Mapping Soil Contamination in Arid Regions: A GIS and Multivariate Analysis Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Calculation of the Normalized Difference Vegetation Index (NDVI)
2.3. Identification of Land Use and Land Cover (LU/LC) Within the Study Area
2.4. Field Work and Laboratory Analysis
2.5. Evaluation of Heavy Metal Contamination
2.5.1. The Geoaccumulation Index (Igeo)
2.5.2. Contamination Factor (CF)
2.5.3. Enrichment Factor (EF)
2.5.4. The Modified Degree of Contamination (mCd)
2.5.5. Statistical Analysis
2.6. Spatial Data Analysis of Studied Heavy Metals
3. Results and Discussion
3.1. Vegetation Status (NDVI) and Land Use/Land Cover (LULC) for the Study Area
3.2. Land Surface Parameters and Heavy Metal Concentrations in the Study Area
3.3. Single Contamination Indices
3.4. Multivariate Analysis of PTEs in the Investigated Area
3.5. Percentages of Single Contamination Indices Across the Clusters
Modified Degree of Contamination (mCd)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Boghdady, A.; Hassanein, K.J.A.E.; Research, E. Chemical analysis and environmental impact of heavy metals in soil of Wadi Jazan area, southwest of Saudi Arabia. Appl. Ecol. Environ. Res. 2019, 17, 7067–7084. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Al-kahtany, K.; Alharbi, T.; Alarifi, S.S. Distribution patterns, health hazards, and multivariate assessment of contamination sources of As, Pb, Ni, Zn, and Fe in agricultural soils. J. King Saud Univ.-Sci. 2024, 36, 103489. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Al Khathlan, M.H. Assessment of potentially toxic elements and health risks of agricultural soil in Southwest Riyadh, Saudi Arabia. Open Chem. 2024, 22, 20240017. [Google Scholar] [CrossRef]
- Alzahrani, H.; El-Sorogy, A.S.; Okok, A.; Shokr, M.S. GIS-and Multivariate-Based Approaches for Assessing Potential Environmental Hazards in Some Areas of Southwestern Saudi Arabia. Toxics 2024, 12, 569. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Chen, S.; Hu, J.; Xia, F.; Xu, J.; Li, Y.; Shi, Z. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE 2017, 12, e0172438. [Google Scholar] [CrossRef]
- He, Z.; Shentu, J.; Yang, X.; Baligar, V.C.; Zhang, T.; Stoffella, P.J. Heavy metal contamination of soils: Sources, indicators and assessment. J. Environ. Indic. 2015, 9, 17–18. [Google Scholar]
- Nazzal, Y.; Howari, F.M.; Jafri, M.K.; Naeem, M.; Ghrefat, H. Risk assessment through evaluation of potentially toxic metals in the surface soils of the Qassim area, Central Saudi Arabia. Ital. J. Geosci. 2016, 135, 210–216. [Google Scholar] [CrossRef]
- Adimalla, N. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ. Geochem. Health 2020, 42, 59–75. [Google Scholar] [CrossRef]
- Khan, I.; Choudhary, B.C.; Izhar, S.; Kumar, D.; Satyanarayanan, M.; Rajput, V.D.; Khan, S. Exploring geochemical distribution of potentially toxic elements (PTEs) in wetland and agricultural soils and associated health risks. Environ. Sci. Pollut. Res. 2024, 31, 17964–17980. [Google Scholar] [CrossRef]
- Ahmed, Z.F.; Kaur, N.; Hassan, F.E. Ornamental date palm and sidr trees: Fruit elements composition and concerns regarding consumption. Int. J. Fruit Sci. 2022, 22, 17–34. [Google Scholar] [CrossRef]
- Nour, H.E.; Alshehri, F.; Sahour, H.; El-Sorogy, A.S.; Tawfik, M. Assessment of heavy metal contamination and health risk in the coastal sediments of Suez Bay, Gulf of Suez, Egypt. J. Afr. Earth Sci. 2022, 195, 104663. [Google Scholar] [CrossRef]
- Alharbi, T.; El-Sorogy, A.S. Risk assessment of potentially toxic elements in Agricultural soils of Al-Ahsa Oasis, Saudi Arabia. Sustainability 2022, 15, 659. [Google Scholar] [CrossRef]
- Chang, L.; Magos, L.; Suzuki, T.J.F. Toxicology of Metals; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Saha, J.K.; Selladurai, R.; Coumar, M.V.; Dotaniya, M.; Kundu, S.; Patra, A.K. Soil Pollution—An Emerging Threat to Agriculture; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Nowicka, B. Heavy metal–induced stress in eukaryotic algae—Mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ. Sci. Pollut. Res. 2022, 29, 16860–16911. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, F.; Yu, J.; Huang, K.; Zhang, H.; Fu, Z. An improved weighted index for the assessment of heavy metal pollution in soils in Zhejiang, China. Environ. Res. 2021, 192, 110246. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Tucker, C.J. Use of Near Infrared/Red Radiance Ratios for Estimating Vegetation Biomass and Physiological Status; Report Number: X-923-77-183; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1977. [Google Scholar]
- Luo, H.; Wang, L.; Fang, J.; Li, Y.; Li, H.; Dai, S. NDVI, temperature and precipitation variables and their relationships in Hainan Island from 2001 to 2014 based on MODIS NDVI. In Proceedings of the Geo-Informatics in Resource Management and Sustainable Ecosystem: Third International Conference, GRMSE 2015, Wuhan, China, 16–18 October 2015; pp. 336–344. [Google Scholar]
- Rhee, J.; Im, J. Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agric. For. Meteorol. 2017, 237, 105–122. [Google Scholar] [CrossRef]
- Chen, L.; Beiyuan, J.; Hu, W.; Zhang, Z.; Duan, C.; Cui, Q.; Zhu, X.; He, H.; Huang, X.; Fang, L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. Chemosphere 2022, 293, 133577. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Bassouny, M.A.; Jahin, H.S.; Abdelhafez, A.A. Stabilization of lead and copper in a contaminated Typic Torripsament soil using humic substances. CLEAN Soil Air Water 2019, 47, 1800309. [Google Scholar] [CrossRef]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci. Total. Environ. 2022, 838, 156417. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Jahin, H.S. Implications of irrigation water quality on shallow groundwater in the Nile Delta of Egypt: A human health risk prospective. Environ. Technol. Innov. 2021, 22, 101383. [Google Scholar] [CrossRef]
- Abbas, H.; Abuzaid, A.S.; Jahin, H.; Kasem, D. Assessing the quality of untraditional water sources for irrigation purposes in Al-Qalubiya Governorate, Egypt. Egypt. J. Soil Sci. 2020, 60, 157–166. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.; Shalaby, A. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques. Eurasian Soil Sci. 2015, 48, 1159–1169. [Google Scholar] [CrossRef]
- El Nahry, A.; Mohamed, E. Potentiality of land and water resources in African Sahara: A case study of south Egypt. Environ. Earth Sci. 2011, 63, 1263–1275. [Google Scholar] [CrossRef]
- Shokr, M.S.; Abdellatif, M.A.; El Behairy, R.A.; Abdelhameed, H.H.; El Baroudy, A.A.; Mohamed, E.S.; Rebouh, N.Y.; Ding, Z.; Abuzaid, A.S. Assessment of potential heavy metal contamination hazards based on GIS and multivariate analysis in some mediterranean zones. Agronomy 2022, 12, 3220. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Jalhoum, M.E.; Hendawy, E.; El-Adly, A.M.; Nawar, S.; Rebouh, N.Y.; Saleh, A.; Shokr, M.S. Geospatial evaluation and bio-remediation of heavy metal-contaminated soils in arid zones. Front. Environ. Sci. 2024, 12, 1381409. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies–A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef] [PubMed]
- Abuzaid, A.S.; Bassouny, M.A. Total and DTPA-extractable forms of potentially toxic metals in soils of rice fields, north Nile Delta of Egypt. Environ. Technol. Innov. 2020, 18, 100717. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal component analysis. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Abd-Elmabod, S.K.; Bakr, N.; Muñoz-Rojas, M.; Pereira, P.; Zhang, Z.; Cerdà, A.; Jordán, A.; Mansour, H.; De la Rosa, D.; Jones, L. Assessment of soil suitability for improvement of soil factors and agricultural management. Sustainability 2019, 11, 1588. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Mohamed, E.S.; Wagdi, E.M.; Shahin, S.A.; Aldosari, A.A.; Lasaponara, R.; Alnaimy, M.A. Quantitative evaluation of soil quality using Principal Component Analysis: The case study of El-Fayoum depression Egypt. Sustainability 2021, 13, 1824. [Google Scholar] [CrossRef]
- Hammam, A.A.; Mohamed, W.S.; Sayed, S.E.-E.; Kucher, D.E.; Mohamed, E.S. Assessment of soil contamination using gis and multi-variate analysis: A case study in El-Minia Governorate, Egypt. Agronomy 2022, 12, 1197. [Google Scholar] [CrossRef]
- Alsheikh, A.; Albarrak, A.; Daffalla, O.; Noureldin, E.; Mohammed, W.; Shrwani, K.; Hobani, Y.; Zamim, M.; Assiri, A. The use of nested-PCR to detect the presence of Plasmodium in Anopheles arabiensis in Jazan region, Saudi Arabia. J. Egypt. Soc. Parasitol. 2017, 47, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Blank, H.R.; Johnson, P.; Gettings, M.E.; Simmons, G.C. Explanatory Notes to the Geologic Map of the Jizan Quadrangle, Sheet 16F; Deputy Ministry for Mineral Resources: Jeddah, Saudi Arabia, 1985. [Google Scholar]
- Alhumimidi, M.S. Geotechnical assessment of near-surface sediments and their hazardous impact: Case study of Jizan City, southwestern Saudi Arabia. J. King Saud Univ.-Sci. 2020, 32, 2195–2201. [Google Scholar] [CrossRef]
- Abdelrahman, K.; Al-Amri, A.M.; Alzahrani, H.; Qaysi, S.; Al-Otaibi, N. Soil liquefaction susceptibility of Jizan coastal area, southwest Saudi Arabia, based on microtremor measurements. Arab. J. Geosci. 2022, 15, 611. [Google Scholar] [CrossRef]
- Said, T.O.; Omran, A.A.; Fawy, K.F.; Idris, A.M. Heavy metals in twelve edible marine fish species from Jizan fisheries, Saudi Arabia: Monitoring and assessment. Fresenius Environ. Bull. 2014, 23, 801–809. [Google Scholar]
- El Gendy, A.; Al Farraj, S.; El Hedeny, M. Heavy metal concentrations in tissues of the shrimp Penaeus semisulcatus (De Haan, 1844) from Jazan, southern Red Sea coast of Saudi Arabia. Pak. J. Zool. 2015, 47, 671–677. [Google Scholar]
- Abdelsamie, E.A.; Abdellatif, M.A.; Hassan, F.O.; El Baroudy, A.A.; Mohamed, E.S.; Kucher, D.E.; Shokr, M.S. Integration of RUSLE model, remote sensing and GIS techniques for assessing soil erosion hazards in arid zones. Agriculture 2022, 13, 35. [Google Scholar] [CrossRef]
- Leon, C.T.; Shaw, D.R.; Cox, M.S.; Abshire, M.J.; Ward, B.; Wardlaw, M.C.; Watson, C. Utility of remote sensing in predicting crop and soil characteristics. Precis. Agric. 2003, 4, 359–384. [Google Scholar] [CrossRef]
- Demattê, J.A.; Sayão, V.M.; Rizzo, R.; Fongaro, C.T. Soil class and attribute dynamics and their relationship with natural vegetation based on satellite remote sensing. Geoderma 2017, 302, 39–51. [Google Scholar] [CrossRef]
- Neetu; Ray, S. Exploring machine learning classification algorithms for crop classification using Sentinel 2 data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 573–578. [Google Scholar] [CrossRef]
- Clemente, J.; Fontanelli, G.; Ovando, G.; Roa, Y.; Lapini, A.; Santi, E. Google Earth Engine: Application of algorithms for remote sensing of crops in Tuscany (Italy). In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 195–200. [Google Scholar]
- Xue, H.; Xu, X.; Zhu, Q.; Yang, G.; Long, H.; Li, H.; Yang, X.; Zhang, J.; Yang, Y.; Xu, S.; et al. Object-oriented crop classification using time series sentinel images from google earth engine. Remote Sens. 2023, 15, 1353. [Google Scholar] [CrossRef]
- Akbari, E.; Darvishi Boloorani, A.; Neysani Samany, N.; Hamzeh, S.; Soufizadeh, S.; Pignatti, S. Crop mapping using random forest and particle swarm optimization based on multi-temporal Sentinel-2. Remote Sens. 2020, 12, 1449. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H. CA-Markov chain analysis of seasonal land surface temperature and land use land cover change using optical multi-temporal satellite data of Faisalabad, Pakistan. Remote Sens. 2020, 12, 3402. [Google Scholar] [CrossRef]
- Hendawy, E.; Belal, A.-A.A.; Rebouh, N.Y.; Shokr, M.S.; Mohamed, E.S.; Sheta, A.E.A.S.; Abou-Hadid, A.F. Assessing Surface Water Quality Using Risk Indicators, Geographic Information System Modeling Techniques, and Multi-Statistical Methods in Arid Regions to Maintain the Sustainability of Water Resources. Agronomy 2024, 14, 2834. [Google Scholar] [CrossRef]
- Wu, Q.; Leung, J.Y.; Geng, X.; Chen, S.; Huang, X.; Li, H.; Huang, Z.; Zhu, L.; Chen, J.; Lu, Y. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Sci. Total Environ. 2015, 506, 217–225. [Google Scholar] [CrossRef]
- Weissmannová, H.D.; Pavlovský, J. Indices of soil contamination by heavy metals–methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 616. [Google Scholar] [CrossRef]
- Nyika, J.; Onyari, E.; Dinka, M.; Shivani, B. Assessment of trace metal contamination of soil in a landfill vicinity: A southern Africa case study. Curr. Chem. Lett. 2020, 9, 171–182. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Lu, X.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef]
- Rahman, S.H.; Khanam, D.; Adyel, T.M.; Islam, M.S.; Ahsan, M.A.; Akbor, M.A. Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implication of seasonal variation and indices. Appl. Sci. 2012, 2, 584–601. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Franco-Uría, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef]
- Baptista, N.J.; Smith, B.; McAllister, J. Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environ. Pollut. 2000, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mucha, A.P.; Vasconcelos, M.T.S.; Bordalo, A.A. Macrobenthic community in the Douro estuary: Relations with trace metals and natural sediment characteristics. Environ. Pollut. 2003, 121, 169–180. [Google Scholar] [CrossRef]
- Angelidis, M.; Aloupi, M. Assessment of metal contamination in shallow coastal sediments around Mytilene Greece. Int. J. Environ. Anal. Chem. 1997, 68, 281–293. [Google Scholar] [CrossRef]
- Liaghati, T.; Preda, M.; Cox, M. Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environ. Int. 2004, 29, 935–948. [Google Scholar] [CrossRef] [PubMed]
- Ergin, M.; Saydam, C.; Baştürk, Ö.; Erdem, E.; Yörük, R. Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chem. Geol. 1991, 91, 269–285. [Google Scholar] [CrossRef]
- Sutherland, R. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Abrahim, G.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Wang, R.; Huang, W.; Wang, W.; Li, X. Assessment of heavy metal contamination in the sediments from the Yellow River Wetland National Nature Reserve (the Sanmenxia section), China. Environ. Sci. Pollut. Res. 2015, 22, 8586–8593. [Google Scholar] [CrossRef]
- El Behairy, R.A.; El Baroudy, A.A.; Ibrahim, M.M.; Mohamed, E.S.; Rebouh, N.Y.; Shokr, M.S. Combination of GIS and multivariate analysis to assess the soil heavy metal contamination in some arid zones. Agronomy 2022, 12, 2871. [Google Scholar] [CrossRef]
- Said, M.E.S.; Ali, A.M.; Borin, M.; Abd-Elmabod, S.K.; Aldosari, A.A.; Khalil, M.M.; Abdel-Fattah, M.K. On the use of multivariate analysis and land evaluation for potential agricultural development of the northwestern coast of Egypt. Agronomy 2020, 10, 1318. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst; Esri: Redlands, CA, USA, 2001; Volume 380. [Google Scholar]
- Gundogdu, K.S.; Guney, I. Spatial analyses of groundwater levels using universal kriging. J. Earth Syst. Sci. 2007, 116, 49–55. [Google Scholar] [CrossRef]
- Linage, S. Quantitative Remote Sensing of Land Surface; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Najmi, A.; Albratty, M.; Al-Rajab, A.J.; Alhazmi, H.A.; Javed, S.A.; Ahsan, W.; Rehman, Z.U.; Hassani, R.; Alqahtani, S.S. Heavy metal contamination in leafy vegetables grown in Jazan region of Saudi Arabia: Assessment of possible human health hazards. Int. J. Environ. Res. Public Health 2023, 20, 2984. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Geological application of geographic information system. Korea Inst. Geosci. Min. Resour. 2014, 9, 109–118. [Google Scholar]
- Silalahi, F.E.S.; Pamela; Arifianti, Y.; Hidayat, F. Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geosci. Lett. 2019, 6, 10. [Google Scholar] [CrossRef]
- Ali, R.; Moghanm, F. Variation of soil properties over the landforms around Idku lake, Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 91–101. [Google Scholar] [CrossRef]
- Department of Environmental Affairs. National Norms and Standards for the Remediation of Contaminated Land and Soil Quality in the Republic of South Africa; Department of Environmental Affairs (DEA): Pretoria, South Africa, 2013. [Google Scholar]
- Bradl, H. Sources and origins of heavy metals. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2005; Volume 6, pp. 1–27. [Google Scholar]
- El-Sorogy, A.; Al-Kahtany, K.; Youssef, M.; Al-Kahtany, F.; Al-Malky, M. Distribution and metal contamination in the coastal sediments of Dammam Al-Jubail area, Arabian Gulf, Saudi Arabia. Mar. Pollut. Bull. 2018, 128, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, T.; El-Sorogy, A. Assessment of metal contamination in coastal sediments of Al-Khobar area, Arabian Gulf, Saudi Arabia. J. Afr. Earth Sci. 2017, 129, 458–468. [Google Scholar] [CrossRef]
- Kahal, A.; El-Sorogy, A.S.; Qaysi, S.; Almadani, S.; Kassem, O.M.; Al-Dossari, A. Contamination and ecological risk assessment of the Red Sea coastal sediments, southwest Saudi Arabia. Mar. Pollut. Bull. 2020, 154, 111125. [Google Scholar] [CrossRef]
- Neal, A.P.; Guilarte, T.R. Mechanisms of lead and manganese neurotoxicity. Toxicol. Res. 2013, 2, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef]
- Alzahrani, H.; El-Sorogy, A.S.; Qaysi, S.; Alshehri, F. Contamination and risk assessment of potentially toxic elements in coastal sediments of the area between Al-Jubail and Al-Khafji, Arabian Gulf, Saudi Arabia. Water 2023, 15, 573. [Google Scholar] [CrossRef]
- Alzahrani, H.; El-Sorogy, A.S.; Qaysi, S. Assessment of human health risks of toxic elements in coastal area between Al-Khafji and Al-Jubail, Saudi Arabia. Mar. Pollut. Bull. 2023, 196, 115622. [Google Scholar] [CrossRef]
- Ahmad, W.; Zubair, M.; Ahmed, M.; Ahmad, M.; Latif, S.; Hameed, A.; Kanwal, Q.; Iqbal, D.N. Assessment of potentially toxic metal (loid) s contamination in soil near the industrial landfill and impact on human health: An evaluation of risk. Environ. Geochem. Health 2023, 45, 4353–4369. [Google Scholar] [CrossRef] [PubMed]
- Habous Nazzal, Y.; SN Al-Arifi, N.; Kamran Jafri, M.; Kishawy, H.; A Ghrefat, H.; M El-Waheidi, M.; T Batayneh, A.; A Zumlot, T. Multivariate statistical analysis of urban soil contamination by heavy metals at selected industrial locations in the Greater Toronto area, Canada. Geol. Croat. 2015, 68, 147–159. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Stoeser, D.B.; Camp, V.E. Pan-African microplate accretion of the Arabian Shield. Geol. Soc. Am. Bull. 1985, 96, 817–826. [Google Scholar] [CrossRef]
- Johnson, P.; Andresen, A.; Collins, A.; Fowler, A.; Fritz, H.; Ghebreab, W.; Kusky, T.; Stern, R.J. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J. Afr. Earth Sci. 2011, 61, 167–232. [Google Scholar] [CrossRef]
As | Co | Cr | Cu | Fe | Ni | Pb | V | Zn | |
---|---|---|---|---|---|---|---|---|---|
Measuring unit | mg kg−1 | ||||||||
N | 35 | ||||||||
Minimum | 2 | 5 | 14 | 8 | 13,300 | 11 | 2 | 31 | 20 |
Maximum | 6 | 22 | 67 | 51 | 48,600 | 54 | 11 | 109 | 106 |
Mean | 2.94 | 12.31 | 41.17 | 24.11 | 32,508 | 30.17 | 4.97 | 73.00 | 50.40 |
STD. | 0.93 | 4.51 | 11.39 | 10.84 | 8241 | 10.37 | 1.85 | 18.97 | 20.03 |
Variables | Measuring Unit | Models | ME | MSE | RMSEE |
---|---|---|---|---|---|
As | mg Kg−1 | Gaussian | 0.0002 | −0.004 | 1.07 |
Co | Spherical | −0.033 | −0.002 | 0.98 | |
Cr | Spherical | −0.004 | 0.000 | 0.99 | |
Cu | Spherical | 0.10 | 0.02 | 0.97 | |
Fe | Exponential | −12.60 | 0.000 | 0.97 | |
Ni | Spherical | −0.04 | −0.003 | 1.00 | |
Pb | Stable | 0.03 | 0.009 | 1.01 | |
V | Exponential | −0.35 | −0.017 | 0.94 | |
Zn | Spherical | 0.29 | 0.019 | 1.00 |
As | Co | Cr | Cu | Fe | Ni | Pb | V | Zn | |
---|---|---|---|---|---|---|---|---|---|
Present study | 2.94 | 12.31 | 41.17 | 24.11 | 32,508 | 30.17 | 4.97 | 73.00 | 50.40 |
Jazan coastal area, Red Sea, Saudi Arabia [83] | - | 4.10 | 33 | 31.60 | - | 20 | 2.30 | - | 28.50 |
Al-Khobar, Arabian Gulf, Saudi Arabia [82] | 1.60 | 4.80 | 51 | 183 | - | 75 | 5.40 | - | 52.70 |
Arabian Gulf, Saudi Arabia [81] | 31 | 4.00 | 64 | 297 | - | 77 | - | 48.30 | |
Background values [57] | 2.00 | 11.60 | 35 | 14.30 | 30,890 | 18.60 | 17 | 53 | 52 |
Average natural concentration of heavy metals in rocks [80] | 5.5–12 | 1.3–10 | 15–70 | 9.9–39 | 140,00–28,000 | 1.8–18 | 2.6–27 | 20–93 | 37–68 |
Recommended concentration based on the Department of Environmental Affairs (DEA) [79] | 5.8 | 300 | 6.5 | 16 | - | 91 | 20 | 150 | 240 |
Contamination Indices | CF | ||||||||
---|---|---|---|---|---|---|---|---|---|
PTEs | As | Co | Cr | Cu | Fe | Ni | Pb | V | Zn |
Minimum | 1.00 | 0.43 | 0.40 | 0.56 | 0.43 | 0.59 | 0.12 | 0.58 | 0.38 |
Maximum | 3.00 | 1.90 | 1.91 | 3.57 | 1.57 | 2.90 | 0.65 | 2.06 | 2.04 |
Mean | 1.47 | 1.06 | 1.18 | 1.69 | 1.05 | 1.62 | 0.29 | 1.38 | 0.97 |
STD. | 0.47 | 0.39 | 0.33 | 0.76 | 0.27 | 0.56 | 0.11 | 0.36 | 0.39 |
EF | |||||||||
Minimum | 0.82 | 0.73 | 0.91 | 1.04 | 1.00 | 1.14 | 0.14 | 1.13 | 0.59 |
Maximum | 2.32 | 1.21 | 1.39 | 2.27 | 1.00 | 2.00 | 0.52 | 1.77 | 1.30 |
Mean | 1.41 | 0.98 | 1.11 | 1.54 | 1.00 | 1.51 | 0.28 | 1.31 | 0.90 |
STD. | 0.30 | 0.13 | 0.11 | 0.34 | 0.00 | 0.21 | 0.09 | 0.14 | 0.17 |
Igeo | |||||||||
Minimum | −0.58 | −1.80 | −1.91 | −1.42 | −1.80 | −1.34 | −3.67 | −1.36 | −1.96 |
Maximum | 1.00 | 0.34 | 0.35 | 1.25 | 0.07 | 0.95 | −1.21 | 0.46 | 0.44 |
Mean | −0.09 | −0.60 | −0.41 | 0.03 | −0.56 | 0.02 | −2.45 | −0.17 | −0.74 |
STD. | 0.44 | 0.54 | 0.44 | 0.66 | 0.39 | 0.52 | 0.53 | 0.40 | 0.57 |
Correlations | |||||||||
---|---|---|---|---|---|---|---|---|---|
As | Co | Cr | Cu | Fe | Ni | V | Pb | Zn | |
As | 1 | ||||||||
Co | 0.831 ** | 1 | |||||||
Cr | 0.810 ** | 0.934 ** | 1 | ||||||
Cu | 0.828 ** | 0.977 ** | 0.917 ** | 1 | |||||
Fe | 0.780 ** | 0.971 ** | 0.930 ** | 0.951 ** | 1 | ||||
Ni | 0.824 ** | 0.974 ** | 0.972 ** | 0.956 ** | 0.943 ** | 1 | |||
V | 0.656 ** | 0.897 ** | 0.836 ** | 0.846 ** | 0.922 ** | 0.852 ** | 1 | ||
Pb | 0.574 ** | 0.591 ** | 0.621 ** | 0.681 ** | 0.547 ** | 0.625 ** | 0.343 * | 1 | |
Zn | 0.826 ** | 0.928 ** | 0.915 ** | 0.960 ** | 0.893 ** | 0.939 ** | 0.731 ** | 0.773 ** | 1 |
PTEs | PC1 |
---|---|
As | 0.862 |
Co | 0.985 |
Cr | 0.963 |
Cu | 0.984 |
Fe | 0.966 |
Ni | 0.982 |
Pb | 0.682 |
V | 0.865 |
Zn | 0.963 |
Eigenvalue | 7.44 |
Variability (%) | 82.72 |
Cumulative (%) | 82.72 |
Mean of PTEs | N | As | Co | Cr | Cu | Fe | Ni | Pb | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|
C1 | 18 | 3.50 a | 15.94 a | 49.61 a | 32.78 a | 39,150 a | 38.22 a | 5.67 a | 87.28 a | 65.67 a |
C2 | 17 | 2.35 a | 8.47 b | 32.24 b | 14.94 b | 25,476 b | 21.65 b | 4.24 a | 57.88 b | 34.24 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahal, A.Y.; El-Sorogy, A.S.; Meroño de Larriva, J.E.; Shokr, M.S. Mapping Soil Contamination in Arid Regions: A GIS and Multivariate Analysis Approach. Minerals 2025, 15, 124. https://doi.org/10.3390/min15020124
Kahal AY, El-Sorogy AS, Meroño de Larriva JE, Shokr MS. Mapping Soil Contamination in Arid Regions: A GIS and Multivariate Analysis Approach. Minerals. 2025; 15(2):124. https://doi.org/10.3390/min15020124
Chicago/Turabian StyleKahal, Ali Y., Abdelbaset S. El-Sorogy, Jose Emilio Meroño de Larriva, and Mohamed S. Shokr. 2025. "Mapping Soil Contamination in Arid Regions: A GIS and Multivariate Analysis Approach" Minerals 15, no. 2: 124. https://doi.org/10.3390/min15020124
APA StyleKahal, A. Y., El-Sorogy, A. S., Meroño de Larriva, J. E., & Shokr, M. S. (2025). Mapping Soil Contamination in Arid Regions: A GIS and Multivariate Analysis Approach. Minerals, 15(2), 124. https://doi.org/10.3390/min15020124