Bioavailable and Bioaccessible Fractions of Potentially Toxic Elements in Copper Mining Wastes in the Southeastern Amazon
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site and Sampling
2.2. Quantification of Total PTE Contents
2.3. Assessment of Contamination Levels
2.4. Chemical Fractionation and Bioaccessibility of PTEs
2.5. Risk Assessment
3. Results and Discussion
3.1. Contamination Assessment
3.2. Chemical Fractionation
3.3. Oral Bioaccessibility
3.4. Environmental Risk Assessment
3.5. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahoo, P.K.; Dall’Agnol, R.; Salomão, G.N.; da Silva Ferreira Junior, J.; da Silva, M.S.; Martins, G.C.; e Souza Filho, P.W.M.; Powell, M.A.; Maurity, C.W.; Angelica, R.S.; et al. Source and Background Threshold Values of Potentially Toxic Elements in Soils by Multivariate Statistics and GIS-Based Mapping: A High Density Sampling Survey in the Parauapebas Basin, Brazilian Amazon. Environ. Geochem. Health 2020, 42, 255–282. [Google Scholar] [CrossRef] [PubMed]
- Souza-Filho, P.W.M.; de Souza, E.B.; Silva Júnior, R.O.; Nascimento, W.R.; Versiani de Mendonça, B.R.; Guimarães, J.T.F.; Dall’Agnol, R.; Siqueira, J.O. Four Decades of Land-Cover, Land-Use and Hydroclimatology Changes in the Itacaiúnas River Watershed, Southeastern Amazon. J. Environ. Manag. 2016, 167, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Araújo, S.N.; Ramos, S.J.; Martins, G.C.; Teixeira, R.A.; Souza, E.S.; Sahoo, P.K.; Fernandes, A.R.; Gastauer, M.; Caldeira, C.F.; Souza-Filho, P.W.M.; et al. Copper Mining in the Eastern Amazon: An Environmental Perspective on Potentially Toxic Elements. Environ. Geochem. Health 2021, 44, 1767–1781. [Google Scholar] [CrossRef] [PubMed]
- de Lima, M.W.; Pereira, W.V.d.S.; de Souza, E.S.; Teixeira, R.A.; Palheta, D.d.C.; Faial, K.d.C.F.; Costa, H.F.; Fernandes, A.R. Bioaccumulation and Human Health Risks of Potentially Toxic Elements in Fish Species from the Southeastern Carajás Mineral Province, Brazil. Environ. Res. 2022, 204, 112024. [Google Scholar] [CrossRef] [PubMed]
- Pereira, W.V.d.S.; Teixeira, R.A.; de Souza, E.S.; de Moraes, A.L.F.; Campos, W.E.O.; do Amarante, C.B.; Martins, G.C.; Fernandes, A.R. Chemical Fractionation and Bioaccessibility of Potentially Toxic Elements in Area of Artisanal Gold Mining in the Amazon. J. Environ. Manag. 2020, 267, 110644. [Google Scholar] [CrossRef] [PubMed]
- Covre, W.P.; Ramos, S.J.; Pereira, W.V.d.S.; de Souza, E.S.; Martins, G.C.; Teixeira, O.M.M.; do Amarante, C.B.; Dias, Y.N.; Fernandes, A.R. Impact of Copper Mining Wastes in the Amazon: Properties and Risks to Environment and Human Health. J. Hazard. Mater. 2022, 421, 126688. [Google Scholar] [CrossRef] [PubMed]
- Chileshe, M.N.; Syampungani, S.; Festin, E.S.; Tigabu, M.; Daneshvar, A.; Odén, P.C. Physico-Chemical Characteristics and Heavy Metal Concentrations of Copper Mine Wastes in Zambia: Implications for Pollution Risk and Restoration. J. For. Res. 2020, 31, 1283–1293. [Google Scholar] [CrossRef]
- Darko, G.; Boakye, K.O.; Nkansah, M.A.; Gyamfi, O.; Ansah, E.; Yevugah, L.L.; Acheampong, A.; Dodd, M. Human Health Risk and Bioaccessibility of Toxic Metals in Topsoils from Gbani Mining Community in Ghana. J. Health Pollut. 2019, 9, 190602. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.A.; Pereira, W.V.d.S.; de Souza, E.S.; Ramos, S.J.; Dias, Y.N.; de Lima, M.W.; de Souza Neto, H.F.; de Oliveira, E.S.; Fernandes, A.R. Artisanal Gold Mining in the Eastern Amazon: Environmental and Human Health Risks of Mercury from Different Mining Methods. Chemosphere 2021, 284, 131220. [Google Scholar] [CrossRef]
- Birch, G. A review and critical assessment of sedimentary metal indices used in determining the magnitude of anthropogenic change in coastal environments. Sci. Total Environ. 2022, 854, 158129. [Google Scholar] [CrossRef] [PubMed]
- Ahirvar, B.P.; Das, P.; Srivastava, V.; Kumar, M. Perspectives of heavy metal pollution indices for soil, sediment, and water pollution evaluation: An insight. Total Environ. Res. Themes 2023, 6, 100039. [Google Scholar] [CrossRef]
- Pereira, W.V.d.S.; Ramos, S.J.; Melo, L.C.A.; Braz, A.M.d.S.; Dias, Y.N.; de Almeida, G.V.; Fernandes, A.R. Levels and environmental risks of rare earth elements in a gold mining area in the Amazon. Environ. Res. 2022, 211, 113090. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Banerjee, S.; Prajapati, J.; Mandal, J.; Mukherjee, A.; Bhattacharyya, P. Pollution and Health Risk Assessment of Mine Tailings Contaminated Soils in India from Toxic Elements with Statistical Approaches. Chemosphere 2023, 324, 138267. [Google Scholar] [CrossRef]
- Xu, P.; Gao, L.; Zhao, Q. Distribution Characteristics, Sources and Risk Assessment of Heavy Metal(Oid)s in Road Dust from a Typical Lead–Zinc Mining Area in South China. Environ. Geochem. Health 2025, 47, 9. [Google Scholar] [CrossRef] [PubMed]
- Khanam, R.; Kumar, A.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Bhaduri, D.; Kumar, U.; Mohanty, S.; Panneerselvam, P.; et al. Metal(Loid)s (As, Hg, Se, Pb and Cd) in Paddy Soil: Bioavailability and Potential Risk to Human Health. Sci. Total Environ. 2020, 699, 134330. [Google Scholar] [CrossRef]
- Rehman, M.U.; Khan, R.; Khan, A.; Qamar, W.; Arafah, A.; Ahmad, A.; Ahmad, A.; Akhter, R.; Rinklebe, J.; Ahmad, P. Fate of Arsenic in Living Systems: Implications for Sustainable and Safe Food Chains. J. Hazard. Mater. 2021, 417, 126050. [Google Scholar] [CrossRef] [PubMed]
- Khelifi, F.; Melki, A.; Hamed, Y.; Adamo, P.; Caporale, A.G. Environmental and Human Health Risk Assessment of Potentially Toxic Elements in Soil, Sediments, and Ore-Processing Wastes from a Mining Area of Southwestern Tunisia. Environ. Geochem. Health 2020, 42, 4125–4139. [Google Scholar] [CrossRef]
- Lu, H.; Li, K.; Nkoh, J.N.; He, X.; Xu, R.; Qian, W.; Shi, R.; Hong, Z. Effects of PH Variations Caused by Redox Reactions and PH Buffering Capacity on Cd(II) Speciation in Paddy Soils during Submerging/Draining Alternation. Ecotoxicol. Environ. Saf. 2022, 234, 113409. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tu, C.; Li, Y.; Yang, S.; Liu, Y.; Zhu, X.; Si, S.; Luo, R.; Pan, X.; Luo, Y. MGDA-Assisted Plant Washing Agent for Improving the Removal of Cd and Cu from Farmland Soils. Environ. Pollut. 2024, 361, 124809. [Google Scholar] [CrossRef]
- Goyal, I.; Agarwal, M.; Bamola, S.; Goswami, G.; Lakhani, A. The Role of Chemical Fractionation in Risk Assessment of Toxic Metals: A Review. Environ. Monit. Assess. 2023, 195, 1098. [Google Scholar] [CrossRef]
- Modabberi, S.; Tashakor, M.; Rajabian, N.; Khorasanipour, M.; Esmaeilzadeh, E.; Ambrosino, M.; Cicchella, D. Characterization and Chemical Fractionation of Potentially Toxic Elements in Soils of a Pre-Mining Mineralized Area; an Evaluation of Mobility and Environmental Risk. Environ. Geochem. Health 2023, 45, 4795–4815. [Google Scholar] [CrossRef]
- Cocerva, T.; Robb, M.; Wong, A.; Doherty, R.; Newell, J.; Ofterdinger, U.; Carey, M.; Cave, M.; Cox, S.F. Using Oral Bioaccessibility Measurements to Refine Risk Assessment of Potentially Toxic Elements in Topsoils across an Urban Area. Ecotoxicol. Environ. Saf. 2024, 276, 116293. [Google Scholar] [CrossRef] [PubMed]
- Khelifi, F.; Caporale, A.G.; Hamed, Y.; Adamo, P. Bioaccessibility of Potentially Toxic Metals in Soil, Sediments and Tailings from a North Africa Phosphate-Mining Area: Insight into Human Health Risk Assessment. J. Environ. Manag. 2021, 279, 111634. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Wang, Y.; Li, Y.; Li, H.; Xu, J.; Liu, X. Novel Insights into Probabilistic Health Risk and Source Apportionment Based on Bioaccessible Potentially Toxic Elements around an Abandoned E-Waste Dismantling Site. Sci. Total Environ. 2022, 838, 156372. [Google Scholar] [CrossRef]
- Ning, Z.; Liu, E.; Yao, D.; Xiao, T.; Ma, L.; Liu, Y.; Li, H.; Liu, C. Contamination, Oral Bioaccessibility and Human Health Risk Assessment of Thallium and Other Metal(Loid)s in Farmland Soils around a Historic Tl Hg Mining Area. Sci. Total Environ. 2021, 758, 143577. [Google Scholar] [CrossRef] [PubMed]
- Billmann, M.; Hulot, C.; Pauget, B.; Badreddine, R.; Papin, A.; Pelfrêne, A. Oral Bioaccessibility of PTEs in Soils: A Review of Data, Influencing Factors and Application in Human Health Risk Assessment. Sci. Total Environ. 2023, 896, 165263. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.W.; Hamid, S.S.; de Souza, E.S.; Teixeira, R.A.; da Conceição Palheta, D.; do Carmo Freitas Faial, K.; Fernandes, A.R. Geochemical Background Concentrations of Potentially Toxic Elements in Soils of the Carajás Mineral Province, Southeast of the Amazonian Craton. Environ. Monit. Assess. 2020, 192, 649. [Google Scholar] [CrossRef] [PubMed]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Feio, G.R.L.; Dall’Agnol, R.; Dantas, E.L.; Macambira, M.J.B.; Santos, J.O.S.; Althoff, F.J.; Soares, J.E.B. Archean Granitoid Magmatism in the Canaã Dos Carajás Area: Implications for Crustal Evolution of the Carajás Province, Amazonian Craton, Brazil. Precambrian Res. 2013, 227, 157–185. [Google Scholar] [CrossRef]
- Moreto, C.P.N.; Monteiro, L.V.S.; Xavier, R.P.; Creaser, R.A.; DuFrane, S.A.; Melo, G.H.C.; Delinardo da Silva, M.A.; Tassinari, C.C.G.; Sato, K. Timing of Multiple Hydrothermal Events in the Iron Oxide–Copper–Gold Deposits of the Southern Copper Belt, Carajás Province, Brazil. Miner. Depos. 2015, 50, 517–546. [Google Scholar] [CrossRef]
- Feio, G.R.L.; Dall’Agnol, R. Geochemistry and Petrogenesis of the Mesoarchean Granites from the Canaã Dos Carajás Area, Carajás Province, Brazil: Implications for the Origin of Archean Granites. Lithos 2012, 154, 33–52. [Google Scholar] [CrossRef]
- USEPA. Microwave Assisted Acid Digestion of Sediments Sludge, Soils, and Oils; United States Environmental Protection Agency: Washington, DC, USA, 2007; EPA SW 846 3051a. [Google Scholar]
- Müller, G. Index of Geoaccumulation in Sediments of the Rhine River. Geol. J. 1969, 2, 108–118. [Google Scholar]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, C.J.; Tatiana Garrido, R.; Cristian Quilodrán, R.; Matías Segovia, C.; José Parada, A. Evaluation of the Bioaccessible Gastric and Intestinal Fractions of Heavy Metals in Contaminated Soils by Means of a Simple Bioaccessibility Extraction Test. Chemosphere 2017, 176, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Luo, X.S.; Ding, J.; Xu, B.; Wang, Y.J.; Li, H.B.; Yu, S. Incorporating Bioaccessibility into Human Health Risk Assessments of Heavy Metals in Urban Park Soils. Sci. Total Environ. 2012, 424, 88–96. [Google Scholar] [CrossRef]
- Pecina, V.; Brtnický, M.; Baltazár, T.; Juřička, D.; Kynický, J.; Vašinová Galiová, M. Human Health and Ecological Risk Assessment of Trace Elements in Urban Soils of 101 Cities in China: A Meta-Analysis. Chemosphere 2021, 267, 129215. [Google Scholar] [CrossRef] [PubMed]
- Battsengel, E.; Murayama, T.; Fukushi, K.; Nishikizawa, S.; Chonokhuu, S.; Ochir, A.; Tsetsgee, S.; Davaasuren, D. Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia. Int. J. Environ. Res. Public Health 2020, 17, 4668. [Google Scholar] [CrossRef]
- Gulan, L.; Stajic, J.M.; Zeremski, T.; Durlević, U.; Valjarević, A. Radionuclides and Metals in the Parks of the City of Belgrade, Serbia: Spatial Distribution and Health Risk Assessment. Forests 2022, 13, 1648. [Google Scholar] [CrossRef]
- Heidari, M.; Darijani, T.; Alipour, V. Heavy Metal Pollution of Road Dust in a City and Its Highly Polluted Suburb; Quantitative Source Apportionment and Source-Specific Ecological and Health Risk Assessment. Chemosphere 2021, 273, 129656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, Z.; Peng, M.; Cheng, X. Contamination Levels and the Ecological and Human Health Risks of Potentially Toxic Elements (PTEs) in Soil of Baoshan Area, Southwest China. Appl. Sci. 2022, 12, 1693. [Google Scholar] [CrossRef]
- Yap, C.K.; Chew, W.; Al-Mutairi, K.A.; Nulit, R.; Ibrahim, M.H.; Wong, K.W.; Bakhtiari, A.R.; Sharifinia, M.; Ismail, M.S.; Leong, W.J.; et al. Assessments of the Ecological and Health Risks of Potentially Toxic Metals in the Topsoils of Different Land Uses: A Case Study in Peninsular Malaysia. Biology 2021, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Gui, H.; Yang, Q.; Lu, X.; Wang, H.; Gu, Q.; Martín, J.D. Spatial Distribution, Contamination Characteristics and Ecological-Health Risk Assessment of Toxic Heavy Metals in Soils near a Smelting Area. Environ. Res. 2023, 222, 115328. [Google Scholar] [CrossRef] [PubMed]
- González-Valoys, A.C.; Esbrí, J.M.; Campos, J.A.; Arrocha, J.; García-Noguero, E.M.; Monteza-Destro, T.; Martínez, E.; Jiménez-Ballesta, R.; Gutiérrez, E.; Vargas-Lombardo, M.; et al. Ecological and Health Risk Assessments of an Abandoned Gold Mine (Remance, Panama): Complex Scenarios Need a Combination of Indices. Int. J. Environ. Res. Public Health 2021, 18, 9369. [Google Scholar] [CrossRef] [PubMed]
- Rehman, I.; Ishaq, M.; Ali, L.; Khan, S.; Ahmad, I.; Din, I.U.; Ullah, H. Enrichment, Spatial Distribution of Potential Ecological and Human Health Risk Assessment via Toxic Metals in Soil and Surface Water Ingestion in the Vicinity of Sewakht Mines, District Chitral, Northern Pakistan. Ecotoxicol. Environ. Saf. 2018, 154, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, H.; Liu, W.; Qin, P.; Yu, J.; Zhou, B.; Zhang, F.; Chen, Z.; Zhao, Y.; Shi, Z. Spatial Distribution, Pollution Characteristics, and Health Risk Assessment of Heavy Metals in Soils from a Typical Agricultural County, East China. Agriculture 2022, 12, 1565. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, J.; Chen, Y.; Ma, Q.; Peng, J.; Rong, G.; Tong, Z.; Liu, X. Pollution, Sources and Human Health Risk Assessment of Potentially Toxic Elements in Different Land Use Types under the Background of Industrial Cities. Sustainability 2020, 12, 2121. [Google Scholar] [CrossRef]
- Sarim, M.; Jan, T.; Khattak, S.A.; Mihoub, A.; Jamal, A.; Saeed, M.F.; Soltani-Gerdefaramarzi, S.; Tariq, S.R.; Fernández, M.P.; Mancinelli, R.; et al. Assessment of the Ecological and Health Risks of Potentially Toxic Metals in Agricultural Soils from the Drosh-Shishi Valley, Pakistan. Land 2022, 11, 1663. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gasiorek, M.; Zaleski, T. Pollution Indices as Useful Tools for the Comprehensive Evaluation of the Degree of Soil Contamination - A Review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Salomão, G.N.; Dall’Agnol, R.; Angélica, R.S.; Figueiredo, M.A.; Sahoo, P.K.; de Medeiros Filho, C.A.; da Costa, M.F. Geochemical Mapping and Estimation of Background Concentrations in Soils of Carajás Mineral Province, Eastern Amazonian Craton, Brazil. Geochem. Explor. Environ. Anal. 2019, 19, 431–447. [Google Scholar] [CrossRef]
- Hunger, R.B.; Xavier, R.P.; Moreto, C.P.N.; Gao, J.-F. Hydrothermal Alteration, Fluid Evolution, and Re-Os Geochronology of the Grota Funda Iron Oxide Copper-Gold Deposit, Carajás Province (Pará State), Brazil. Econ. Geol. 2018, 113, 1769–1794. [Google Scholar] [CrossRef]
- Said, I.; Salman, S.A.E.-R.; Samy, Y.; Awad, S.A.; Melegy, A.; Hursthouse, A.S. Environmental factors controlling potentially toxic element behaviour in urban soils, El Tebbin, Egypt. Environ. Monit. Assess. 2019, 191, 267. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Gao, Y.; Yang, Y. Leaching of Heavy Metals from Lead-Zinc Mine Tailings and the Subsequent Migration and Transformation Characteristics in Paddy Soil. Chemosphere 2022, 291, 132792. [Google Scholar] [CrossRef]
- He, B.; Wang, W.; Geng, R.; Ding, Z.; Luo, D.; Qiu, J.; Zheng, G.; Fan, Q. Exploring the Fate of Heavy Metals from Mining and Smelting Activities in Soil-Crop System in Baiyin, NW China. Ecotoxicol. Environ. Saf. 2021, 207, 111234. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, S.; Guan, D.-X.; Song, X.; Li, Y.; Zhou, S.; Wang, B.; Gao, B. Geochemical Fractionation, Bioaccessibility and Ecological Risk of Metallic Elements in the Weathering Profiles of Typical Skarn-Type Copper Tailings from Tongling, China. Sci. Total Environ. 2023, 894, 164859. [Google Scholar] [CrossRef]
- Fagnano, M.; Agrelli, D.; Pascale, A.; Adamo, P.; Fiorentino, N.; Rocco, C.; Pepe, O.; Ventorino, V. Copper Accumulation in Agricultural Soils: Risks for the Food Chain and Soil Microbial Populations. Sci. Total Environ. 2020, 734, 139434. [Google Scholar] [CrossRef]
- Martins, G.C.; da Silva Junior, E.C.; Ramos, S.J.; Maurity, C.W.; Sahoo, P.K.; Dall’Agnol, R.; Guilherme, L.R.G. Bioavailability of Copper and Nickel in Naturally Metal-Enriched Soils of Carajás Mining Province, Eastern Amazon, Brazil. Environ. Monit. Assess. 2021, 193, 256. [Google Scholar] [CrossRef] [PubMed]
- Peana, M.; Medici, S.; Dadar, M.; Zoroddu, M.A.; Pelucelli, A.; Chasapis, C.T.; Bjørklund, G. Environmental Barium: Potential Exposure and Health-Hazards. Arch. Toxicol. 2021, 95, 2605–2612. [Google Scholar] [CrossRef]
- Sleimi, N.; Kouki, R.; Hadj Ammar, M.; Ferreira, R.; Pérez-Clemente, R. Barium Effect on Germination, Plant Growth, and Antioxidant Enzymes in Cucumis Sativus L. Plants. Food Sci. Nutr. 2021, 9, 2086–2094. [Google Scholar] [CrossRef]
- Emurotu, J.E.; Azike, E.C.; Emurotu, O.M.; Umar, Y.A. Chemical Fractionation and Mobility of Cd, Mn, Ni, and Pb in Farmland Soils near a Ceramics Company. Environ. Geochem. Health 2024, 46, 241. [Google Scholar] [CrossRef]
- Ribeiro, P.G.; Martins, G.C.; Pereira, W.V.d.S.; Gastauer, M.; de Medeiros-Sarmento, P.S.; Caldeira, C.F.; Guilherme, L.R.G.; Ramos, S.J. Environmental and human health risk assessment of potentially toxic elements in rehabilitating iron mine lands in the Brazilian Amazon. J. Environ. Manag. 2025, 374, 124059. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Gu, C.; Ying, H.; Feng, X.; Zhu, M.; Wang, M.; Tan, W.; Wang, X. Fraction distribution of heavy metals and its relationship with iron in polluted farmland soils around distinct mining areas. Appl. Geochem. 2021, 130, 104969. [Google Scholar] [CrossRef]
- Pavlović, D.; Pavlović, M.; Perović, V.; Mataruga, Z.; Čakmak, D.; Mitrović, M.; Pavlović, P. Chemical Fractionation, Environmental, and Human Health Risk Assessment of Potentially Toxic Elements in Soil of Industrialised Urban Areas in Serbia. Int. J. Environ. Res. Public Heal. 2021, 18, 9412. [Google Scholar] [CrossRef] [PubMed]
- Shentu, J.; Fang, Y.; Wang, Y.; Cui, Y.; Zhu, M. Bioaccessibility and Reliable Human Health Risk Assessment of Heavy Metals in Typical Abandoned Industrial Sites of Southeastern China. Ecotoxicol. Environ. Saf. 2023, 256, 114870. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Bhattacharya, T. A Review on Bioaccessibility and the Associated Health Risks Due to Heavy Metal Pollution in Coal Mines: Content and Trend Analysis. Environ. Dev. 2023, 46, 100859. [Google Scholar] [CrossRef]
- Manne, R.; Kumaradoss, M.M.R.M.; Iska, R.S.R.; Devarajan, A.; Mekala, N. Water Quality and Risk Assessment of Copper Content in Drinking Water Stored in Copper Container. Appl. Water Sci. 2022, 12, 27. [Google Scholar] [CrossRef]
- Cappuyns, V. Monitoring of Total and Extractable Barium Concentrations in Floodplain Soils. J. Soils Sediments 2022, 22, 2948–2957. [Google Scholar] [CrossRef]
- Abbasi, S.; Lamb, D.T.; Palanisami, T.; Kader, M.; Matanitobua, V.; Megharaj, M.; Naidu, R. Bioaccessibility of Barium from Barite Contaminated Soils Based on Gastric Phase in Vitro Data and Plant Uptake. Chemosphere 2016, 144, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Omeka, M.E.; Igwe, O.; Unigwe, C.O. An Integrated Approach to the Bioavailability, Ecological, and Health Risk Assessment of Potentially Toxic Elements in Soils within a Barite Mining Area, SE Nigeria. Environ. Monit. Assess. 2022, 194, 212. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Chen, Z.; Li, Y.; Ding, K.; Liu, W.; Liu, Y.; Yuan, Y.; Zhang, M.; Baker, A.J.M.; Yang, W.; et al. Factors Influencing Heavy Metal Availability and Risk Assessment of Soils at Typical Metal Mines in Eastern China. J. Hazard. Mater. 2020, 400, 123289. [Google Scholar] [CrossRef]
- Gavrilescu, M. Enhancing Phytoremediation of Soils Polluted with Heavy Metals. Curr. Opin. Biotechnol. 2022, 74, 21–31. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation Technology and Food Security Impacts of Heavy Metal Contaminated Soils: A Review of Literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef] [PubMed]
- Awa, S.H.; Hadibarata, T. Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water, Air, Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Hu, X. Removal of Heavy Metals from Soil with Biochar Composite: A Critical Review of the Mechanism. J. Environ. Chem. Eng. 2021, 9, 105830. [Google Scholar] [CrossRef]
- Yuan, C.; Gao, B.; Peng, Y.; Gao, X.; Fan, B.; Chen, Q. A Meta-Analysis of Heavy Metal Bioavailability Response to Biochar Aging: Importance of Soil and Biochar Properties. Sci. Total Environ. 2021, 756, 144058. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhang, S.; Han, Y.; Bate, B.; Ke, H.; Chen, Y. Soil Heavy Metal Pollution of Industrial Legacies in China and Health Risk Assessment. Sci. Total Environ. 2022, 816, 151632. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Pandita, S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. A Review of Ecological Risk Assessment and Associated Health Risks with Heavy Metals in Sediment from India. Int. J. Sediment Res. 2020, 35, 516–526. [Google Scholar] [CrossRef]
- USEPA Concepts. Methods and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document; United States Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- Hembrom, S.; Singh, B.; Gupta, S.K.; Nema, A.K. A Comprehensive Evaluation of Heavy Metal Contamination in Foodstuff and Associated Human Health Risk: A Global Perspective. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Springer: Singapore, 2020; pp. 33–63. [Google Scholar]
- Cortinhas Ferreira Neto, L.; Diniz, C.G.; Maretto, R.V.; Persello, C.; Silva Pinheiro, M.L.; Castro, M.C.; Sadeck, L.W.R.; Filho, A.F.; Cansado, J.; Souza, A.A.d.A.; et al. Uncontrolled Illegal Mining and Garimpo in the Brazilian Amazon. Nat. Commun. 2024, 15, 9847. [Google Scholar] [CrossRef] [PubMed]
Element | Index | Areas | ||
---|---|---|---|---|
AO (n = 5) | AR (n = 5) | IT (n = 5) | ||
Ba | RAC (%) | 7.0 | 2.8 | NC |
ICF | 1.1 | 0.2 | NC | |
MF (%) | 48.7 | 14.2 | 0.7 | |
Co | RAC (%) | 0.4 | NC | NC |
ICF | 0.1 | NC | NC | |
MF (%) | 7.9 | 3.8 | NC | |
Cr | RAC (%) | NC | NC | NC |
ICF | NC | NC | 0.1 | |
MF (%) | NC | 0.8 | 7.3 | |
Cu | RAC (%) | 10.5 | 9.0 | 4.9 |
ICF | 0.5 | 1.1 | 0.1 | |
MF (%) | 29.0 | 48.3 | 8.2 | |
Mo | RAC (%) | NC | NC | 34.6 |
ICF | NC | NC | 0.5 | |
MF (%) | NC | NC | 34.6 | |
Ni | RAC (%) | NC | 0.1 | 1.8 |
ICF | NC | NC | 0.1 | |
MF (%) | 3.6 | 3.5 | 4.7 | |
Pb | RAC (%) | NC | NC | NC |
ICF | 0.1 | NC | 0.1 | |
MF (%) | 7.1 | NC | 6.9 | |
Zn | RAC (%) | 4.1 | 9.2 | 6.0 |
ICF | 0.2 | 1.0 | 0.4 | |
MF (%) | 16.4 | 25.8 | 11.1 | |
All | GCF | 1.9 | 2.3 | 1.2 |
Element (mg kg−1) | AO (n = 5) | AR (n = 5) | IT (n = 5) |
---|---|---|---|
Ba | 114 ± 0.8 | 31.5 ± 1.8 | 15.1 ± 0.4 |
Co | <DL | <DL | <DL |
Cr | 3.9 ± 0.3 | 27.9 ± 5.9 | 4.5 ± 0.3 |
Cu | 860 ± 15.9 | 15,000 ± 1957.6 | 230 ± 9.8 |
Mo | <DL | <DL | <DL |
Ni | <DL | 14.1 ± 0.8 | 7.2 ± 1.0 |
Pb | <DL | <DL | <DL |
Zn | 12.5 ± 2.2 | 3.4 ± 0.8 | 3.6 ± 0.1 |
Element | AO (n = 5) | AR (n = 5) | IT (n = 5) | |||
---|---|---|---|---|---|---|
RF | Degree | RF | Degree | RF | Degree | |
Ba | 0.8 ± 0.0 | Low | 0.3 ± 0.0 | Low | NC | Low |
Co | 0.2 ± 0.0 | Low | 0.3 ± 0.3 | Low | NC | Low |
Cr | NC | Low | 0.2 ± 0.0 | Low | 0.1 ± 0.0 | Low |
Cu | 7.0 ± 0.1 | Low | 104.9 ± 0.9 | Considerable | 1.4 ± 0.1 | Low |
Mo | NC | Low | NC | Low | 9.5 ± 1.8 | Low |
Ni | 0.2 ± 0.0 | Low | 2.7 ± 0.0 | Low | 1.2 ± 0.0 | Low |
Pb | 0.3 ± 0.0 | Low | NC | Low | 0.3 ± 0.0 | Low |
Zn | 0.1 ± 0.0 | Low | NC | Low | 0.1 ± 0.0 | Low |
RI | 8.6 | Low | 108.4 | Low | 11.1 | Low |
Element | Value | Adults | Children | ||||
---|---|---|---|---|---|---|---|
AO (n = 5) | AR (n = 5) | IT (n = 5) | AO (n = 5) | AR (n = 5) | IT (n = 5) | ||
Non-carcinogenic risks | |||||||
Cr | Mean | 5.9 × 10−3 | 6.4 × 10−1 | 2.1 × 10−2 | 5.5 × 10−2 | 6.0 | 2.0 × 10−1 |
Standard deviation | 5.6 × 10−4 | 3.0 × 10−2 | 1.5 × 10−3 | 5.2 × 10−3 | 2.8 × 10−1 | 1.4 × 10−2 | |
Ba | Mean | 8.2 × 10−4 | 9.9 × 10−4 | 3.3 × 10−4 | 7.7 × 10−3 | 9.3 × 10−3 | 3.0 × 10−3 |
Standard deviation | 8.4 × 10−5 | 5.9 × 10−5 | 3.0 × 10−5 | 7.8 × 10−4 | 5.5 × 10−4 | 2.8 × 10−4 | |
Co | Mean | 1.7 × 10−3 | 4.3 × 10−3 | 1.8 × 10−3 | 1.6 × 10−2 | 4.0 × 10−2 | 1.7 × 10−2 |
Standard deviation | 1.4 × 10−4 | 8.7 × 10−5 | 4.9 × 10−4 | 1.3 × 10−3 | 8.1 × 10−4 | 4.6 × 10−3 | |
Cu | Mean | 7.2 × 10−2 | 6.5 × 10−1 | 5.1 × 10−2 | 6.8 × 10−1 | 6.1 | 4.8 × 10−1 |
Standard deviation | 2.4 × 10−3 | 1.0 × 10−1 | 4.3 × 10−2 | 2.3 × 10−2 | 9.7 × 10−1 | 4.0 × 10−1 | |
Mo | Mean | 2.2 × 10−4 | 7.9 × 10−4 | 3.9 × 10−3 | 2.0 × 10−3 | 7.3 × 10−3 | 3.7 × 10−2 |
Standard deviation | 2.4 × 10−5 | 6.4 × 10−6 | 7.3 × 10−4 | 2.2 × 10−4 | 6.0 × 10−5 | 6.8 × 10−3 | |
Ni | Mean | 2.0 × 10−3 | 3.4 × 10−2 | 1.1 × 10−2 | 1.9 × 10−2 | 3.1 × 10−1 | 1.0 × 10−1 |
Standard deviation | 7.6 × 10−5 | 1.2 × 10−3 | 4.0 × 10−3 | 7.1 × 10−4 | 1.1 × 10−2 | 3.7 × 10−2 | |
Pb | Mean | 6.6 × 10−3 | 1.7 × 10−3 | 5.6 × 10−3 | 6.1 × 10−2 | 1.6 × 10−2 | 5.2 × 10−2 |
Standard deviation | 6.7 × 10−4 | 4.3 × 10−5 | 2.3 × 10−3 | 6.3 × 10−3 | 4.0 × 10−4 | 2.2 × 10−2 | |
Zn | Mean | 1.1 × 10−4 | 2.5 × 10−5 | 7.4 × 10−5 | 1.1 × 10−3 | 2.3 × 10−4 | 6.9 × 10−4 |
Standard deviation | 1.1 × 10−5 | 5.1 × 10−6 | 5.9 × 10−6 | 1.0 × 10−4 | 4.8 × 10−5 | 5.5 × 10−5 | |
Carcinogenic risks | |||||||
Cr | Mean | 8.9 × 10−6 | 9.6 × 10−4 | 3.2 × 10−5 | 8.3 × 10−5 | 9.0 × 10−3 | 3.0 × 10−4 |
Standard deviation | 8.4 × 10−7 | 4.5 × 10−5 | 2.2 × 10−6 | 7.8 × 10−6 | 4.2 × 10−4 | 2.1 × 10−5 | |
Ni | Mean | 3.6 × 10−5 | 6.1 × 10−4 | 2.0 × 10−4 | 3.4 × 10−4 | 5.7 × 10−3 | 1.8 × 10−3 |
Standard deviation | 1.4 × 10−6 | 2.2 × 10−5 | 7.3 × 10−5 | 1.3 × 10−5 | 2.1 × 10−4 | 6.8 × 10−4 | |
Pb | Mean | 2.0 × 10−7 | 5.0 × 10−8 | 1.7 × 10−7 | 1.8 × 10−6 | 4.6 × 10−7 | 1.5 × 10−6 |
Standard deviation | 2.0 × 10−8 | 1.3 × 10−9 | 7.0 × 10−8 | 1.9 × 10−7 | 1.2 × 10−8 | 6.5 × 10−7 |
Element | Value | Adults | Children | ||||
---|---|---|---|---|---|---|---|
AO (n = 5) | AR (n = 5) | IT (n = 5) | AO (n = 5) | AR (n = 5) | IT (n = 5) | ||
Non-carcinogenic risks | |||||||
Cr | Mean | 1.8 × 10−3 | 1.3 × 10−2 | 2.1 × 10−3 | 1.6 × 10−2 | 1.2 × 10−1 | 1.9 × 10−2 |
Standard deviation | 1.3 × 10−4 | 2.7 × 10−3 | 1.4 × 10−4 | 1.2 × 10−3 | 2.5 × 10−2 | 1.3 × 10−3 | |
Ba | Mean | 7.8 × 10−4 | 2.2 × 10−4 | 1.0 × 10−4 | 7.3 × 10−3 | 2.0 × 10−3 | 9.6 × 10−4 |
Standard deviation | 7.7 × 10−6 | 1.2 × 10−5 | 2.8 × 10−6 | 7.1 × 10−5 | 1.1 × 10−4 | 2.6 × 10−5 | |
Co | Mean | NC | NC | NC | NC | NC | NC |
Standard deviation | NC | NC | NC | NC | NC | NC | |
Cu | Mean | 2.9 × 10−2 | 5.1 × 10−1 | 7.9 × 10−3 | 2.7 × 10−1 | 4.8 | 7.3 × 10−2 |
Standard deviation | 7.7 × 10−4 | 6.7 × 10−2 | 3.4 × 10−4 | 7.2 × 10−3 | 6.3 × 10−1 | 3.1 × 10−3 | |
Mo | Mean | NC | NC | NC | NC | NC | NC |
Standard deviation | NC | NC | NC | NC | NC | NC | |
Ni | Mean | NC | 9.7 × 10−4 | 4.9 × 10−4 | NC | 9.0 × 10−3 | 4.6 × 10−3 |
Standard deviation | NC | 5.3 × 10−5 | 7.2 × 10−5 | NC | 5.0 × 10−4 | 6.7 × 10−4 | |
Pb | Mean | NC | NC | NC | NC | NC | NC |
Standard deviation | NC | NC | NC | NC | NC | NC | |
Zn | Mean | 5.7 × 10−5 | 1.5 × 10−5 | 1.7 × 10−5 | 5.3 × 10−4 | 1.4 × 10−4 | 1.5 × 10−4 |
Standard deviation | 1.4 × 10−5 | 3.7 × 10−6 | 3.2 × 10−7 | 1.3 × 10−4 | 3.5 × 10−5 | 3.0 × 10−6 | |
Carcinogenic risks | |||||||
Cr | Mean | 2.6 × 10−6 | 1.9 × 10−5 | 3.1 × 10−6 | 2.5 × 10−5 | 1.8 × 10−4 | 2.9 × 10−5 |
Standard deviation | 1.9 × 10−7 | 4.0 × 10−6 | 2.0 × 10−7 | 1.8 × 10−6 | 3.8 × 10−5 | 1.9 × 10−6 | |
Ni | Mean | NC | 1.8 × 10−5 | 9.0 × 10−6 | NC | 1.6 × 10−4 | 8.4 × 10−5 |
Standard deviation | NC | 9.7 × 10−7 | 1.3 × 10−6 | NC | 9.0 × 10−6 | 1.2 × 10−5 | |
Pb | Mean | NC | NC | NC | NC | NC | NC |
Standard deviation | NC | NC | NC | NC | NC | NC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, G.V.d.A.; Pereira, W.V.d.S.; Ramos, S.J.; Guimarães, J.T.F.; Covre, W.P.; Dias, Y.N.; Fernandes, A.R. Bioavailable and Bioaccessible Fractions of Potentially Toxic Elements in Copper Mining Wastes in the Southeastern Amazon. Minerals 2025, 15, 140. https://doi.org/10.3390/min15020140
Pereira GVdA, Pereira WVdS, Ramos SJ, Guimarães JTF, Covre WP, Dias YN, Fernandes AR. Bioavailable and Bioaccessible Fractions of Potentially Toxic Elements in Copper Mining Wastes in the Southeastern Amazon. Minerals. 2025; 15(2):140. https://doi.org/10.3390/min15020140
Chicago/Turabian StylePereira, Gabriela Vilhena de Almeida, Wendel Valter da Silveira Pereira, Sílvio Junio Ramos, José Tasso Felix Guimarães, Watilla Pereira Covre, Yan Nunes Dias, and Antonio Rodrigues Fernandes. 2025. "Bioavailable and Bioaccessible Fractions of Potentially Toxic Elements in Copper Mining Wastes in the Southeastern Amazon" Minerals 15, no. 2: 140. https://doi.org/10.3390/min15020140
APA StylePereira, G. V. d. A., Pereira, W. V. d. S., Ramos, S. J., Guimarães, J. T. F., Covre, W. P., Dias, Y. N., & Fernandes, A. R. (2025). Bioavailable and Bioaccessible Fractions of Potentially Toxic Elements in Copper Mining Wastes in the Southeastern Amazon. Minerals, 15(2), 140. https://doi.org/10.3390/min15020140