Selective Flotation Separation of Chalcopyrite from Copper-Activated Pyrite and Pyrrhotite Using Oxidized Starch as Depressant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. ONOS Preparation
2.3. Flotation Tests
2.4. Adsorption Tests
2.5. Zeta Potential Measurements
2.6. X-Ray Photoelectron Spectroscopy (XPS)
2.7. EDTA Extraction
3. Results and Discussion
3.1. Flotation of Single Minerals
3.2. Adsorption Tests
3.3. Zeta Potential
3.4. XPS
3.5. EDTA Extraction
3.6. Flotation of Bulk Sulfur Concentrate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dana, C.D.P.; Agangi, A.; Idrus, A.; Chelle-Michou, C.; Lai, C.-K.; Ishida, M.; Guillong, M.; González-Álvarez, I.; Takahashi, R.; Yano, M.; et al. The age and origin of the ruwai polymetallic skarn deposit, Indonesia: Evidence of cretaceous mineralization in the central borneo metallogenic belt. Econ. Geol. 2023, 118, 1341. [Google Scholar] [CrossRef]
- Yuan, Q.; Mei, G.; Liu, C.; Cheng, Q.; Yang, S. A novel sulfur-containing ionic liquid collector for the reverse flotation separation of pyrrhotite from magnetite. Sep. Purif. Technol. 2022, 303, 122189. [Google Scholar] [CrossRef]
- Arvidson, B.; Klemetti, M.; Knuutinen, T.; Kuusisto, M.; Man, Y.T. Hughes-Narborough, Flotation of pyrrhotite to produce magnetite concentrates with a sulphur level below 0.05% w/w. Miner. Eng. 2013, 50, 4–12. [Google Scholar] [CrossRef]
- Miller, J.D.; Li, J.; Davidtz, J.C.; Vos, F. A review of pyrrhotite flotation chemistry in the processing of PGM ores. Miner. Eng. 2005, 18, 855. [Google Scholar] [CrossRef]
- Khmeleva, T.N.; Skinner, W.; Beattie, D.A.; Georgiev, T. The effect of sulphite on the xanthate-induced flotation of copper-activated pyrite. Physicochem. Probl. Miner. Process. 2002, 36, 185. [Google Scholar]
- Leppinen, J.O. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals. Int. J. Miner. Process. 1990, 30, 245. [Google Scholar] [CrossRef]
- Feng, Q.; Lu, W.; Wang, H.; Zhang, Q. Mechanistic insights into stepwise activation of malachite for enhancing surface reactivity and flotation performance. Int. J. Miner. Metall. Mater. 2024, 31, 2159. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, Y.; Zhang, G.; Han, G.; Zhao, W. A novel sulfidization system for enhancing hemimorphite flotation through Cu/Pb binary metal ions. Int. J. Min. Sci. Technol. 2024, 34, 1741. [Google Scholar] [CrossRef]
- Weisener, C.; Gerson, A. Cu(II) adsorption mechanism on pyrite: An XAFS and XPS study. Surf. Interface Anal. 2000, 30, 454. [Google Scholar] [CrossRef]
- Buswell, A.M.; Nicol, M.J. Some aspects of the electrochemistry of the flotation of pyrrhotite. J. Appl. Electrochem. 2022, 32, 1321. [Google Scholar]
- Jones, C.F.; LeCount, S.; Smart, R.S.C.; White, T.J. Compositional and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies. Appl. Surf. Sci. 1992, 55, 65. [Google Scholar] [CrossRef]
- Buckley, A.N.; Woods, R. X-ray photoelectron spectroscopy of oxidised pyrrhotite surfaces. Appl. Surf. Sci. 1985, 20, 472. [Google Scholar] [CrossRef]
- Meng, Q.; Yuan, Z.; Du, Y.; Wang, J. Sulfuric acid pretreatment of oxidized pyrrhotite in flotation desulphurization of magnetite concentrate. Miner. Eng. 2023, 203, 108347. [Google Scholar] [CrossRef]
- Khoso, S.A.; Hu, Y.; Liu, R.; Tian, M.; Sun, W.; Gao, Y.; Han, H.; Gao, Z. Selective depression of pyrite with a novel functionally modified biopolymer in a Cu–Fe flotation system. Miner. Eng. 2019, 135, 55. [Google Scholar] [CrossRef]
- Khoso, S.A.; Gao, Z.; Tian, M.; Hu, Y.; Sun, W. Adsorption and depression mechanism of an environmentally friendly reagent in differential flotation of Cu–Fe sulphides. J. Mater. Res. Technol. 2019, 8, 5422. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, W.; Chang, M.; Wen, S.; Liu, D.; Han, G. Advances in depressants for flotation separation of Cu-Fe sulfide minerals at low alkalinity: A critical review. Int. J. Miner. Metall. Mater. 2024, 31, 1–17. [Google Scholar] [CrossRef]
- Han, G.; Wen, S.; Wang, H.; Feng, Q. Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity. Miner. Eng. 2019, 143, 106015. [Google Scholar] [CrossRef]
- Agheli, S.; Hassanzadeh, A.; Hassas, B.V.; Hasanzadeh, M. Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types. Int. J. Min. Sci. Technol. 2018, 28, 167. [Google Scholar] [CrossRef]
- Tukel, C.; Kelebek, S. Modulation of xanthate action by sulphite ions in pyrrhotite deactivation/depression. Int. J. Miner. Process. 2010, 95, 47. [Google Scholar] [CrossRef]
- Bicak, O.; Ekmekçi, Z.; Bradshaw, D.; Harris, P.J. Adsorption of guar gum and CMC on pyrite. Miner. Eng. 2007, 20, 996. [Google Scholar] [CrossRef]
- Agorhom, E.A.; Skinner, W.; Zanin, M. Post-regrind selective depression of pyrite in pyritic copper–gold flotation using aeration and diethylenetriamine. Miner. Eng. 2015, 72, 36. [Google Scholar] [CrossRef]
- Multani, R.S.; Waters, K.E. Pyrrhotite depression studies with DETA and SMBS on a Ni-Cu sulphide ore. Can. J. Chem. Eng. 2019, 97, 2121. [Google Scholar] [CrossRef]
- Gonçalves, C.D.C.; Liu, Q. The effect of crosslinking additives and molecular weight of starch depressants on pyrrhotite and pentlandite floatabilities. Miner. Eng. 2022, 180, 107489. [Google Scholar]
- Agorhom, E.A.; Skinner, W.; Zanin, M. Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate. Miner. Eng. 2014, 57, 36. [Google Scholar] [CrossRef]
- Gonçalves, C.D.C.; Bobicki, E.R.; Liu, Q. Insight on the mechanism of hexagonal pyrrhotite depression by starch during flotation. Miner. Eng. 2023, 203, 108335. [Google Scholar]
- Furnell, E.; Tian, X.; Bobicki, E.R. Diethylenetriamine as a selective pyrrhotite depressant: Properties, application, and mitigation strategies. Can. J. Chem. Eng. 2021, 99, 1316. [Google Scholar] [CrossRef]
- Junejo, S.A.; Flanagan, B.M.; Zhang, B.; Dhital, S. Starch structure and nutritional functionality—Past revelations and future prospects. Carbohydr. Polym. 2022, 277, 118837. [Google Scholar] [CrossRef]
- Fletcher, B.; Chimonyo, W.; Peng, Y. A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants. Miner. Eng. 2020, 156, 106532. [Google Scholar] [CrossRef]
- Khoso, S.A.; Lyu, F.; Meng, X.; Hu, Y.; Sun, W. Selective separation of chalcopyrite and pyrite with a novel and non-hazardous depressant reagent scheme. Chem. Eng. Sci. 2019, 209, 115204. [Google Scholar] [CrossRef]
- Chapagai, M.K.; Fletcher, B.; Gidley, M.J. Characterization of structure-function properties relevant to copper-activated pyrite depression by different starches. Carbohydr. Polym. 2023, 312, 120841. [Google Scholar] [CrossRef]
- May, F.; Gock, E.; Vogt, V.; Brüser, V. Plasma-modification of sulfides for optimizing froth-flotation properties. Miner. Eng. 2012, 35, 67. [Google Scholar] [CrossRef]
- Silva, L.M.D.; Jardim, W.D.F. Trends and strategies of ozone application in environmental problems. Quim. Nova 2006, 29, 310. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Kumar, C.; Juneja, V.; Inbaraj, S. Effect of aqueous ozone on inactivation of bacteria isolated from the meat products and equipment. Biologia 2023, 78, 3295. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Z.; Zhang, Q.; Dan, Z.; Fu, H.; Yao, W. Properties and potential application of ozone-oxidized starch for enhanced reverse flotation of fine hematite. Miner. Eng. 2023, 198, 108084. [Google Scholar] [CrossRef]
- Hewage, S.A.; Batagoda, J.H.; Meegoda, J.N. In situ remediation of sediments contaminated with organic pollutants using ultrasound and ozone nanobubbles. Environ. Eng. Sci. 2020, 37, 521. [Google Scholar]
- Takahashi, M.; Ishikawa, H.; Asano, T.; Horibe, H. Effect of Microbubbles on Ozonized Water for Photoresist Removal. J. Phys. Chem. C 2012, 116, 12578. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Fan, R. Selective flotation separation of molybdenite from chalcopyrite by ozone nanobubbles preconditioning. Sep. Purif. Technol. 2025, 359, 130507. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smooth, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350. [Google Scholar] [CrossRef]
- Peng, Y.; Grano, S. Effect of grinding media on the activation of pyrite flotation. Miner. Eng. 2010, 23, 600. [Google Scholar] [CrossRef]
- Dichmann, T.K.; Finch, J.A. The role of copper ions in sphalerite-pyrite flotation selectivity. Miner. Eng. 2001, 14, 217. [Google Scholar] [CrossRef]
- Khoso, S.A.; Hu, Y.; Tian, M.; Gao, Z.; Sun, W. Evaluation of green synthetic depressants for sulfide flotation: Synthesis, characterization and floatation performance to pyrite and chalcopyrite. Sep. Purif. Technol. 2021, 259, 118138. [Google Scholar] [CrossRef]
- Wei, M.; Lv, J.; Kong, L.; Tong, X. Differential depression and mechanism of copper ion-activated sphalerite with wheat starch and rice starch as flotation depressants. Adv. Powder Technol. 2024, 35, 104446. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Wu, X.; Wang, Z.; Wei, Z. Pyrite activation in seawater flotation by copper and lead ions: XPS and in-situ electrochemical investigation. Appl. Surf. Sci. 2025, 680, 161363. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Muir, I.J. X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air. Geochim. Cosmochim. 1994, 58, 4667. [Google Scholar] [CrossRef]
- Konno, H.; Nagayama, M. X-ray photoelectron spectra of hexavalent iron. J. Electron Spectrosc. Relat. Phenom. 1980, 18, 341. [Google Scholar] [CrossRef]
- Cai, Y.; Pan, Y.; Xue, J.; Sun, Q.; Su, G.; Li, X. Comparative XPS study between experimentally and naturally weathered pyrites. Appl. Surf. Sci. 2009, 255, 8750. [Google Scholar] [CrossRef]
- Buckley, A.N.; Goh, S.W.; Lamb, R.N.; Woods, R. Interaction of thiol collectors with pre-oxidised sulfide minerals. Int. J. Miner. Process. 2003, 72, 163. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Bancroft, G.M.; Pratt, A.R.; Scaini, M.J. Sulfur and iron surface states on fractured pyrite surfaces. Am. Mineral. 1998, 83, 1067. [Google Scholar] [CrossRef]
- Harmer, S.L.; Mierczynska-Vasilev, A.; Beattie, D.A.; Shapter, J.G. The effect of bulk iron concentration and heterogeneities on the copper activation of sphalerite. Miner. Eng. 2008, 21, 1005. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Muir, I.J. Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air. Mineral. Petrol. 1998, 62, 123. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887. [Google Scholar] [CrossRef]
- Moreira, G.F.; Peçanha, E.R.; Monte, M.B.M.; Filho, L.S.L.; Stavale, F. XPS study on the mechanism of starch-hematite surface chemical complexation. Miner. Eng. 2017, 110, 96. [Google Scholar] [CrossRef]
- Mu, Y.; Peng, Y.; Lauten, R.A. The depression of copper-activated pyrite in flotation by biopolymers with different compositions. Miner. Eng. 2016, 96–97, 113. [Google Scholar] [CrossRef]
- Chandra, A.P.; Puskar, L.; Simpson, D.J.; Gerson, A.R. Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation. Int. J. Miner. Process. 2012, 114, 16–26. [Google Scholar] [CrossRef]
- Qiu, T.; Ding, K.; Yan, H.; Yang, L.; Wu, H.; Zhao, G.; Qiu, X. Electrochemistry and DFT study of galvanic interaction on the surface of monoclinic pyrrhotite (0 0 1) and galena (1 0 0). Int. J. Min. Sci. Technol. 2024, 34, 1151. [Google Scholar] [CrossRef]
- Peng, W.; Liu, S.; Cao, Y.; Wang, W.; Lv, S.; Huang, Y. A novel approach for selective flotation separation of chalcopyrite and molybdenite—Electrocatalytic oxidation pretreatment and its mechanism. Appl. Surf. Sci. 2022, 597, 153753. [Google Scholar] [CrossRef]
- Lee, R.L.J.; Peng, Y. Assessing the depression of high-concentration pyrite in copper flotation by high pH. Miner. Eng. 2024, 209, 108651. [Google Scholar]
Elements (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|
Cu | Fe | S | Mg | Al | Si | Ca | P | |
Chalcopyrite | 31.829 | 30.367 | 34.481 | - | 0.025 | 0.368 | 0.088 | 0.021 |
Pyrite | - | 45.343 | 48.920 | 0.033 | 0.120 | 0.375 | 0.235 | 0.022 |
Pyrrhotite | 0.124 | 52.019 | 34.115 | 0.726 | 0.189 | 1.465 | 1.010 | 0.019 |
Mineral | Magnetite | Pyrite | Chalcopyrite | Pyrrhotite | Muscovite |
---|---|---|---|---|---|
Content (%) | 25 | 6 | 4 | 2 | 3 |
Mineral | Chlorite | Calcite | Tremolite | Diopside | Other |
Content (%) | 6 | 24 | 10 | 8 | 12 |
Mineral | Test Condition | Copper Oxidation Species Extracted by EDTA (mg/g of Solids) |
---|---|---|
Pyrrhotite | Cu2+ | 0.052 |
Cu2+ + ONOS | 0.061 | |
Pyrite | Cu2+ | 0.119 |
Cu2+ + ONOS | 0.170 |
Depressant | Product | Yield (%) | Cu Grade (%) | S Grade (%) | Cu Recovery (%) | S Recovery (%) |
---|---|---|---|---|---|---|
Lime | Copper concentrate | 22.86 | 19.33 | 39.43 | 87.61 | 20.30 |
Sulfur concentrate | 77.14 | 0.81 | 45.89 | 12.39 | 79.70 | |
Feed | 100.00 | 5.04 | 44.41 | 100.00 | 100.00 | |
ONOS | Copper concentrate | 21.97 | 20.66 | 38.59 | 90.37 | 19.06 |
Sulfur concentrate | 78.03 | 0.62 | 46.13 | 9.63 | 80.94 | |
Feed | 100.00 | 5.02 | 44.47 | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, G.; Huang, C.; Li, Y.; Zhang, M. Selective Flotation Separation of Chalcopyrite from Copper-Activated Pyrite and Pyrrhotite Using Oxidized Starch as Depressant. Minerals 2025, 15, 133. https://doi.org/10.3390/min15020133
Bai G, Huang C, Li Y, Zhang M. Selective Flotation Separation of Chalcopyrite from Copper-Activated Pyrite and Pyrrhotite Using Oxidized Starch as Depressant. Minerals. 2025; 15(2):133. https://doi.org/10.3390/min15020133
Chicago/Turabian StyleBai, Guangxing, Chunyuan Huang, Yonghao Li, and Ming Zhang. 2025. "Selective Flotation Separation of Chalcopyrite from Copper-Activated Pyrite and Pyrrhotite Using Oxidized Starch as Depressant" Minerals 15, no. 2: 133. https://doi.org/10.3390/min15020133
APA StyleBai, G., Huang, C., Li, Y., & Zhang, M. (2025). Selective Flotation Separation of Chalcopyrite from Copper-Activated Pyrite and Pyrrhotite Using Oxidized Starch as Depressant. Minerals, 15(2), 133. https://doi.org/10.3390/min15020133