Pore Structure and Heterogeneity Characteristics of Deep Coal Reservoirs: A Case Study of the Daning–Jixian Block on the Southeastern Margin of the Ordos Basin
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Sample Selection
3.2. Experimental Methods
4. Results
4.1. Coal Characteristics
4.2. FE-SEM Image Analysis
4.3. Quantitative Analyses of the Pore Structure
4.3.1. HPMI Measurements
4.3.2. LT-N2A Experiments
4.3.3. LP-CO2A Experiments
4.3.4. Fractal Dimension Analysis
5. Discussion
5.1. Full-Scale Pore Structure Characterization
5.2. Factors Influencing Pore Development
5.2.1. Coalification Level and Maceral Composition
5.2.2. Proximate Parameter Analysis
5.3. Factors Influencing the Fractal Dimension
5.4. Relationships Between the Pore Structure and Pore Fractal Characteristics and Their Geological Significance
6. Conclusions
- (1)
- The Benxi Formation in the study area has relatively high overall porosity in its deep coal reservoirs, with an average porosity of 6.03%. The pore types in the Benxi Formation coal are complex and diverse and consist mainly of organic matter gas pores, deformed plant tissue pores, and intergranular pores, with microfractures that are mainly cleat fractures and structural fractures.
- (2)
- The cross-scale effects on the pore structure of the Benxi Formation coal reservoirs in the study area are evident, and the heterogeneity is strong. The curve showing the PV distribution is unimodal, with its main peak corresponding to the micropores. Micropores are the primary contributors to the total PV, followed by mesopores, with macropores contributing the least. The SSA distribution curve also exhibits an unimodal shape, with the main peak corresponding to the micropore section, where micropores account for more than 99% of the SSA, providing more gas adsorption sites and enrichment space.
- (3)
- Different dominant factors in the Benxi Formation coal in the study area control the structural characteristics of pores at different scales. Among these factors, the coalification level and vitrinite content promote the development of pores, which mainly control the development of micropores, whereas the ash content inhibits pore development, which mainly suppresses the development of micropores and macropores.
- (4)
- The fractal dimensions of the deep coal rocks in the Benxi Formation reveal that D1 > D2 > D3, indicating that the heterogeneity of the macropores in the deep coal reservoirs is greater than that of the micropores and mesopores. Since micropores are predominantly organic pores with smaller pore diameters and concentrated distributions and are less affected by diagenesis, they exhibit smaller fractal dimensions and strong fractal characteristics, indicating self-similarity in their genesis and distribution. In contrast, macropores, owing to their larger diameters, broader distribution ranges, diverse genesis mechanisms, and susceptibility to diagenesis, have larger fractal dimensions, indicating strong heterogeneity and complexity in their genesis.
- (5)
- The micropores in the deep coal rocks of the Benxi Formation in the study area, owing to their large PV and abundant SSA, are conducive to the existence of free gas and adsorbed gas in the coal; their significant proportion of organic matter pores and strong self-similarity favor the flow and extraction of gas from deep coal seams.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, F.; Hou, W.; Xiong, X.; Xu, B.; Wu, P.; Wang, H.; Feng, K.; Yun, J.; Li, S.; Zhang, L.; et al. The status and development strategy of coalbed methane industry in China. Pet. Explor. Dev. 2023, 50, 765–783. [Google Scholar] [CrossRef]
- Xu, H.; Tang, D.; Tao, S.; Li, S.; Tang, S.; Chen, S.; Zong, P.; Dong, Y. Differences in geological conditions of deep and shallow coalbed methane and their formation mechanisms. Coal Geol. Explor. 2024, 52, 33–39. (In Chinese) [Google Scholar]
- Xu, F.; Yan, X.; Li, S.; Xiong, X.; Wang, Y.; Zhang, L.; Liu, C.; Han, J.; Feng, Y.; Zhen, H.; et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin. Coal Geol. Explor. 2023, 51, 115–130. (In Chinese) [Google Scholar]
- Zhao, Z.; Xu, W.; Zhao, Z.; Yi, S.; Yang, W.; Zhang, Y.; Sun, Y.; Zhao, W.; Shi, Y.; Zhang, C.; et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2024, 51, 234–247, 259. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Huang, S.; Ma, F.; Sun, Q.; Li, F.; Pan, S.; Tian, W. Resource types, formation, distribution and prospects of coal–measure gas. Pet. Explor. Dev. 2019, 46, 433–442. [Google Scholar] [CrossRef]
- Guo, X.; Zhi, D.; Mao, X.; Wang, X.; Yi, S.; Zhu, M.; Gan, R.; Wu, X. Discovery and significance of coal measure gas in Junggar Basin. China Pet. Explor. 2021, 26, 38–49. (In Chinese) [Google Scholar]
- Mou, P.; Pan, J.; Niu, Q.; Wang, Z.; Li, Y.; Song, D. Coal Pores: Methods, Types, and Characteristics. Energy Fuels 2021, 35, 7467–7484. [Google Scholar] [CrossRef]
- Wang, T.; Deng, Z.; Hu, H.; Ding, R.; Tian, F.; Zhang, T.; Ma, Z.; Wang, D. Pore structure of deep coal of different ranks and its effect on coalbed methane adsorption. Int. J. Hydrogen Energy 2024, 59, 144–158. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, B.; Li, M.; Hou, C.; Xu, S. A Review on Pore-Fractures in Tectonically Deformed Coals. Fuel 2020, 278, 118248. [Google Scholar]
- Li, Y.; Yang, J.; Pan, Z.; Tong, W. Nanoscale Pore Structure and Mechanical Property Analysis of Coal: An Insight Combining AFM and SEM Images. Fuel 2020, 260, 116352. [Google Scholar] [CrossRef]
- Wang, T.; Hu, H.; Deng, Z.; Zhou, G.; Fan, L.; Zhang, D.; Shao, M.; Ding, R.; Li, Y. Full-scale pore and microfracture characterization of deep coal reservoirs: A case study of the Benxi Formation coal in the Daning–Jixian block, China. Int. J. Energy Res. 2024, 2024, 5772264. [Google Scholar] [CrossRef]
- Wang, P.; Lv, P.; Jiang, Z.; Jiang, Z.; Jin, C.; Li, X.; Zhang, K.; Huang, P.; Wang, Y. Comparison of organic matter pores of marine and continental facies shale in China: Based on Focused Ion Beam Helium Ion Microscopy (FIB-HIM). Pet. Geol. Exp. 2018, 40, 739–748. (In Chinese) [Google Scholar]
- Pan, J.; Zhu, H.; Bai, H.; Zhao, Y.; Wang, H.; Yao, L. Atomic Force Microscopy Study on Microstructure of Various Ranks of Coals. J. Coal Sci. Eng. 2013, 19, 309–315. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Q.; Pan, Z.; Tang, D.; Liao, L.; Shi, N. Study of Coal Structure Using STM and AFM. Chin. Sci. Bull. 1994, 39, 633–635. (In Chinese) [Google Scholar]
- Zhao, S.; Li, Y.; Wang, Y.; Ma, Z.; Huang, X. Quantitative Study on Coal and Shale Pore Structure and Surface Roughness Based on Atomic Force Microscopy and Image Processing. Fuel 2019, 244, 78–90. [Google Scholar] [CrossRef]
- Pan, J.; Wang, S.; Ju, Y.; Hou, Q.; Niu, Q.; Wang, K.; Li, M.; Shi, X. Quantitative Study of the Macromolecular Structures of Tectonically Deformed Coal Using High-resolution Transmission Electron Microscopy. J. Nat. Gas Sci. Eng. 2015, 27, 1852–1862. [Google Scholar] [CrossRef]
- Liu, S.; Ma, J.; Sang, S.; Wang, T.; Du, Y.; Fang, H. The Effects of Supercritical CO2 on Mesopore and Macropore Structure in Bituminous and Anthracite Coal. Fuel 2018, 223, 32–43. [Google Scholar] [CrossRef]
- Pan, J.; Niu, Q.; Wang, K.; Shi, X.; Li, M. The Closed Pores of Tectonically Deformed Coal Studied by Small-angle X-Ray Scattering and Liquid Nitrogen Adsorption. Microporous Mesoporous Mater. 2016, 224, 245–252. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.; Wang, K.; Ge, T.; Wu, W. Characterizing the Shape, Size, and Distribution Heterogeneity of Pore-Fractures in High Rank Coal Based on X-Ray CT Image Analysis and Mercury Intrusion Porosimetry. Fuel 2020, 282, 118754. [Google Scholar] [CrossRef]
- Zou, M.; Wei, C.; Miao, Z.; Jian, S.; Chen, Y.; Qi, Y. Classifying Coal Pores and Estimating Reservoir Parameters by Nuclear Magnetic Resonance and Mercury Intrusion Porosimetry. Energy Fuels 2013, 27, 3699–3708. [Google Scholar] [CrossRef]
- Cheng, M.; Fu, X.; Kang, J. Compressibility of Different Pore and Fracture Structures and Its Relationship with Heterogeneity and Minerals in Low-Rank Coal Reservoirs: An Experimental Study Based on Nuclear Magnetic Resonance and Micro-CT. Energy Fuels 2020, 34, 10894–10903. [Google Scholar] [CrossRef]
- Shi, X.; Pan, J.; Hou, Q.; Jin, Y.; Wang, Z.; Niu, Q.; Li, M. Micrometer-scale Fractures in Coal Related to Coal Rank Based on Micro-CT Scanning and Fractal Theory. Fuel 2018, 212, 162–172. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D. Comparison of Low-field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals. Fuel 2012, 95, 152–158. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Li, Z. Insight into Water Occurrence and Pore Size Distribution by Nuclear Magnetic Resonance in Marine Shale Reservoirs, Southern China. Energy Fuels 2023, 37, 319–327. [Google Scholar] [CrossRef]
- Okolo, G.N.; Everson, R.C.; Neomagus, H.W.J.P.; Roberts, M.J.; Sakurovs, R. Comparing the Porosity and Surface Areas of Coal as Measured by Gas Adsorption, Mercury Intrusion and SAXS Techniques. Fuel 2015, 141, 293–304. [Google Scholar] [CrossRef]
- Radlinski, A.P.; Mastalerz, M.; Hinde, A.L.; Hainbuchner, M.; Rauch, H.; Baron, M.; Lin, J.S.; Fan, L.; Thiyagarajan, P. Application of SAXS and SANS in Evaluation of Porosity, Pore Size Distribution and Surface Area of Coal. Int. J. Coal Geol. 2004, 59, 245–271. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wei, Q.; Sun, K.; Zhang, G.; Wang, F. Characterization of Full-Sized Pore Structure and Fractal Characteristics of Marine-Continental Transitional Longtan Formation Shale of Sichuan Basin, South China. Energy Fuels 2017, 31, 10490–10504. [Google Scholar] [CrossRef]
- Meng, M.; Hu, Q.; Wang, Q.; Hong, Z.; Zhang, L. Effect of initial water saturation and water film on imbibition behavior in tight reservoirs using nuclear magnetic resonance technique. Phys. Fluids 2024, 36, 056603. [Google Scholar] [CrossRef]
- Meng, M.; Zhang, Y.; Yuan, B.; Li, Z.; Zhang, Y. Imbibition Behavior of Oil-Saturated Rock: Implications for Enhanced Oil Recovery in Unconventional Reservoirs. Energy Fuels 2023, 37, 13759–13768. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Qi, Y.; Wang, L.; Jiang, J. Experimental Study of Pore Structure and Fractal Characteristics of Pulverized Intact Coal and Tectonic Coal by Low Temperature Nitrogen Adsorption. Powder Technol. 2019, 350, 15–25. [Google Scholar] [CrossRef]
- Lu, G.; Wang, J.; Wei, C.; Yu, S.; Yan, G.; Zhang, J.; Chen, G. Pore Fractal Model Applicability and Fractal Characteristics of Seepage and Adsorption Pores in Middle Rank Tectonic Deformed Coals from the Huaibei Coal Field. J. Pet. Sci. Eng. 2018, 171, 808–817. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, D.; Wang, M.; Liu, S. Influences of Supercritical Carbon Dioxide Fluid on Pore Morphology of Various Rank Coals: A Review. Energy Explor. Exploit. 2020, 38, 1267–1294. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Tang, D.; Gan, Q.; Niu, X.; Wang, K.; Shen, R. Coal Pore Size Distributions Controlled by the Coalification Process: An Experimental Study of Coals from the Junggar, Ordos and Qinshui Basins in China. Fuel 2017, 206, 352–363. [Google Scholar] [CrossRef]
- Zhou, Z.; Bouwman, W.G.; Schut, H.; Desert, S.; Jestin, J.; Hartmann, S.; Pappas, C. From Nanopores to Macropores: Fractal Morphology of Graphite. Carbon 2016, 96, 541–547. [Google Scholar] [CrossRef]
- Liu, C.; Wang, G.; Sang, S.; Gilani, W.; Rudolph, V. Fractal Analysis in Pore Structure of Coal under Conditions of CO2 Sequestration Process. Fuel 2015, 139, 125–132. [Google Scholar] [CrossRef]
- Alvarez, A.C.; Passé-Coutrin, N.; Gaspard, S. Determination of the Textural Characteristics of Carbon Samples Using Scanning Electronic Microscopy Images: Comparison with Mercury Porosimetry Data. Adsorption 2013, 19, 841–850. [Google Scholar] [CrossRef]
- Friesen, W.I.; Mikula, R.J. Mercury Porosimetry of Coals: Pore Volume Distribution and Compressibility. Fuel 1988, 67, 1516–1520. [Google Scholar] [CrossRef]
- Sastry, P.U.; Sen, D.; Mazumder, S.K.S. Structural Variations in Lignite Coal: A Small Angle X-Ray Scattering Investigation. Solid State Commun. 2000, 114, 329–333. [Google Scholar] [CrossRef]
- Avinr, D.; Farin, D.; Pfeifer, P. Discussion of Some Aspects of Surface Fractality and of Its Determination. New J. Chem. 1992, 16, 439–449. [Google Scholar]
- Cai, Y.; Liu, D.; Pan, Z.; Che, Y.; Liu, Z. Investigating the Effects of Seepage-Pores and Fractures on Coal Permeability by Fractal Analysis. Transp. Porous Media 2016, 111, 479–497. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, J.; Yang, Y.; Cheng, J.; Zhou, J.; Cen, K. Fractal Characteristics of Pore Structures in 13 Coal Specimens: Relationship among Fractal Dimension, Pore Structure Parameter, and Slurry Ability of Coal. Fuel Process. Technol. 2016, 149, 256–267. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Su, E.; Jiang, Z.; Wang, C.; Chu, Y.; Ye, C. Pore Structure and Diffusion Characteristics of Intact and Tectonic Coals: Implications for Selection of CO2 Geological Sequestration Site. J. Nat. Gas Sci. Eng. 2020, 81, 103388. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Wu, S.; Deng, Z.; Li, J.; Ren, Z.; Huang, D.; Fan, W.; Zhu, G. Characterisation of the Full Pore Size Distribution of and Factors Influencing Deep Coal Reservoirs: A Case Study of the Benxi Formation in the Daning–Jixian Block at the Southeastern Margin of the Ordos Basin. Processes 2024, 12, 2364. [Google Scholar] [CrossRef]
- Tang, S.; Tang, D.; Yang, J.; Deng, Z.; Li, S.; Chen, S.; Feng, P.; Huang, C.; Li, Z. Pore structure characteristics and gas storage potential of deep coal reservoirs in Daning-jixian block of Ordos Basin. Aeta Pet. Sin. 2023, 44, 1854–1866+1902. [Google Scholar]
- Zhang, L.; Bian, L.; Hou, W.; Li, Y.; Li, Y.; Wu, P.; Li, Y.; Li, X.; Li, C. Pore structure characteristics and exploration significance of deep coal reservoirs: A case study of Daning-Jixian block in the eastern margin of Ordos Basin. Acta Pet. Sin. 2023, 43, 1867–1878. [Google Scholar]
- Deng, Z.; Wang, H.; Jiang, Z.; Ding, R.; Li, Y.; Wang, T. Influence of deep coal pore and fracture structure on occurrence of coalbed methane: A case study of Daning-Jixian Block in eastern margin of Ordos Basin. Coal Sci. Technol. 2024, 52, 106–123. [Google Scholar]
- Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar] [CrossRef]
- Wang, T.; Deng, Z.; Hu, H.; Wang, H.; Jiang, Z.; Wang, D. Study on pore structure and multifractal characteristics of middle- and high-rank coals based on gas adsorption method: A case study of Benxi Formation in the eastern margin of Ordos Basin. Energy Fuels 2024, 38, 4102–4121. [Google Scholar] [CrossRef]
- IUPAC (International Union of Pure and Applied Chemistry). Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: Recommendations for the characterization of porous solids (technical report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Wang, T.; Deng, Z.; Hu, H.; Tian, F.; Ding, R.; Zhang, T.; Ma, Z.; Hou, S.; Li, X.; Dai, R. Pore structure and fractal characteristics oftransitional shales with different lithofacies from the eastern margin of the Ordos Basin. Energy Sci. Eng. 2023, 11, 3979–4000. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, S.; Tang, D.; Huang, W.; Pan, Z. Determining fractal dimensions of coal pores by FHH model: Problems and effects. J. Nat. Gas Sci. Eng. 2014, 21, 929–939. [Google Scholar] [CrossRef]
- Jaroniec, M. Evaluation of the fractal dimension from a single adsorption isotherm. Langmuir 1995, 11, 2316–2317. [Google Scholar] [CrossRef]
- Ahmed, F.; Hisham, B.M.; Ziad, B.; Raoof, G.; Mofazzal, H. The impact of supercritical CO2 on the pore structure and storage capacity of shales. J. Nat. Gas Sci. Eng. 2022, 98, 104394. [Google Scholar]
- Wang, Z.; Fu, X.; Pan, J.; Deng, Z. Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal. Energy 2023, 275, 127377. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, L.; Xiong, Y.; Li, J.; Peng, P. Nanopore structure characterization for organic-rich shale using the non-local-density functional theory by a combination of N2 and CO2 adsorption. Microporous Mesoporous Mater. 2016, 227, 88–94. [Google Scholar] [CrossRef]
- Gan, H.; Nandi, S.P.; Walker, P.L. Nature of Porosity in American Coals. Fuel 1972, 51, 272–277. [Google Scholar] [CrossRef]
- Prinz, D.; Pyckhout-Hintzen, W.; Littke, R. Development of the Meso- and Macroporous Structure of Coals with Rank as Analysed with Small Angle Neutron Scattering and Adsorption Experiments. Fuel 2004, 83, 547–556. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, S.; Pang, Y.; Li, J.; Xin, H. Effects of Coal Functional Groups on Adsorption Microheat of Coal Bed Methane. Energy Fuels 2015, 29, 1550–1557. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Chen, S. Effects of Chemical Composition, Disorder Degree and Crystallite Structure of Coal Macromolecule on Nanopores (0.4–150 nm) in Different Rank Naturally-Matured Coals. Fuel 2019, 242, 553–561. [Google Scholar] [CrossRef]
- Xin, F.; Xu, H.; Tang, D.; Yang, J.; Chen, Y.; Cao, L.; Qu, H. Pore Structure Evolution of Low-Rank Coal in China. Int. J. Coal Geol. 2019, 205, 126–139. [Google Scholar] [CrossRef]
- Wang, A.; Wei, Y.; Yuan, Y.; Li, C.; Li, Y.; Cao, D. Coalbed methane reservoirs’ pore-structure characterization of different macrolithotypes in the southern Junggar Basin of Northwest China. Mar. Pet. Geol. 2017, 86, 675–688. [Google Scholar] [CrossRef]
- Liu, R.; Wei, Z.; Jia, A.; He, S.; Hou, Y.; He, Q.; Wang, T.; Zeng, Y.; Yang, R. Fractal Characteristics of Pore Structure in Deep Overpressured Organic-Rich Shale in Wufeng-Longmaxi Formation in Southeast Sichuan and Its Geological Significance. Earth Sci. 2023, 48, 1496–1516. [Google Scholar]
- He, C.; Zhao, Y.; Yu, L.; Lu, L.; Liu, W.; Pan, A.; Li, C. Pore structure and fractal characteristics of deep shale gas reservoirs in the Permian Dalong Formation, northeastern Sichuan Basin. Pet. Geol. Exp. 2018, 46, 263–277. (In Chinese) [Google Scholar]
Sample ID | Depth (m) | Ro,max (%) | σ | Macerals (%) | Proximate Parameter Analysis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
V | I | L | M | Mad | Ad | Vdaf | FCad | ||||
DJ1-1 | 1884.19 | 2.15 | 0.09 | 77.36 | 19.09 | 0.20 | 3.35 | 0.70 | 15.15 | 8.45 | 77.14 |
DJ1-2 | 1884.75 | 2.02 | 0.06 | 67.00 | 14.00 | 0.00 | 19.00 | 1.10 | 12.77 | 7.40 | 79.88 |
DJ1-3 | 1885.57 | 2.08 | 0.06 | 85.33 | 7.43 | 0.00 | 7.24 | 1.48 | 15.86 | 8.05 | 76.21 |
DJ1-4 | 1886.94 | 2.20 | 0.05 | 76.48 | 4.78 | 0.00 | 18.74 | 0.86 | 24.95 | 10.83 | 66.34 |
DJ2-1 | 1961.79 | 2.52 | 0.08 | 82.01 | 10.25 | 0.00 | 7.74 | 1.16 | 12.84 | 8.11 | 79.16 |
DJ2-2 | 1963.29 | 2.13 | 0.05 | 75.05 | 5.50 | 0.00 | 19.45 | 0.76 | 12.70 | 11.68 | 76.51 |
DJ2-3 | 1965.60 | 2.19 | 0.08 | 70.33 | 13.87 | 1.93 | 13.87 | 1.08 | 19.82 | 8.81 | 72.32 |
DJ2-4 | 1965.90 | 2.21 | 0.07 | 80.19 | 9.71 | 0.00 | 10.10 | 1.16 | 14.25 | 8.16 | 77.84 |
P-1 | 2275.99 | 3.05 | 0.08 | 86.00 | 10.00 | 0.00 | 4.00 | 1.25 | 5.50 | 6.29 | 87.45 |
P-2 | 2276.44 | 3.04 | 0.04 | 78.00 | 14.00 | 0.00 | 8.00 | 1.01 | 9.72 | 6.75 | 83.34 |
P-3 | 2276.96 | 2.97 | 0.08 | 80.00 | 16.00 | 0.00 | 4.00 | 1.47 | 10.21 | 6.94 | 82.33 |
P-4 | 2279.00 | 2.98 | 0.09 | 79.00 | 13.00 | 0.00 | 8.00 | 1.06 | 8.40 | 8.05 | 83.33 |
Sample ID | LP-CO2A | LT-N2A | HPMI | ||||||
---|---|---|---|---|---|---|---|---|---|
VDFT | SDFT | DCO2 | SBET | VDFT | SDFT | DN2 | VHPMI | SHPMI | |
DJ1-1 | 0.072 | 247.046 | 0.501 | 1.607 | 0.003 | 2.298 | 1.273 | 0.050 | 30.650 |
DJ1-2 | 0.048 | 163.766 | 0.501 | 3.911 | 0.007 | 3.879 | 3.537 | 0.027 | 14.400 |
DJ1-3 | 0.071 | 242.289 | 0.524 | 2.291 | 0.004 | 2.684 | 1.22 | 0.035 | 17.650 |
DJ1-4 | 0.061 | 207.372 | 0.501 | 2.976 | 0.005 | 3.57 | 4.411 | 0.026 | 16.310 |
DJ2-1 | 0.078 | 263.869 | 0.524 | 0.389 | 0.001 | 0.453 | 6.794 | 0.059 | 32.371 |
DJ2-2 | 0.072 | 243.78 | 0.501 | 0.386 | 0.001 | 0.468 | 6.079 | 0.030 | 21.095 |
DJ2-3 | 0.066 | 221.812 | 0.524 | 1.225 | 0.003 | 1.189 | 4.887 | 0.018 | 12.687 |
DJ2-4 | 0.068 | 227.762 | 0.479 | 0.435 | 0.002 | 0.519 | 6.079 | 0.017 | 9.598 |
P-1 | 0.077 | 260.323 | 0.501 | 0.515 | 0.002 | 0.592 | 7.032 | 0.038 | 19.270 |
P-2 | 0.075 | 252.787 | 0.479 | 0.376 | 0.001 | 0.449 | 6.079 | 0.037 | 19.240 |
P-3 | 0.072 | 239.423 | 0.524 | 0.716 | 0.002 | 0.686 | 6.079 | 0.032 | 16.534 |
P-4 | 0.079 | 267.185 | 0.524 | 0.454 | 0.001 | 0.414 | 6.556 | 0.038 | 20.490 |
Sample ID | HPMI | LT-N2A | LP-CO2A | |||
---|---|---|---|---|---|---|
D1 | R2 | D2 | R2 | D3 | R2 | |
DJ1-1 | 2.702 | 0.999 | 2.736 | 0.984 | 2.421 | 0.988 |
DJ1-2 | 2.802 | 0.995 | 2.740 | 0.983 | 2.466 | 0.988 |
DJ1-3 | 2.825 | 1.000 | 2.751 | 0.978 | 2.405 | 0.988 |
DJ1-4 | 2.624 | 0.998 | 2.756 | 0.971 | 2.433 | 0.989 |
DJ2-1 | 2.384 | 0.998 | 2.506 | 0.964 | 2.433 | 0.987 |
DJ2-2 | 2.626 | 0.999 | 2.529 | 0.956 | 2.484 | 0.987 |
DJ2-3 | 2.501 | 0.998 | 2.663 | 0.985 | 2.466 | 0.988 |
DJ2-4 | 2.564 | 0.997 | 2.591 | 0.958 | 2.478 | 0.986 |
P-1 | 2.807 | 1.000 | 2.522 | 0.995 | 2.336 | 0.986 |
P-2 | 2.728 | 1.000 | 2.511 | 0.990 | 2.347 | 0.986 |
P-3 | 2.654 | 1.000 | 2.540 | 0.992 | 2.382 | 0.984 |
P-4 | 2.787 | 0.999 | 2.572 | 0.964 | 2.380 | 0.986 |
Sample ID | PV (cm3/g) | SSA (m2/g) | ||||||
---|---|---|---|---|---|---|---|---|
Micropores | Mesopores | Macropores | Total | Micropores | Mesopores | Macropores | Total | |
DJ1-1 | 0.072 | 0.002 | 0.002 | 0.077 | 247.096 | 0.928 | 0.015 | 248.039 |
DJ1-2 | 0.048 | 0.006 | 0.001 | 0.055 | 163.773 | 2.718 | 0.029 | 166.519 |
DJ1-3 | 0.071 | 0.003 | 0.004 | 0.079 | 242.362 | 1.502 | 0.096 | 243.960 |
DJ1-4 | 0.061 | 0.004 | 0.003 | 0.067 | 207.370 | 1.893 | 0.010 | 209.274 |
DJ2-1 | 0.078 | 0.001 | 0.001 | 0.081 | 263.870 | 0.448 | 0.006 | 264.324 |
DJ2-2 | 0.072 | 0.001 | 0.001 | 0.075 | 243.780 | 0.461 | 0.003 | 244.244 |
DJ2-3 | 0.066 | 0.003 | 0.001 | 0.069 | 221.810 | 1.073 | 0.003 | 222.886 |
DJ2-4 | 0.068 | 0.001 | 0.001 | 0.071 | 227.760 | 0.499 | 0.004 | 228.263 |
P-1 | 0.077 | 0.002 | 0.005 | 0.083 | 260.342 | 0.462 | 0.121 | 260.925 |
P-2 | 0.075 | 0.001 | 0.005 | 0.081 | 252.790 | 0.442 | 0.093 | 253.324 |
P-3 | 0.072 | 0.002 | 0.004 | 0.078 | 239.420 | 0.666 | 0.042 | 240.128 |
P-4 | 0.079 | 0.001 | 0.004 | 0.084 | 267.180 | 0.407 | 0.092 | 267.679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Guo, Y.; Hu, X.; Wang, T.; Wang, R.; Chen, X.; Fan, W.; Deng, Z. Pore Structure and Heterogeneity Characteristics of Deep Coal Reservoirs: A Case Study of the Daning–Jixian Block on the Southeastern Margin of the Ordos Basin. Minerals 2025, 15, 116. https://doi.org/10.3390/min15020116
Li B, Guo Y, Hu X, Wang T, Wang R, Chen X, Fan W, Deng Z. Pore Structure and Heterogeneity Characteristics of Deep Coal Reservoirs: A Case Study of the Daning–Jixian Block on the Southeastern Margin of the Ordos Basin. Minerals. 2025; 15(2):116. https://doi.org/10.3390/min15020116
Chicago/Turabian StyleLi, Bo, Yanqin Guo, Xiao Hu, Tao Wang, Rong Wang, Xiaoming Chen, Wentian Fan, and Ze Deng. 2025. "Pore Structure and Heterogeneity Characteristics of Deep Coal Reservoirs: A Case Study of the Daning–Jixian Block on the Southeastern Margin of the Ordos Basin" Minerals 15, no. 2: 116. https://doi.org/10.3390/min15020116
APA StyleLi, B., Guo, Y., Hu, X., Wang, T., Wang, R., Chen, X., Fan, W., & Deng, Z. (2025). Pore Structure and Heterogeneity Characteristics of Deep Coal Reservoirs: A Case Study of the Daning–Jixian Block on the Southeastern Margin of the Ordos Basin. Minerals, 15(2), 116. https://doi.org/10.3390/min15020116