U-Pb Geochronology of Fersmite: Potential Time Constraints on Magnesite Formation, Sparry Dolomitisation, and MVT Pb-Zn Mineralisation in SE British Columbia, Canada
Abstract
:1. Introduction
2. Regional Geological Setting
3. Analytical Methods
3.1. X-Ray Powder Diffraction
3.2. Scanning Electron Microscopy
3.3. EPMA Analyses
3.4. Laser-Ablation Inductively Coupled Plasma Mass Spectrometry
3.5. Laser Ablation Sr Isotopic Analyses
3.6. 40Ar/39Ar Methods
4. Results
4.1. XRD and SEM
4.2. EPMA and LA-ICP-MS Analyses of Fersmite
4.2.1. Major Elements
4.2.2. Trace Elements
4.2.3. REE Patterns
4.2.4. LA-ICP-MS Mapping of Fersmite
4.3. LA-ICP-MS U-Pb Analyses
4.3.1. Reproduction of Rutile Standard RZ3
4.3.2. Remaining Downhole Fractionation
4.3.3. Concordia Diagrams
4.4. 40Ar/39Ar Dating
4.5. LA-MC-ICP-MS Sr Isotopes
5. Discussion
5.1. Chemical Composition of Fersmite
5.2. REE Composition of Fersmite
5.3. Compositional Maps of Individual Fersmite Crystals
5.4. Concordia Diagrams and Timing of Fersmite Formation
5.5. 40Ar/39Ar Dating
5.6. Sr Isotopes of Dolomite
5.7. Timing of Mount Brussilof Fersmite and Broader Implications of Fersmite Formation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paradis, S.; Simandl, G.J.; Drage, N.; D’souza, R.; Kontak, D.; Waller, Z. Carbonate-hosted deposits (Mississippi Valley-type, magnesite, and REE-F-Ba) of the southeastern Canadian Cordillera: A review and isotopic data comparison. Geol. Surv. Can. Bull. 2022, 617, 39–87. [Google Scholar]
- Paradis, S.; Simandl, G. Are There Genetic Links Between Carbonate-Hosted Barite-Zinc-Lead Sulphide Deposits and Magnesite Mineralization in Southeast British Columbia? Geological Survey of Canada: Ottawa, ON, Canada, 2018; pp. 217–227. [Google Scholar]
- Simandl, G.J.; Hancock, K.D. Geology of the Mount Brussilof magnesite deposit, SE British Columbia. In Geological Fieldwork 1990; British Columbia Geological Survey: Victoria, BC, Canada, 1991; pp. 269–278. [Google Scholar]
- Simandl, G.J.; Hancock, K.D. Sparry Magnesite. In Geological Fieldwork 1997; British Columbia Ministry of Employment and Investment: Victoria, BC, Canada, 1998; pp. 24E-1–24E-3. [Google Scholar]
- Simandl, G.J.; Hancock, K.D. Sparry Magnesite. In Selected British Columbia Mineral Deposit Profiles, Industrial Minerals and Gemstones; Simandl, G.J., Hora, Z.D., Lefebure, D.V., Eds.; British Columbia Ministry of Energy and Mines: Victoria, BC, Canada, 1999; Volume 3, pp. 39–41. [Google Scholar]
- Sylvester, P.J.; Jackson, S.E. A Brief History of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP–MS). Elements 2016, 12, 307–310. [Google Scholar] [CrossRef]
- Petrus, J.A.; Chew, D.M.; Leybourne, M.I.; Kamber, B.S. A new approach to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) using the flexible map interrogation tool ‘Monocle’. Chem. Geol. 2017, 463, 76–93. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hellstrom, J.; Hergt, J.M.; Greig, A.; Maas, R. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand. Geoanalytical Res. 2007, 31, 331–353. [Google Scholar] [CrossRef]
- Chew, D.M.; Petrus, J.A.; Kamber, B.S. U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.D.; Zhao, J.X.; Liu, P.; Feng, J.P.; Feng, Y.X.; Xiao, Y. U-Pb geochronology of carbonate-hosted Pb-Zn ores reveals plate-tectonic evolution of eastern Asia during the early Paleozoic. Sci. Rep. 2024, 14, 25313. [Google Scholar] [CrossRef]
- McFarlane, C.R.M. Allanite U Pb geochronology by 193 nm LA ICP-MS using NIST610 glass for external calibration. Chem. Geol. 2016, 438, 91–102. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostand. Geoanalytical Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Aitken, J.D. Birth, growth and death of the Middle Cambrian Cathedral carbonate lithosome, Southern Rocky Mountains. Bull. Can. Pet. Geol. 1989, 37, 316–333. [Google Scholar]
- Aitken, J.D. Control of Lower Paleozoic Sedimentary Facies by the Kicking Horse Rim, Southern Rocky Mountains, Canada. Bull. Can. Pet. Geol. 1971, 19, 557–569. [Google Scholar]
- Aitken, J.D.; Mcllreath, L.A. Comment on “The Burgess Shale: Not in the Shadow of the Cathedral Escarpment”. Geosci. Can. 1990, 17, 111–115. [Google Scholar]
- Aitken, J.D.; Mcllreath, L.A. The Cathedral Reef Escarpment, a Cambrian Great Wall with Humble Origins. Geosci. BC Open File 1984, 13, 17–19. [Google Scholar]
- Fritz, W.H. Comment: In Defence of the Escarpment near the Burgess Shale Fossil Locality. Geosci. Can. 1990, 17, 106–110. [Google Scholar]
- Aitken, J.D. Revised models for depositional grand cycles, Cambrian of the southern Rocky Mountains, Canada. Bull. Can. Pet. Geol. 1978, 26, 515–542. [Google Scholar]
- Leech, G.B. Kananaskis Lakes; Open File map 634 scale 1:126,720; Geological Survey of Canada: Ottawa, ON, Canada, 1966. [Google Scholar]
- McMechan, M.E.; Leech, G.B. Geology, Mount Assiniboine, British Columbia; Geological Survey of Canada, Canadian Geoscience Map 13, scale 1:50,000; Natural Resources Canada: Ottawa, ON, Canada, 2011. [Google Scholar]
- Layton-Matthews, D.; Hamilton, C.; McClenaghan, M.B. Modern Techniques and Applications of Mineral Chemistry to Exploration; Open-File Report; Geological Survey of Canada: Ottawa, ON, Canada, 2017; pp. 10–24. [Google Scholar]
- Müller, W.; Shelley, M.; Miller, P.; Broude, S. Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J. Anal. At. Spectrom. 2009, 24, 209–214. [Google Scholar] [CrossRef]
- Shi, G.; Li, X.; Li, Q.; Chen, Z.; Deng, J.; Liu, Y.; Kang, Z.; Pang, E.; Xu, Y.; Jia, X. Ion Microprobe U-Pb Age and Zr-in-Rutile Thermometry of Rutiles from the Daixian Rutile Deposit in the Hengshan Mountains, Shanxi Province, China. Econ. Geol. 2012, 107, 525–535. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanalytical Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Mayer, C.C.; Jugo, P.J.; Leybourne, M.I.; Grobler, D.F.; Voinot, A. Strontium isotope stratigraphy through the Flatreef PGE-Ni-Cu mineralization at Turfspruit, northern limb of the Bushveld Igneous Complex: Evidence of correlation with the Merensky Unit of the eastern and western limbs. Min. Depos. 2021, 56, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Elburg, M.; Vroon, P.; van der Wagt, B.; Tchalikian, A. Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G). Chem. Geol. 2005, 223, 196–207. [Google Scholar] [CrossRef]
- Dalrymple, G.B.; Alexander, E.C.; Lanphere, M.A.; Kraker, G.P. Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey TRIGA Reactor; U.S. Geological Survey, Professional Paper 1176; U.S. Government Publishing Office: Washington, DC, USA, 1981; p. 55. [Google Scholar]
- Steiger, R.H.; Jäger, E. Subcommission Geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Roddick, J.C. High precision intercalibration of 40Ar/39Ar standards. Geochim. Cosmochim. Acta 1983, 47, 887–898. [Google Scholar] [CrossRef]
- Min, K.W.; Mundil, R.; Renne, P.R.; Ludwig, K.R. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim. Cosmochim. Acta 2000, 64, 73–98. [Google Scholar] [CrossRef]
- Simandl, G.J.; Petrus, J.A.; Leybourne, M.I.; Paradis, S.; Akam, C. Characterization of primary fersmite from the Mount Brussilof magnesite deposit, southeastern British Columbia, Canada. In Geological Fieldwork 2018; British Columbia Geological Survey: Victoria, BC, Canada, 2019; pp. 113–123. [Google Scholar]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society Special Publications; Geological Society: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Chakhmouradian, A.R.; Reguir, E.P.; Kressall, R.D.; Crozier, J.; Pisiak, L.K.; Sidhu, R.; Yang, P. Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): Mineralogy, geochemistry and petrogenesis. Ore Geol. Rev. 2015, 64, 642–666. [Google Scholar] [CrossRef]
- Balachandar, S.; Zhang, W.; Liu, Y.; Hu, Z.; Chen, H.; Luo, T.; He, T.; Zeng, X. Bulk analysis of columbite ores by LA-ICP-MS: Development of reference materials and investigation into matrix effects. J. Anal. At. Spectrom. 2025, 40, 259–275. [Google Scholar] [CrossRef]
- Škoda, R.; Novák, M. Y,REE,Nb,Ta,Ti-oxide (AB2O6) minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends. Lithos 2007, 95, 43–57. [Google Scholar] [CrossRef]
- Ercit, T.S. Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals: A statistical approach. Can. Mineral. 1291, 43, 1291–1303. [Google Scholar] [CrossRef]
- Klemme, S.; Berndt, J. Trace element partitioning between pyrochlore, microlite, fersmite and silicate melts. Geochem. Trans. 2020, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Roberts, N.M.W.; Drost, K.; Horstwood, M.S.A.; Condon, D.J.; Chew, D.; Drake, H.; Milodowski, A.E.; McLean, N.M.; Smye, A.J.; Walker, R.J.; et al. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: Strategies, progress, and limitations. Geochronology 2020, 2, 33–61. [Google Scholar] [CrossRef]
- Root, K.G. Devonian Antler fold and thrust belt and foreland basin development in the southern Canadian Cordillera: Implication for the Western Canadian Sedimentary Basin. Bull. Can. Pet. Geol. 2001, 49, 7–36. [Google Scholar] [CrossRef]
- McArthur, J.M.; Howarth, R.J.; Bailey, T.R. Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. J. Geol. 2001, 109, 155–170. [Google Scholar] [CrossRef]
- White, W.M.; Hofmann, A.W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 1982, 296, 821–825. [Google Scholar] [CrossRef]
- Amsellem, E.; Schiller, M.; Klausen, M.; Bouyon, A.; Rojas, V.; Bizzarro, M. Origin of carbonatites and associated silicate rocks revealed by Mg triple-isotope approach. Chem. Geol. 2023, 636, 121663. [Google Scholar] [CrossRef]
- Chandra, J.; Upadhyay, D.; Patel, A.K.; Mishra, B. Involvement of syn–, para– and post–magmatic hydrothermal fluids in the alteration of the Kamthai carbonatite complex (India): Insights from in-situ measured 87Sr/86Sr isotope and trace element composition of calcite. Geochemistry 2024, 84, 126216. [Google Scholar] [CrossRef]
- Bell, K.; Simonetti, A. Carbonatite Magmatism and Plume Activity: Implications from the Nd, Pb and Sr Isotope Systematics of Oldoinyo Lengai. J. Petrol. 1996, 37, 1321–1339. [Google Scholar] [CrossRef]
- Al-Aasm, I. Origin and characterization of hydrothermal dolomite in the Western Canadian Sedimentary Basin. J. Geochem. Explor. 2003, 78, 9–15. [Google Scholar] [CrossRef]
- Al-Aasm, I.; Lonnee, J.; Clarke, J. Multiple fluid flow events and the formation of saddle dolomite: Examples from Middle Devonian carbonates of the Western Canada Sedimentary Basin. J. Geochem. Explor. 2000, 69, 11–15. [Google Scholar] [CrossRef]
- Symons, D.T.A.; Enkin, R.J.; Cioppa, M.T. Paleomagnetism in the Western Canada Sedimentary Basin: Dating fluid flow and deformation events. Bull. Can. Pet. Geol. 1999, 47, 534–547. [Google Scholar]
- Vandeginste, V.; Swennen, R.; Gleeson, S.A.; Ellam, R.M.; Osadetz, K.; Roure, F. Geochemical constraints on the origin of the Kicking Horse and Monarch Mississippi Valley-type lead-zinc ore deposits, southeast British Columbia, Canada. Miner. Depos. 2007, 42, 913–935. [Google Scholar] [CrossRef]
- Mrad, C. Fluid Compartmentalization of Devonian and Mississippian Dolostones, Western Canada Sedimentary Basin: Evidence from Fracture Mineralization. Master’s Thesis, University of Windsor, Windsor, ON, Canada, 2016. [Google Scholar]
- Nesbitt, B.E.; Prochaska, W. Solute chemistry of inclusion fluids from sparry dolomites and magnesites in Middle Cambrian carbonate rocks of the southern Canadian Rocky Mountains. Can. J. Earth Sci. 1998, 35, 546–555. [Google Scholar] [CrossRef]
- Hewton, M.L.; Marshall, D.D.; Ootes, L.; Loughrey, L.E.; Creaser, R.A.; Hanley, J. Colombian-style emerald mineralization in the northern Canadian Cordillera: Integration into a regional Paleozoic fluid flow regime. Can. J. Earth Sci. 2013, 50, 857–871. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leybourne, M.I.; Simandl, G.J.; Petrus, J.A.; Paradis, S.; Akam, C.; Voinot, A.; Archibald, D.; McDonald, A.M. U-Pb Geochronology of Fersmite: Potential Time Constraints on Magnesite Formation, Sparry Dolomitisation, and MVT Pb-Zn Mineralisation in SE British Columbia, Canada. Minerals 2025, 15, 128. https://doi.org/10.3390/min15020128
Leybourne MI, Simandl GJ, Petrus JA, Paradis S, Akam C, Voinot A, Archibald D, McDonald AM. U-Pb Geochronology of Fersmite: Potential Time Constraints on Magnesite Formation, Sparry Dolomitisation, and MVT Pb-Zn Mineralisation in SE British Columbia, Canada. Minerals. 2025; 15(2):128. https://doi.org/10.3390/min15020128
Chicago/Turabian StyleLeybourne, Matthew I., George J. Simandl, Joseph A. Petrus, Suzanne Paradis, Carlee Akam, Alexander Voinot, Douglas Archibald, and Andrew M. McDonald. 2025. "U-Pb Geochronology of Fersmite: Potential Time Constraints on Magnesite Formation, Sparry Dolomitisation, and MVT Pb-Zn Mineralisation in SE British Columbia, Canada" Minerals 15, no. 2: 128. https://doi.org/10.3390/min15020128
APA StyleLeybourne, M. I., Simandl, G. J., Petrus, J. A., Paradis, S., Akam, C., Voinot, A., Archibald, D., & McDonald, A. M. (2025). U-Pb Geochronology of Fersmite: Potential Time Constraints on Magnesite Formation, Sparry Dolomitisation, and MVT Pb-Zn Mineralisation in SE British Columbia, Canada. Minerals, 15(2), 128. https://doi.org/10.3390/min15020128