Anti-Aliasing and Anti-Leakage Frequency–Wavenumber Filtering Method for Linear Noise Suppression in Irregular Coarse Seismic Data
Abstract
:1. Introduction
2. Theory and Methods
2.1. Linear Moveout Correction
2.2. Anti-Leakage Fourier Transform
- (1)
- Compute the f-k spectrum of the irregular data;
- (2)
- Select the strongest Fourier component and add this value to the estimated spectrum;
- (3)
- Subtract the contribution of this Fourier component from the input data;
- (4)
- Input the updated Fourier component into step (2) until the desired number of Fourier components is reached or the data residual is small enough.
2.3. Anti-Leakage and Anti-Aliasing f-k Filtering
- Obtain the irregular coarse seismic data and the apparent velocity of unwanted linear noise;
- Select the appropriate velocity and apply linear moveout correction;
- Use the anti-leakage Fourier transform algorithm to obtain the true f-k spectrum;
- Identify the suppression region of the f-k spectrum based on the apparent velocity of unwanted linear noise;
- Retrieve the denoised seismic data using inversion FFT;
- Output the final denoised seismic data by applying reverse linear moveout correction.
3. Applications
3.1. Simple Synthetic Data
3.2. Deposit Synthetic Data
3.3. Land Field Data
3.4. Marine Field Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Merle, A.T.; Howard, E.T.; Pembroke, J.H. Crustal structure from seismic exploration. J. Geophys. Res. 1954, 59, 415–422. [Google Scholar]
- Chen, Y.; Wang, B.S.; Yao, H.J. Seismic airgun exploration of continental crust structures. Sci. China Earth Sci. 2017, 60, 1739–1751. [Google Scholar] [CrossRef]
- Aminzadeh, F.; Dasgupta, S.N. Fundamentals of Petroleum Geophysics. Dev. Pet. Sci. 2013, 60, 37–92. [Google Scholar]
- Abdel, F.H.; Ahmed, I.D.; Mehdi, P.Y.; Hatem, F.E. Improvement of Gulf of Suez subsurface image under the salt layers through re-processing of seismic data—A case study. NRIAG J. Astron. Geophys. 2020, 9, 38–51. [Google Scholar] [CrossRef]
- Siahsar, M.A.; Gholtashi, S.; Kahoo, A.R.; Chen, W.; Chen, Y.K. Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data. Geophysics 2017, 82, V385–V396. [Google Scholar] [CrossRef]
- Yilmaz, O. Seismic Data Analysis: Processing, inversion, and interpretation of seismic data. Soc. Expl. Geophys. 2001, 10, 658–663. [Google Scholar]
- Huang, W.L.; Wang, R.Q.; Zhang, D.; Zhou, Y.X.; Yang, W.C.; Chen, Y.K. Mathematical morphological filtering for linear noise attenuation of seismic data. Geophysics 2017, 82, V369–V384. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.K.; Liu, W. Ground roll attenuation using improved complete ensemble empirical mode decomposition. J. Seism. Explor. 2016, 25, 485–495. [Google Scholar]
- Wang, W.; Gao, J.H.; Chen, W.C.; Xu, J. Data adaptive ground-roll attenuation via sparsity promotion. J. Appl. Geophys. 2012, 83, 19–28. [Google Scholar] [CrossRef]
- Ge, J.; Magnani, M.B.; Waldron, B. Imaging a shallow aquitard with seismic reflection data in Memphis, Tennessee, USA. Part II: Data analysis, interpretation and traveltime tomography. Near Surf. Geophys. 2010, 8, 331–340. [Google Scholar] [CrossRef]
- Embree, P.; Burg, J.P.; Backus, M.M. Wide-band velocity filtering. Geophysics 1963, 28, 948–974. [Google Scholar] [CrossRef]
- Guo, J.Y. Prestack noise reduction using (ω-x)-domain operator extrapolation. Oil Geophys. Prospect. 1995, 30, 487–494. [Google Scholar]
- Liu, X.W. Ground roll suppression using the Karhunen-Loeve transform. Geophysics 1999, 64, 564–566. [Google Scholar] [CrossRef]
- Henley, D.C. The radial trace transform: An effective domain for coherent noise attenuation and wavefield separation. In SEG Technical Program Expanded Abstracts 1999; Society of Exploration Geophysicists: Houston, USA, 1999. [Google Scholar]
- Zhu, W.H.; Kelamis, P.G.; Liu, Q.L. Linear noise attenuation using local radial trace median filtering. Lead. Edge 2004, 23, 728–737. [Google Scholar] [CrossRef]
- Lu, W.K.; Zhang, W.; Liu, D. Local linear coherent noise attenuation based on local polynomial approximation. Geophysics 2006, 71, V163–V169. [Google Scholar] [CrossRef]
- Hong, F.; Hu, T.Y.; Wang, R.Q. Using 3D beamforming filtering method to eliminate coherent noise. Oil Geophys. Prospect. 2005, 40, 42–47. [Google Scholar]
- Neelamani, R.; Baumstein, A.I.; Gillard, D.G.; Hadidi, M.T.; Soroka, W.L. Coherent and random noise attenuation using the curvelet transform. Lead. Edge 2008, 27, 240–248. [Google Scholar] [CrossRef]
- Tong, S.Y.; Wang, L.F.; Liu, H.S.; Jin, Z.; Wang, R.Q. Marine Linear Noise Suppression in the Curvelet Domain. In Proceedings of the 2009 International Forum on Information Technology and Applications, Chengdu, China, 15–17 May 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Qin, T. Prestack coherent noise attenuation based on wavelet frequency division. Prog. Geophys 2009, 24, 1426–1430. [Google Scholar]
- Teng, H.H.; Jiao, J.R.; Shang, X.M.; Wang, Y.H.; Zhao, S.T.; Yan, G.; Yang, B.; Zhu, X.H. Two-dimensional complex wavelet transform for linear noise attenuation and image decomposition. J. Geophys. Eng. 2023, 20, 474–482. [Google Scholar] [CrossRef]
- Yan, X.H.; Lu, J.F.; Zhang, X.T. The linear Radon transformation and its application in the northern block of Xinjiang. Pet. Geophys. 2011, 9, 9–14+19. [Google Scholar]
- Ebadi, M.R. Coherent and incoherent seismic noise attenuation using parabolic radon transform and its application in environmental geophysics. Model. Earth Syst. Environ. 2017, 3, 18. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Mousavi, S.M.; Beroza, G.C. Seismic signal denoising and decomposition using deep neural networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9476–9488. [Google Scholar] [CrossRef]
- Chen, J.X.; Chen, G.X.; Li, J.; Du, R.S.; Qi, Y.L.; Li, C.F. Efficient Seismic Data Denoising via Deep Learning with Improved MCA-SCUNet. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5903614. [Google Scholar] [CrossRef]
- Ma, X.; Yao, G.; Yuan, S.Y.; Zhang, F.; Wu, D. Seismic Coherent noise removal with residual network and synthetic seismic samples. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Hennenfent, G.; Herrmann, F. Simply denoise: Wavefield reconstruction via jittered undersampling. Geophysics 2008, 73, V19–V28. [Google Scholar] [CrossRef]
- Zhou, S.; Lv, Y.; Lv, G.; Shu, G.; Shi, T.; Huo, S. Irregular seismic geometry design and data reconstruction based on compressive sensing. Geophys. Prospect. Pet. 2017, 56, 617–625. [Google Scholar]
- Sun, Y.H.; Schuster, K.S.; Sikorski, K. A quasi-Monte Carlo approach to 3-D migration: Theory. Geophysics 1997, 62, 918–928. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, Y.; Lambare, G. Antileakage Fourier transform for seismic data regularization in higher dimensions. Geophysics 2005, 75, WB113–WB120. [Google Scholar] [CrossRef]
- Naghizadeh, M.; Sacchi, M.D. On sampling functions and Fourier reconstruction methods. Geophysics 2010, 75, WB137–WB151. [Google Scholar] [CrossRef]
- Jamali-Rad, H.; Kuvshinov, B.; Tang, Z.; Campman, X. Deterministically Subsampled Acquisition Geometries for Optimal Reconstruction. In Proceedings of the 78th EAGE Conference and Exhibition, Vienna, Austria, 30 May–2 June 2016. [Google Scholar]
- Shu, G.X.; Lv, G.H.; Lv, Y.; Shi, T.K.; Di, Z.X.; Huo, S.D. Seismic data reconstruction based on compressive sensing. Geophys. Prospect. Pet. 2018, 57, 549–554. [Google Scholar]
- Zwartjes, P.M.; Sacchi, M.D. Fourier reconstruction of nonuniformly sampled, aliased seismic data. Geophysics 2007, 72, V21–V32. [Google Scholar] [CrossRef]
- Bellefleur, G.; Malehmir, A.; Müller, C. Elastic finite-difference modeling of volcanic-hosted massive sulfide deposits: A case study from Half Mile Lake, New Brunswick, Canada. Geophysics 2012, 77, WC25–WC36. [Google Scholar] [CrossRef]
- Adair, R.N. Stratigraphy, structure, and geochemistry of the Halfmile Lake massive-sulfide deposit, New Brunswick. Explor. Min. Geol. 1992, 1, 151–166. [Google Scholar]
- Sheriff, R.E.; Geldart, L.P. Exploration Seismology; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, S.; Huang, L.; Ren, L.; Shu, G.; Li, X. Anti-Aliasing and Anti-Leakage Frequency–Wavenumber Filtering Method for Linear Noise Suppression in Irregular Coarse Seismic Data. Minerals 2025, 15, 107. https://doi.org/10.3390/min15020107
Mu S, Huang L, Ren L, Shu G, Li X. Anti-Aliasing and Anti-Leakage Frequency–Wavenumber Filtering Method for Linear Noise Suppression in Irregular Coarse Seismic Data. Minerals. 2025; 15(2):107. https://doi.org/10.3390/min15020107
Chicago/Turabian StyleMu, Shengqiang, Liang Huang, Liying Ren, Guoxu Shu, and Xueliang Li. 2025. "Anti-Aliasing and Anti-Leakage Frequency–Wavenumber Filtering Method for Linear Noise Suppression in Irregular Coarse Seismic Data" Minerals 15, no. 2: 107. https://doi.org/10.3390/min15020107
APA StyleMu, S., Huang, L., Ren, L., Shu, G., & Li, X. (2025). Anti-Aliasing and Anti-Leakage Frequency–Wavenumber Filtering Method for Linear Noise Suppression in Irregular Coarse Seismic Data. Minerals, 15(2), 107. https://doi.org/10.3390/min15020107