The Short-Wave Infrared (SWIR) Spectral Exploration Identification and Indicative Significance of the Yixingzhai Gold Deposit, Shanxi Province
Abstract
:1. Introduction
2. Geological Background
2.1. Geological Characteristics of the Mining Area
2.2. Characteristics of the Deposit
2.3. Characteristics of Alteration and Mineralization
3. Sampling and Methods
3.1. Sample Collection and Testing
3.2. Analytical Methods
4. Results
4.1. EPMA Results
4.2. Short-Wave Infrared Spectroscopy Alteration Mineral Assemblages and Alteration Zoning
4.2.1. Alteration Minerals and Alteration Assemblages
4.2.2. Alteration Zoning
4.3. Variation Characteristics of Muscovite Mineral Spectral Parameters
5. Discussion
5.1. The Influence Factors of Spectral Parameters Change of Muscovite
5.1.1. Components
5.1.2. Temperature and pH
5.2. Comparison with Other Deposits
6. Conclusions
- (1)
- In the porphyry and breccia mineralization, muscovite near the mineralization center is inclined to the SW direction, while in quartz vein mineralization, it is inclined to the LW direction. The crystallinity of porphyry mineralization is significantly higher than that of quartz vein and breccia mineralization, and the crystallinity near the mineralization center gradually increases.
- (2)
- The SWIR spectrum exploration identification of porphyry gold deposits was established for the first time. The spectral parameters of muscovite minerals in porphyry mineralization (Pos2200 2201–2204 nm and IC 1–2.2), breccia mineralization (Pos2200 2210–2211 nm and IC < 1.5), and quartz vein mineralization (Pos2200 2201–2204 nm and IC 1–2.2) can be used as indicators of mineralization centers.
- (3)
- The wavelength and crystallinity of Yixingzhai muscovite are mainly affected by the Tschermak substitution and temperature. When the content of Si, Fe, and Mg is low and the content of AlVI is high, the wavelength is biased toward the SW direction. Conversely, when the content of AlVI is low and the content of Si, Fe, and Mg is high, the wavelength tends to the LW direction. Crystallinity is mainly affected by temperature; the higher the temperature, the higher the crystallinity.
- (4)
- It is found for the first time that muscovite in porphyry gold deposits has higher crystallinity (4.1–8.4) than that of porphyry copper deposits, epithermal gold deposits, and tectonic altered gold deposits, which provides a new basis for the prospecting and exploration of similar porphyry gold deposits.
- (5)
- SWIR spectroscopy technology can identify the altered minerals of porphyry deposits quickly and determine the exploration identification effectively, which is an effective means for future prospecting and exploration.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laukamp, C.; Legras, M.; Montenegro, V.; Windle, S.; Mcfarlane, A. Grandite-based resource characterization of the skarn-hosted Cu-Zn-Mo deposit of Antamina, Peru. Miner. Depos. 2022, 57, 107–128. [Google Scholar] [CrossRef]
- Neal, L.C.; Wilkinson, J.J.; Mason, P.J.; Chang, Z. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits. J. Geochem. Explor. 2018, 184, 179–198. [Google Scholar] [CrossRef]
- Mathieu, M.; Roy, R.; Launeau, P.; Cathelineau, M.; Quirt, D. Alteration mapping on drill cores using a HySpex SWIR-320m hyperspectral camera: Application to the exploration of an unconformity-related uranium deposit (Saskatchewan, Canada). J. Geochem. Explor. 2017, 172, 71–88. [Google Scholar] [CrossRef]
- Carrino, T.A.; Crósta, A.P.; Toledo, C.L.B.; Silva, A.M. Unveiling the hydrothermal mineralogy of the Chapi Chiara gold prospect, Peru, through reflectance spectroscopy, geochemical and petrographic data. Ore Geol. Rev. 2015, 64, 299–315. [Google Scholar] [CrossRef]
- Hao, J.Y.; Duan, L.A.; Zhang, Y.; Zhao, H.T.; Shao, Y.J.; Guo, Y.C.; Wang, X.; Song, S.L. Machine learning on white mica short-wave infrared (SWIR) spectral data in the Tengjia Au deposit, Jiaodong peninsula (Eastern China): A prospecting indicator for lode gold deposits. Ore Geol. Rev. 2024, 173, 106230. [Google Scholar] [CrossRef]
- Ducart, D.F.; Crosta, A.P.; Souza Filho, C.R.; Coniglio, J. Alteration mineralogy at the Cerro La Mina epithermal prospect, Patagonia, Argentina; field mapping, short-wave infrared spectroscopy, and ASTER images. Econ. Geol. Bull. Soc. Econ. Geol. 2006, 101, 981–996. [Google Scholar] [CrossRef]
- Thompson, A.J.B.; Hauff, P.L.; Robitaille, A.J. Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy; SEG Discovery: Littleton, CO, USA, 1999; pp. 1–27. [Google Scholar]
- Swayze, G.A.; Clark, R.N. Infrared-Spectra And Crystal-Chemistry of Scapolites—Implications For Martian Mineralogy. J. Geophys. Res. Solid Earth 1990, 95, 14481–14495. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Hunt, G.R.; Ashley, R.P. Spectra of altered rocks in the visible and near infrared. Econ. Geol. Bull. Soc. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Hunt, G.R.; Wynn, J.C. Visible and near-infrared spectra of rocks from chromium-rich areas. Geophysics 1979, 44, 820. [Google Scholar] [CrossRef]
- Gaffey, S.J. Spectral Reflectance of Carbonate Minerals in the Visible and Near-Infrared (0.35–2.55 Microns)—Calcite, Aragonite, and Dolomite. Am. Miner. 1986, 71, 151–162. [Google Scholar]
- Leng, C.B.; Wang, D.Z.; Yu, H.J.; Tian, F.; Zhang, X.C. Mapping hydrothermal alteration zones with short wavelength infrared (SWIR) spectra and magnetic susceptibility at the Pulang porphyry Cu-Au deposit, Yunnan, SW China. Miner. Depos. 2024, 59, 699–716. [Google Scholar] [CrossRef]
- Mahdieh, H.Z.; Tangestani, M.H.; Francisco, V.R.; Yusta, I. Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geol. Rev. 2014, 62, 191–198. [Google Scholar]
- Ren, H.; Zheng, Y.Y.; Wu, S.; Zhang, X.; Ye, J.W.; Chen, X.D. Short-wavelength infrared characteristics and in-dications of exploration of the Demingding copper-molybdenum deposit in Tibet. J. Earth Sci. 2020, 45, 930–944. [Google Scholar]
- Tian, F.; Leng, C.B.; Zhang, X.C.; Tian, Z.D.; Zhang, W.; Guo, J.H. Application of short-wave infrared spectroscopy in Gangjiang porphyry Cu-Mo deposit in Nimu ore field, Tibet. J. Earth Sci. 2019, 44, 2143–2154. [Google Scholar]
- Wang, R.; Cudahy, T.; Laukamp, C.; Walshe, J.L.; Bath, A.; Mei, Y.; Young, C.; Roache, T.J.; Jenkins, A.; Roberts, M.; et al. White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia. Econ. Geol. 2017, 112, 1153–1176. [Google Scholar] [CrossRef]
- Yang, Z.M.; Hou, Z.Q.; Yang, Z.S.; Qu, H.C.; Li, Z.Q.; Liu, Y.F. Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district: A case study of Niancun ore district Tibet. Miner. Depos. 2012, 31, 699–717. [Google Scholar]
- Zhang, Z.X.; Dai, J.J.; Wang, X.G.; Hu, Z.H.; Wan, X.; Peng, B.; Fu, M.H.; Zhao, L.X. Shortwave infrared characteristics of muscovite from giant Shimensi tungsten deposit in northern Jiangxi Province and implication to exploration. Miner. Depos. 2023, 42, 116–127. [Google Scholar]
- Camilo, U.; Maher, K. White Mica Geochemistry of the Copper Cliff Porphyry Cu Deposit: Insights from a Vectoring Tool Applied to Exploration. Econ. Geol. 2018, 113, 1269–1295. [Google Scholar]
- Thimsen, E.; Sadtler, B.; Berezin, M.Y. Shortwave-infrared (SWIR) emitters for biological imaging: A review of challenges and opportunities. Nanophotonics 2017, 6, 1043–1054. [Google Scholar] [CrossRef]
- Laakso, K.; Peter, J.M.; Rivard, B.; White, H.P. Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulfide deposit, Nunavut, Canada; application in exploration target vectoring. Econ. Geol. Bull. Soc. Econ. Geol. 2016, 111, 1223–1239. [Google Scholar] [CrossRef]
- Shan, S.Q.; Xie, G.Q.; Liu, W.Y.; Zheng, J.H.; Xing, B. Hydrothermal alteration and sulfide zoning characteristics of the Čukaru peki super-large porphyry-epithermal copper-gold deposit in western Tethys, serbia and its implication for exploration. Geotecton. Metallog. 2023, 47, 1085–1109. [Google Scholar]
- Yan, Y.F.; Tan, J.; Li, Y.H.; Ruan, S.K. Geological characteristics of epithermal gold deposits and status quo of researches in China. Resour. Environ. Eng. 2007, 21, 7–11. [Google Scholar]
- Zhu, X.F.; Chen, Y.J.; Wang, P.; Zhang, C.; Cai, Y.L.; Deng, K.; Xu, Q.W.; Li, K.Y. Zircon U-Pb age, geochemistry and Hf isotopes of the causative porphyry from the Bilihe porphyry gold deposit, Inner Mongolia. Front. Earth Sci. 2018, 25, 119–134. [Google Scholar]
- Wang, Q.; Tang, J.X.; Chen, Y.C.; Hou, J.F.; Li, Y.B. The metallogenic model and prospecting direction for the Duolong super large copper (gold) district, Tibet. Acta Petrol. Sin. 2019, 35, 879–896. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Shen, J.F.; Peng, Z.D.; Xu, L.W.; Niu, G.; Liu, H.M.; Li, J.C.; Du, B.S.; Liu, J.J. Altered Rock characteristics and gold prospecting of Gangcha-Kemo area in Gansu province. Geoscience 2021, 35, 579–588. [Google Scholar]
- Xu, C.; Chen, H.Y.; White, N.; Qi, J.P.; Zhang, L.J.; Zhang, S.; Duan, G. Alteration and mineralization of Xinan Cu-Mo ore deposit in Zijinshan orefield, Fujian Province, and application of short wavelength infra-red technology (SWIR) to exploration. Min. Depos. 2017, 36, 1013–1038. [Google Scholar]
- Harraden, C.L.; Mcnulty, B.A.; Gregory, M.J.; Lang, J.R. Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Econ. Geol. Bull. Soc. Econ. Geol. 2013, 108, 483–494. [Google Scholar] [CrossRef]
- Tang, N.; Lin, B.; Li, Y.B.; Wang, Y.Y.; Li, J.J. Application of short wavelength infrared spectroscopy in porphyry-epithermal system: A case study of Tiegelongnan super-large copper (gold) deposit, Tibet. Acta Geol. Sin. 2021, 95, 2613–2627. [Google Scholar]
- Wang, L.; Percival, J.B.; Hedenquist, J.W.; Hattori, K.; Qin, K. Alteration Mineralogy of the Zhengguang Epithermal Au-Zn Deposit, Northeast China: Interpretation of Shortwave Infrared Analyses During Mineral Exploration and Assessment. Econ. Geol. 2021, 116, 389–406. [Google Scholar] [CrossRef]
- Shao, X.W.; Peng, Y.M.; Wang, G.W.; Zhao, X.Y.; Tang, J.Y.; Huang, L.L.; Liu, X.N.; Zhao, X.D. Application of SWIR, XRF and thermoelectricity analysis of pyrite in deep prospecting in the Xincheng gold orefield, Jiaodong Peninsula. Front. Earth Sci. 2021, 28, 236–251. [Google Scholar]
- Doublier, M.P.; Roache, T.; Potel, S. Short-wavelength infrared spectroscopy; a new petrological tool in low-grade to very low-grade pelites. Geology 2015, 38, 1031–1034. [Google Scholar] [CrossRef]
- Yang, K.; Browne, P.R.L.; Huntington, J.F.; Walshe, J.L. Characterising the hydrothermal alteration of the Broadlands-Ohaaki geothermal system, New Zealand, using short-wave infrared spectroscopy. J. Volcanol. Geotherm. Res. 2001, 106, 53–65. [Google Scholar] [CrossRef]
- Jones, S.; Herrmann, W.; Gemmell, J.B. Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada. Econ. Geol. 2005, 2, 273–294. [Google Scholar] [CrossRef]
- Zhang, L.Z. Element geochemistry and age of the altered-porphyry gold mineralization in Yixingzhai gold de-posit, Fanshi city, Shanxi province. Geol. Miner. Resour. South China 2018, 34, 134–141. [Google Scholar]
- Bai, X.M. Geological characteristics, geochronology, and prospecting direction of the Tietangdong cryptoexplosive breccia pipe in the Yixingzhai Gold Deposit, Shanxi Province. Gold 2022, 43, 9–18. [Google Scholar]
- Liu, X.G. Metallogenic characteristies and genesis analysis of Yixingzhai gold deposit in the Fanshi County of Shanxi, China. Miner. Resour. Geol. 2022, 36, 299–309. [Google Scholar]
- Zhang, J.Q.; Li, S.R.; Santosh, M.; Luo, J.Y.; Li, C.L.; Song, J.Y.; Lu, J.; Liang, X. The genesis and gold mineralization of the crypto-explosive breccia pipe in the Yixingzhai gold region, central North China Craton. Geol. J. 2020, 55, 5664–5680. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M.; Zhang, H.F.; Luo, J.Y.; Zhang, J.Q.; Li, C.L.; Song, J.Y.; Zhang, X.B. Metallogeny in response to lithospheric thinning and craton destruction: Geochemistry and U–Pb zircon chronology of the Yixingzhai gold deposit, central North China Craton. Ore Geol. Rev. 2014, 56, 457–471. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Gao, W.S.; Deng, X.D. Geology and Geochronology of Magmatic–Hydrothermal Breccia Pipes in the Yixingzhai Gold Deposit: Implications for Ore Genesis and Regional Exploration. Minerals 2024, 14, 496. [Google Scholar] [CrossRef]
- Sun, R.L. Mineralization temperature calculated from tetrahedrite thermodynamic: Implication for vein-type gold mineralization in the Yixingzhai gold deposit, Shanxi. South China Geol. 2023, 39, 581–587. [Google Scholar]
- Ye, R.; Tu, G.C.; Zhao, L.S.; Shen, Y.L.; Luo, L. Modes of occurrence of Au-mineral particles in Yixingzhai gold deposit and their metallogenic dynamic significance. Miner. Depos. 2002, 21, 278–282. [Google Scholar]
- Zhang, J.Q.; Li, S.R.; Santosh, M.; Niu, S.D.; Li, Q.; Lu, J. The magmatic–hydrothermal mineralization systems of the Yixingzhai and Xinzhuang gold deposits in the central North China Craton. Ore Geol. Rev. 2017, 88, 416–435. [Google Scholar] [CrossRef]
- Li, C.L.; Li, S.R.; Luo, J.Y.; Zhang, J.Q.; Song, J.Y. Characteristies of gold-bearing minerals in the Yixingzhai gold deposit, Fanshi County, Shanxi Province. Geol. China 2011, 38, 119–128. [Google Scholar]
- Zhang, L.Z.; Chen, L.; Wang, G.P.; Deng, X.D.; Li, J.W. Garnet U-Pb dating constraints on the timing of breccia pipes formation and genesis of gold mineralization in Yixingzhai gold deposit, Shanxi province. J. Earth Sci. 2020, 45, 108–117. [Google Scholar]
- Zhang, J.Q.; Li, S.R.; Santosh, M.; Li, Q.; Niu, S.D.; Li, Z.D.; Zhang, X.G.; Jia, L.B. Timing and origin of Mesozoic magmatism and metallogeny in the Wutai-Hengshan region; implications for destruction of the North China Craton. J. Asian Earth Sci. 2015, 113, 677–694. [Google Scholar] [CrossRef]
- Ross, P.S.; Bourke, A.; Schnitzler, N.; Conly, A. Exploration Vectors from near Infrared Spectrometry near the McLeod Volcanogenic Massive Sulfide Deposit, Matagami District, Québec. Econ. Geol. 2019, 114, 613–638. [Google Scholar] [CrossRef]
- Guo, N.; Huang, Y.R.; Zheng, L.; Tang, N.; Fu, Y.; Wang, C. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo Deposits. Acta Geosci. Sin. 2017, 38, 767–778. [Google Scholar]
- Halley, S.; Dilles, J.H.; Tosdal, R.M. Footprints: Hydrothermal Alteration and Geochemical Dispersion Around Porphyry Copper Deposits; SEG Discovery: Littleton, CO, USA, 2015; pp. 1–17. [Google Scholar]
- Ernst, W.G. Significance of phengitic micas from low-grade schists. Am. Miner. 1963, 48, 1357–1373. [Google Scholar]
- Xu, Q.J.; Ye, F.W.; Zhang, Z.X.; Zhang, C.; Li, X.C.; Li, R.W.; Tian, C. Short-wavelength infrared spectroscopy and EPMA of white mica from Baiyanghe uranium district in Xinjiang. World Nucl. Geosci. 2024, 41, 47–62. [Google Scholar]
- Hunt, G.R. Near-infrared (1.3–2.4 mm) spectra of alteration minerals—Potential for use in remote sensing. Geophysics 1979, 44, 1974–1986. [Google Scholar] [CrossRef]
- Tappert, M.C.; Rivard, B.; Giles, D.; Tappert, R.; Mauger, A. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geol. Rev. 2013, 53, 26–38. [Google Scholar] [CrossRef]
- Herrmann, W.; Blake, M.; Doyle, M.; Huston, D.; Kamprad, J.; Merry, N.; Pontual, S. Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Econ. Geol. 2001, 96, 939–955. [Google Scholar] [CrossRef]
- Duke, E.F. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress; implications for remote sensing. Geology 1994, 22, 621–624. [Google Scholar] [CrossRef]
- Zheng, S.L.; Wu, S.; Zheng, Y.Y.; Chen, L.; Wei, C.; Huang, P.C.; Jing, X.K.; Yu, Z.Y.; He, C.T.; Ren, H. Identifying potential porphyry copper mineralization at the Zhu’nuo ore-cluster district in western Gangdese, southern Tibet: Insights from shortwave infrared (SWIR) spectrometry and geochemical anomalies. Ore Geol. Rev. 2022, 151, 105202. [Google Scholar] [CrossRef]
- He, W.; Lin, B.; Song, Y.X.; Fang, X.; Wang, Q.; Yang, H.H.; Li, F.Q. Mineralogical characteristics and implications of muscovite from the Tiegelongnan super-large copper (gold) deposit in Tibet. Acta Geol. Sin. 2023, 97, 1938–1955. [Google Scholar]
- Zhang, S.T.; Chu, G.B.; Cheng, J.M.; Zhang, Y.; Tian, J.; Li, J.P.; Sun, S.Q.; Wei, K.T. Short wavelength infrared (SWIR) spectroscopy of phyllosilicate minerals from the Tonglushan Cu-Au-Fe deposit, Eastern China: New exploration indicators for concealed skarn orebodies. Ore Geol. Rev. 2020, 122, 103516. [Google Scholar] [CrossRef]
- Guo, N.; Guo, K.; Zhang, T.T.; Liu, T.H.; Hu, B.; Wang, C.W. Hydrothermal alteration distribution model of the Jiama (Gyama) copper-polymetallic deposit based on shortwave technique. Acta Geosci. Sin. 2012, 33, 641–653. [Google Scholar]
- Tian, C.H.; Yang, L.Q.; He, W.Y.; Zhang, S.Y.; Liu, S.T.; Wu, C. Characteristics of short wave infrared spectroscopy of sericite group minerals and their implications for exploration in the Yulong porphyry copper deposit, Tibet. Sediment. Geol. Tethyan Geol. 2022, 42, 40–49. [Google Scholar]
- Qiu, J.H.; Liu, W.Y.; Chen, J.W.; Lai, X.D.; Zhong, X.H.; Li, J.Y.; Long, H. Alteration mineralogy, characteristics and shortwave infrared spectroscopy of white mica in the Zijinshan ore field, Fujian Province: Implications for porphyry Cu prospecting. Ore Geol. Rev. 2024, 168, 106065. [Google Scholar] [CrossRef]
- Guo, D.X.; Liu, X.; Zhang, H.L.; Zhang, Z.G. The infrared spectroscopy characteristics of alteration and mineralization in the porphyry copper deposit in pulang, Yunnan province. Rock Miner. Anal. 2021, 40, 698–709. [Google Scholar]
- Lypaczewski, P.; Rivard, B.; Lesage, G.; Byrne, K.; D’Angelo, M.; Lee, R.G. Characterization of Mineralogy in the Highland Valley Porphyry Cu District Using Hyperspectral Imaging, and Potential Applications. Minerals 2020, 10, 473. [Google Scholar] [CrossRef]
- Li, X.C.; Zhang, H.D.; Hua, B.; Zhang, Z.; Lu, L. A study on metallogenic indication of epithermal deposit based on short wave infrared spectroscopy. Geol. Anhui 2023, 33, 133–138. [Google Scholar]
- Yao, Y.Z.; Zhu, Y.C.; Liu, J.C.; Li, W.Q. Footprints of ore fluid pathway and implications to mineral exploration in the Shihu Gold Deposit, North China: Evidence from short wave infrared spectroscopy of illitic alteration rocks. J. Geochem. Explor. 2021, 229, 106833. [Google Scholar] [CrossRef]
- An, B.G. Study on the Characteristics of Short-Wave Infrared Spectrum in the Alteration Zone of Shaling Gold Deposit, Shandong. Master’s Thesis, Northeastern University, Shenyang, China, 2020. [Google Scholar]
Types | Porphyry Mineralization | Quartz Vein Mineralization | Breccia Mineralization | |||
---|---|---|---|---|---|---|
n = 48 | SEM | n = 20 | SEM | n = 31 | SEM | |
SiO2 | 48.48 | 0.15 | 49.15 | 0.32 | 47.76 | 0.31 |
TiO2 | 0.02 | 0.01 | 0.02 | 0.06 | 0.02 | 0.04 |
Al2O3 | 0.13 | 0.34 | 0.25 | 0.49 | 0.17 | 0.38 |
Cr2O3 | 31.08 | 0.00 | 31.42 | 0.00 | 32.70 | 0.00 |
FeO | 2.40 | 0.15 | 1.41 | 0.22 | 1.46 | 0.14 |
MnO | 0.05 | 0.00 | 0.06 | 0.00 | 0.06 | 0.00 |
MgO | 1.44 | 0.14 | 1.69 | 0.18 | 1.87 | 0.20 |
CaO | 0.05 | 0.01 | 0.04 | 0.02 | 0.05 | 0.02 |
Na2O | 11.60 | 0.01 | 11.06 | 0.06 | 11.14 | 0.02 |
K2O | 0.15 | 0.12 | 0.23 | 0.20 | 0.26 | 0.14 |
NiO | 0.02 | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 |
Cl | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 |
F | 0.24 | 0.03 | 0.10 | 0.01 | 0.09 | 0.01 |
BaO | 0.06 | 0.01 | 0.08 | 0.01 | 0.07 | 0.01 |
Total | 95.65 | 0.05 | 95.45 | 0.07 | 95.59 | 0.07 |
Based on 22 oxygen | ||||||
Si | 6.51 | 0.02 | 6.54 | 0.03 | 6.37 | 0.04 |
Ti | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.00 |
AlIV | 1.49 | 0.02 | 1.46 | 0.03 | 1.63 | 0.04 |
AlVI | 3.42 | 0.04 | 3.47 | 0.05 | 3.50 | 0.03 |
Total Al | 4.91 | 0.05 | 4.93 | 0.07 | 5.14 | 0.06 |
Fe | 0.27 | 0.02 | 0.16 | 0.03 | 0.16 | 0.02 |
Mn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mg | 0.29 | 0.03 | 0.34 | 0.04 | 0.37 | 0.04 |
Ca | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Na | 0.04 | 0.00 | 0.06 | 0.02 | 0.07 | 0.01 |
K | 1.99 | 0.02 | 1.88 | 0.04 | 1.89 | 0.02 |
OH | 3.90 | 0.01 | 3.96 | 0.01 | 3.97 | 0.00 |
Fe + Mg | 0.56 | 0.04 | 0.49 | 0.05 | 0.54 | 0.05 |
References | Types and Names of Deposits | Spectral Parameter Range | Exploration Indicators | The Main Factors Affecting the Spectral Parameters |
---|---|---|---|---|
[18] | Niancun porphyry copper deposit, Tibet | 2192–2220 nm; 0.6–3.1 | Pos2200 < 2203 nm; IC > 1.6 | Temperature affects wavelength and crystallinity |
[64] | Highland Valley porphyry copper deposit | - | The average of Pos2200 is 2195 nm | Chemical composition |
[57] | Porphyry copper deposit in Zhunuo mining area | 2191–2219 nm; 0.75–3.14 | Pos2200 < 2203 nm; IC > 2.0 | Tschermak substitution affects the wavelength |
[61] | Yulong porphyry copper deposit | 2205–2209 nm; 0–3 | Pos2200: 2206–2207 nm; IC: 1.0–2.0 | PH; temperature |
[60] | Jiama porphyry copper deposit | - | Pos2200: 2200–2210 nm | The temperature decreases, and the aluminum content increases |
[62] | Zijinshan deep porphyry copper deposit | 2195–2211 nm | Pos2200: 2205–2211 nm | Tschermak substitution affects the wavelength |
[63] | Pulang porphyry copper deposit, Yunnan | 2198–2210 nm | Pos2200: 2205–2210 nm | Fluid properties; temperature |
[27] | Gangcha-Kemo epithermal gold deposit | 0–6.5 nearby | IC > 5.5 | Temperature affects crystallinity |
[65] | Epithermal gold deposit in Xiaotian-Mozitan Basin | 2204–2220 nm; 0–3.03 | IC: 1–3 nearby | Temperature affects crystallinity |
[66] | Shihu altered rock gold deposit | 2194–2216 nm; 0–2.4 | The average of Pos2200 is 2198 nm | PH affects the wavelength, and temperature affects the crystallinity |
[67] | Shaling altered rock gold deposit | 2198–2220 nm; 0–2.7 nearby | Pos2200: 2207–2211 nm; IC: 1.19–2.66 | Temperature and surrounding rock composition affect the wavelength; temperature affects crystallinity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wu, S.; Lai, X.; Yang, W.; Sun, R.; Liu, P.; Yang, Y.; Ren, Y. The Short-Wave Infrared (SWIR) Spectral Exploration Identification and Indicative Significance of the Yixingzhai Gold Deposit, Shanxi Province. Minerals 2025, 15, 83. https://doi.org/10.3390/min15010083
Wang L, Wu S, Lai X, Yang W, Sun R, Liu P, Yang Y, Ren Y. The Short-Wave Infrared (SWIR) Spectral Exploration Identification and Indicative Significance of the Yixingzhai Gold Deposit, Shanxi Province. Minerals. 2025; 15(1):83. https://doi.org/10.3390/min15010083
Chicago/Turabian StyleWang, Lifang, Song Wu, Xiaodan Lai, Weili Yang, Rongliang Sun, Peng Liu, Yandong Yang, and Yuxin Ren. 2025. "The Short-Wave Infrared (SWIR) Spectral Exploration Identification and Indicative Significance of the Yixingzhai Gold Deposit, Shanxi Province" Minerals 15, no. 1: 83. https://doi.org/10.3390/min15010083
APA StyleWang, L., Wu, S., Lai, X., Yang, W., Sun, R., Liu, P., Yang, Y., & Ren, Y. (2025). The Short-Wave Infrared (SWIR) Spectral Exploration Identification and Indicative Significance of the Yixingzhai Gold Deposit, Shanxi Province. Minerals, 15(1), 83. https://doi.org/10.3390/min15010083