C.; Xia, W.; Peng, Y. Analysis of coal wettability by inverse gas chromatography and its guidance for coal flotation. Fuel 2018, 228, 290–296. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Rosenbaum, J.M.; Laskowski, J. Effect of surface functional groups on the flotation of coal. Colloids Surf. 1983, 8, 153–173. [Google Scholar] [CrossRef]
- Kadagala, M.R.; Nikkam, S.; Tripathy, S.K. A review on flotation of coal using mixed reagent systems. Miner. Eng. 2021, 173, 107217. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, R.; Cao, Y.; Xing, Y.; Gui, X. Role of molecular simulation in understanding the mechanism of low-rank coal flotation: A review. Fuel 2020, 262, 116535. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Chen, B.; Cui, S.; Lu, Z.; Dai, W.; Zhao, Y.; Duan, C.; Dong, L. Rapid detection of coal ash based on machine learning and X-ray fluorescence. J. Min. Inst. 2022, 256, 663–676. [Google Scholar] [CrossRef]
- Lian, F.; Li, G.; Cao, Y.; Zhao, B.; Zhu, G.; Fan, K. Experimental study on the dispersion behavior of a microemulsion collector and its mechanism for enhancing low-rank coal flotation. Int. J. Min. Sci. Technol. 2023, 33, 893–901. [Google Scholar] [CrossRef]
- Xia, W.; Li, Y.; Nguyen, A.V. Improving coal flotation using the mixture of candle soot and hydrocarbon oil as a novel flotation collector. J. Clean. Prod. 2018, 195, 1183–1189. [Google Scholar] [CrossRef]
- Rudolph, M.; Hartmann, R. Specific surface free energy component distributions and flotabilities of mineral microparticles in flotation—An inverse gas chromatography study. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 380–388. [Google Scholar] [CrossRef]
- Zhu, X.; Wei, H.; Hou, M.; Wang, Q.; You, X.; Li, L. Thermodynamic behavior and flotation kinetics of an ionic liquid microemulsion collector for coal flotation. Fuel 2020, 262, 116627. [Google Scholar] [CrossRef]
- Han, H.; Liu, A.; Wang, C.; Yang, R.; Li, S.; Wang, H. Flotation kinetics performance of different coal size fractions with nanobubbles. Int. J. Miner. Metall. Mater. 2022, 29, 1502–1510. [Google Scholar] [CrossRef]
- Avogadro: An Open-Source Molecular Builder and Visualization Tool. Version 1.XX. Available online: http://avogadro.cc/ (accessed on 9 January 2025).
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Snyder, H.D.; Kucukkal, T.G. Computational chemistry activities with Avogadro and ORCA. J. Chem. Educ. 2021, 98, 1335–1341. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Takano, Y.; Houk, K.N. Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J. Chem. Theory Comput. 2005, 1, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Usui, S.; Sasaki, H.; Matsukawa, H. The dependence of zeta potential on bubble size as determined by the dorn effect. J. Colloid Interface Sci. 1981, 81, 80–84. [Google Scholar] [CrossRef]
- Booth, F. Sedimentation potential and velocity of solid spherical particles. J. Chem. Phys. 1954, 22, 1956–1968. [Google Scholar] [CrossRef]
- Langmuir, I. The mechanism of the surface phenomena of flotation. Trans. Faraday Soc. 1920, 15, 62–74. [Google Scholar] [CrossRef]
- Laskowski, J.S. Thermodynamic and kinetic flotation criteria. Miner. Procesing Extr. Metall. Rev. 1989, 5, 25–41. [Google Scholar] [CrossRef]
- Mohammadi-Jam, S.; Burnett, D.J.; Waters, K.E. Surface energy of minerals–Applications to flotation. Miner. Eng. 2014, 66, 112–118. [Google Scholar] [CrossRef]
- Janczuk, B.; Wojcik, W.; Bialopiotrowicz, T. Wettability of coal surface and its surface free energy components. Croat. Chem. Acta 1988, 61, 51–63. [Google Scholar]
- Marzec, A. Macromolecular and molecular model of coal structure. Fuel Process. Technol. 1986, 14, 39–46. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Yan, K. Adsorption of collectors on model surface of Wiser bituminous coal: A molecular dynamics simulation study. Miner. Eng. 2015, 79, 31–39. [Google Scholar] [CrossRef]
Size Class, mm | Yield, % | Percentage Ash Content, % | Content, % | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Si | Fe | S | Al | Ca | K | Ti | Sr | |||
−2 + 0.5 | 1.41 | 22.99 | 3.23 | 3.29 | 1.66 | 0.82 | 1.58 | 1.69 | 0.53 | 0.07 |
−0.5 + 0.25 | 37.98 | 22.99 | 2.91 | 3.63 | 1.73 | 0.53 | 2.08 | 1.47 | 0.49 | 0.12 |
−0.25 + 0.16 | 18.64 | 27.81 | 3.32 | 3.77 | 1.93 | 0.90 | 3.09 | 1.78 | 0.64 | 0.21 |
−0.16 + 0.071 | 19.16 | 29.16 | 3.02 | 3.53 | 1.45 | 0.71 | 4.70 | 2.03 | 0.59 | 0.36 |
−0.071 | 22.82 | 40.74 | 5.80 | 4.98 | 1.15 | 1.14 | 5.88 | 2.87 | 0.63 | 0.81 |
Summary | 100.00 | 29.12 | 3.67 | 3.94 | 1.58 | 0.78 | 3.63 | 1.96 | 0.57 | 0.34 |
Contact Time, min | |||
---|---|---|---|
Without treatment | - | - | - |
1 | −13.08 | −53.70 | −66.78 |
2 | −23.07 | −51.32 | −74.39 |
5 | −26.07 | −51.90 | −77.97 |
7 | −31.70 | −51.71 | −83.41 |
10 | −36.34 | −50.41 | −86.75 |
15 | −37.00 | −51.66 | −88.66 |
Condition | Liquid + Gas | Liquid + Gas + Solid | Liquid + Gas + Solid + Solids + Surfactants | |||
---|---|---|---|---|---|---|
Reagent flow rate, g/t | 0 | 0 | 50 | 150 | 250 | 500 |
Molar concentration of reagent in pulp, mol/L | 0 | 0 | 0.17 | 0.50 | 0.84 | 1.68 |
Model reagent sorption value, mol/kg | 0 | 0 | 2.05 | 2.70 | 2.88 | 3.04 |
Fraction of sorption from ultimate capacity | 0 | 0 | 0.64 | 0.84 | 0.90 | 0.95 |
Parameter Ef, V/s | −0.047 | −0.003 | 7.02 | −0.08 | −0.01 | 0.58 |
Parameter C | 0.3928 | 0.0208 | −19.60 | 19.94 | 17.68 | 15.83 |
Collector Consumption = 500 g/t | |||||||||
Products | Yield, % | Content, % | Recovery, % | ||||||
Ash | Si | Ca | S | Ash | Si | Ca | S | ||
Concentrate | 68.62 | 11.04 | 2.30 | 1.02 | 0.38 | 26.98 | 33.20 | 20.66 | 53.92 |
Tailings | 31.38 | 65.34 | 10.12 | 8.57 | 0.51 | 73.02 | 66.80 | 79.34 | 46.08 |
Feed | 100.00 | 28.08 | 4.75 | 3.39 | 0.42 | 100.00 | 100.00 | 100.00 | 100.00 |
Collector Consumption = 1000 g/t | |||||||||
Products | Yield, % | Content, % | Recovery, % | ||||||
Ash | Si | Ca | S | Ash | Si | Ca | S | ||
Concentrate | 79.52 | 11.47 | 2.41 | 1.04 | 0.39 | 32.48 | 40.27 | 24.40 | 73.82 |
Tailings | 20.48 | 92.57 | 13.86 | 12.51 | 0.54 | 67.52 | 59.73 | 75.60 | 26.18 |
Feed | 100.00 | 28.08 | 4.75 | 3.39 | 0.42 | 100.00 | 100.00 | 100.00 | 100.00 |
Collector Consumption = 1500 g/t | |||||||||
Products | Yield, % | Content, % | Recovery, % | ||||||
Ash | Si | Ca | S | Ash | Si | Ca | S | ||
Concentrate | 82.27 | 13.32 | 2.73 | 1.11 | 0.43 | 39.03 | 47.12 | 26.97 | 83.51 |
Tailings | 17.73 | 96.57 | 14.18 | 13.96 | 0.39 | 60.97 | 52.88 | 73.03 | 16.49 |
Feed | 100.00 | 28.08 | 4.75 | 3.39 | 0.42 | 100.00 | 100.00 | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksandrova, T.N.; Kuznetsov, V.V.; Prokhorova, E.O. Investigation of Interfacial Characteristics as a Key Aspect of the Justification of the Reagent Regime for Coal Flotation. Minerals 2025, 15, 76. https://doi.org/10.3390/min15010076
Aleksandrova TN, Kuznetsov VV, Prokhorova EO. Investigation of Interfacial Characteristics as a Key Aspect of the Justification of the Reagent Regime for Coal Flotation. Minerals. 2025; 15(1):76. https://doi.org/10.3390/min15010076
Chicago/Turabian StyleAleksandrova, Tatyana N., Valentin V. Kuznetsov, and Evgeniya O. Prokhorova. 2025. "Investigation of Interfacial Characteristics as a Key Aspect of the Justification of the Reagent Regime for Coal Flotation" Minerals 15, no. 1: 76. https://doi.org/10.3390/min15010076
APA StyleAleksandrova, T. N., Kuznetsov, V. V., & Prokhorova, E. O. (2025). Investigation of Interfacial Characteristics as a Key Aspect of the Justification of the Reagent Regime for Coal Flotation. Minerals, 15(1), 76. https://doi.org/10.3390/min15010076