Trends and Applications of Green Binder Materials for Cemented Paste Backfill Mining in China
Abstract
:1. Introduction
2. Types of Backfill Binder Materials
2.1. Portland Cement
2.2. Metallurgical Slag Binders
2.2.1. Iron and Steel Industry Slag
2.2.2. Nonferrous Metal Metallurgical Slag
2.3. Thermal Slag
2.3.1. Fly Ash
2.3.2. Circulating Fluidized Bed Slag
2.4. Chemical Industry Slag
2.4.1. Phosphogypsum
2.4.2. Red Mud
2.5. Ultra-Fine Tailings
3. Research Development of Backfill Binder Materials
3.1. Research on Slag Activation Methods
3.2. Research on Hydration Mechanism
3.3. Research on Harmful Ion Solidification
3.4. Research on Energy Conservation and Emission Reduction
4. Progress in the Application of New Backfill Binders
4.1. Jiaogu Powder
4.2. Steel Slag Gujie Powder
4.3. Phosphogypsum Backfill
5. Discussion of Trends and Further Work of Backfill Binder Materials
5.1. Modeling and Simulation of Hydration and Hardening
5.2. Material Performance in Extreme Environments
5.3. Technical Standards for Backfill Binder Materials
6. Conclusions
- (1)
- New solid waste-based binders are gradually replacing traditional cement and are being applied to mine backfill through various activation methods. According to the types of solid waste raw materials, backfill binder materials can be divided into cement and blend cement, metallurgical slag, thermal slag, chemical slag, and tailings slag binders. Significant breakthroughs have been made in the research and application of binder materials.
- (2)
- Concerning the research on new backfill binders, a lot of work has been carried out from the aspects of reactivity enhancement, reactivity activation, hydration mechanism, harmful ion solidification, energy savings, and carbon reduction. Generally, slag binders have a better binding effect, especially for ultra-fine tailings. The primary hydration process is the generation of gel-like and ettringite hydration products. Solid waste-based backfill binders often have less harmful ion leaching and advantages in energy savings and carbon emission reduction.
- (3)
- In the industrial application of backfill binders, cement and blend cement are still the main types. However, blast furnace slag powder materials are rapidly becoming popular, exhibiting good performance and cost-effectiveness. Steel slag binders have achieved continuous industrial applications and have more cost advantages. Hemihydrate phosphogypsum backfill technology has achieved large-scale industrial utilization, providing a reference demonstration case for the comprehensive disposal of phosphogypsum.
- (4)
- There are still some urgent problems to be solved in the research and application of backfill binder materials, including hydration modeling and simulation, properties prediction, performance regulation in extreme environments, and specific technical standards, which can build the foundation for promoting green and efficient cemented paste backfill and sustainable development.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, A.; Wang, Y.; Ruan, Z.; Xiao, B.; Wang, J.; Wang, L. Key Theory and Technology of Cemented Paste Backfill for Green Mining of Metal Mines. Green Smart Min. Eng. 2024, 1, 27–39. [Google Scholar] [CrossRef]
- Fang, K.; Zhang, J.; Cui, L.; Haruna, S.; Li, M. Cost Optimization of Cemented Paste Backfill: State-of-the-Art Review and Future Perspectives. Miner. Eng. 2023, 204, 108414. [Google Scholar] [CrossRef]
- Xiao, B.; Wen, Z.; Miao, S.; Gao, Q. Utilization of Steel Slag for Cemented Tailings Backfill: Hydration, Strength, Pore Structure, and Cost Analysis. Case Stud. Constr. Mater. 2021, 15, e00621. [Google Scholar] [CrossRef]
- Qiu, J.; Guo, Z.; Yang, L.; Jiang, H.; Zhao, Y. Effect of Tailings Fineness on Flow, Strength, Ultrasonic and Microstructure Characteristics of Cemented Paste Backfill. Constr. Build. Mater. 2020, 263, 120645. [Google Scholar] [CrossRef]
- Behera, S.K.; Singh, P.; Mishra, D.P.; Mishra, K.; Kumar, A.; Mandal, S.K.; Mishra, A.K. Required Strength Design of Cemented Backfill for Underground Metalliferous Mine. Int. J. Min. Reclam. Environ. 2023, 37, 927–952. [Google Scholar] [CrossRef]
- Naqi, A.; Jang, J.G. Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review. Sustainability 2019, 11, 537. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal Solid Waste Management and Landfilling Technologies: A Review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Gehlot, M.R.; Shrivastava, S. Solid Industrial Waste Generation and Its Valorization in Developing Sustainable Building Materials—A State of the Art Review. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Tran, T.Q.; Kim, Y.; Dang, L.C.; Do, T.M. A State-of-the-Art Review on the Utilization of New Green Binders in the Production of Controlled Low-Strength Materials. Constr. Build. Mater. 2023, 393, 132078. [Google Scholar] [CrossRef]
- Bloss, M.L. Evolution of Cemented Rock Fill at Mount Isa Mines Limited. Miner. Resour. Eng. 1996, 05, 23–42. [Google Scholar] [CrossRef]
- Collins, R.J.; Miller, R.H. Utilization of Mining and Mineral Processing Wastes in the United States. Miner. Environ. 1979, 1, 8–19. [Google Scholar] [CrossRef]
- Yu, T.R.; Counter, D.B. Use of Fly Ash in Backfill at Kidd Creek Mines. In Canadian Mining and Metallurgical Bulletin; Canadian Institute of Mining and Metallurgy location: Montreal, QC, Canada, 1988; Volume 81, p. 909. [Google Scholar]
- Ponomar, V.; Luukkonen, T.; Yliniemi, J. Revisiting Alkali-Activated and Sodium Silicate-Based Materials in the Early Works of Glukhovsky. Constr. Build. Mater. 2023, 398, 132474. [Google Scholar] [CrossRef]
- Zhang, M.; Li, K.; Ni, W.; Zhang, S.; Liu, Z.; Wang, K.; Wei, X.; Yu, Y. Preparation of Mine Backfilling from Steel Slag-Based Non-Clinker Combined with Ultra-Fine Tailing. Constr. Build. Mater. 2022, 320, 126248. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Wang, Q.; Ni, W.; Li, K.; Fu, P.; Hu, W.; Li, Z. Feasibility of Using Fly Ash–Slag-Based Binder for Mine Backfilling and Its Associated Leaching Risks. J. Hazard. Mater. 2020, 400, 123191. [Google Scholar] [CrossRef]
- Jiang, H.; Han, J.; Ren, L.; Guo, Z.; Yilmaz, E. Study of Early-Age Performance of Cementitious Backfills with Alkali Activated Slag under Internal Sulfate Attack. Constr. Build. Mater. 2023, 371, 130786. [Google Scholar] [CrossRef]
- Behera, S.K.; Mishra, D.P.; Singh, P.; Mishra, K.; Mandal, S.K.; Ghosh, C.N.; Kumar, R.; Mandal, P.K. Utilization of Mill Tailings, Fly Ash and Slag as Mine Paste Backfill Material: Review and Future Perspective. Constr. Build. Mater. 2021, 309, 125120. [Google Scholar] [CrossRef]
- Wei, H.; Xiao, B.; Gao, Q. Flow Properties Analysis and Identification of a Fly Ash-Waste Rock Mixed Backfilling Slurry. Minerals 2021, 11, 576. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, L.; Sun, X.; Xing, J.; Li, S. Strength Characteristics and Failure Mechanism of Cemented Super-Fine Unclassified Tailings Backfill. Minerals 2017, 7, 58. [Google Scholar] [CrossRef]
- Ushakova, E.; Perevoshchikova, A.; Menshikova, E.; Khayrulina, E.; Perevoshchikov, R.; Belkin, P. Environmental Aspects of Potash Mining: A Case Study of the Verkhnekamskoe Potash Deposit. Mining 2023, 3, 176–204. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, B.; Gao, Q. Validating the Use of Slag Binder with 91 Percent Blast Furnace Slag for Mine Backfilling. Adv. Mater. Sci. Eng. 2020, 2020, 2525831. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, X.; Zhou, Q.; Zhu, H.; Cheng, F.; Chen, H. Development of Full-Solid Waste Environmentally Binder for Cemented Paste Backfill. Constr. Build. Mater. 2024, 443, 137689. [Google Scholar] [CrossRef]
- Nasir, O.; Fall, M. Coupling Binder Hydration, Temperature and Compressive Strength Development of Nnderground Cemented Paste Backfill at Early Ages. Tunn. Undergr. Space Technol. 2010, 25, 9–20. [Google Scholar] [CrossRef]
- Benzaazoua, M.; Bussière, B.; Demers, I.; Aubertin, M.; Fried, É.; Blier, A. Integrated Mine Tailings Management by Combining Environmental Desulphurization and Cemented Paste Backfill: Application to Mine Doyon, Quebec, Canada. Miner. Eng. 2008, 21, 330–340. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, Q.; Wei, J.; Li, J.; Zhang, P. Preparation of High Performance Blended Cements and Reclamation of Iron Concentrate from Basic Oxygen Furnace Steel Slag. Resour. Conserv. Recycl. 2011, 56, 48–55. [Google Scholar] [CrossRef]
- Tozsin, G.; Yonar, F.; Yucel, O.; Dikbas, A. Utilization Possibilities of Steel Slag as Backfill Material in Coastal Structures. Sci. Rep. 2023, 13, 4318. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Singh, S.P. Geopolymerization of Solid Waste of Non-Ferrous Metallurgy—A Review. J. Environ. Manag. 2019, 251, 109571. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Xiao, N.; Tan, L.; Zhong, S.; Lyu, X.; Chi, X. Preparation of New Cementitious Material by Reduction and Activation of Copper Slag and Its Application in Mine Filling. Chin. J. Nonferrous Met. 2020, 30, 2736–2745. [Google Scholar] [CrossRef]
- Liu, W.; Du, R.; Zhao, Z.; Zhang, R.; Wan, Y.; Li, H. Development of Lead Smelting Slag-Based Ecological Mine Backfill Material: Performance Control and Heavy Metals Solidification. Constr. Build. Mater. 2023, 367, 130310. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, Q.; Zhang, G.; Wang, C.; Cheng, F.; Lin, G. Preparation and Hydration Mechanism of Mine Cemented Paste Backfill Material for Secondary Smelting Water-Granulated Nickel Slag. J. New Mater. Electrochem. Syst. 2020, 23, 51–59. [Google Scholar] [CrossRef]
- Behera, S.K.; Ghosh, C.N.; Mishra, K.; Mishra, D.P.; Singh, P.; Mandal, P.K.; Buragohain, J.; Sethi, M.K. Utilisation of Lead–Zinc Mill Tailings and Slag as Paste Backfill Materials. Environ. Earth Sci. 2020, 79, 389. [Google Scholar] [CrossRef]
- GBT1596-2017; Fly Ash Used for Cement and Concrete. National Standards of China: Beijing, China, 2017.
- Feng, J.; Zhang, Z.; Guan, W.; Wang, W.; Xu, X.; Song, Y.; Liu, H.; Su, H.; Zhao, B.; Hou, D. Review of the Backfill Materials in Chinese Underground Coal Mining. Minerals 2023, 13, 473. [Google Scholar] [CrossRef]
- Behera, S.K.; Ghosh, C.N.; Mishra, D.P.; Singh, P.; Mishra, K.; Buragohain, J.; Mandal, P.K. Strength Development and Microstructural Investigation of Lead-Zinc Mill Tailings Based Paste Backfill with Fly Ash as Alternative Binder. Cem. Concr. Compos. 2020, 109, 103553. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, J.; Wu, A.; Guo, R. Hydration and Hardening Properties of High Fly-Ash Content Gel Material for Cemented Paste Backfill Utilization. Gels 2024, 10, 623. [Google Scholar] [CrossRef]
- Park, J.H.; Edraki, M.; Mulligan, D.; Jang, H.S. The Application of Coal Combustion By-Products in Mine Site Rehabilitation. J. Clean. Prod. 2014, 84, 761–772. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, T.; Ni, W.; Li, K.; Gao, W.; Wang, K.; Zhang, Y. The Mechanism of Hydrating and Solidifying Green Mine Fill Materials Using Circulating Fluidized Bed Fly Ash-Slag-Based Agent. J. Hazard. Mater. 2021, 415, 125625. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xiong, L.; Fang, L.; Gao, Q.; Tian, L. Preparation of New Filling Cementing Materials with Sintering Desulfurization Ash. Nonferrous Met. Sci. Eng. 2015, 6, 8–12. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Zhang, L.; Wan, Y.; Li, H.; Jiao, X. Rheology, Mechanics, Microstructure and Durability of Low-Carbon Cementitious Materials Based on Circulating Fluidized Bed Fly Ash: A Comprehensive Review. Constr. Build. Mater. 2024, 411, 134688. [Google Scholar] [CrossRef]
- He, P.; Zhang, X.; Chen, H.; Zhang, Y. Waste-to-Resource Strategies for the Use of Circulating Fluidized Bed Fly Ash in Construction Materials: A Mini Review. Powder Technol. 2021, 393, 773–785. [Google Scholar] [CrossRef]
- Longo, S.; Pigeon, P.; Pretorius, C. Paste Technology–Not Just for Mining Anymore. In Proceedings of the Paste 2017: 20th International Seminar on Paste and Thickened Tailings, Beijing, China, 15–18 June 2017; Wu, A., Jewell, R., Eds.; University of Science and Technology: Beijing, China, 2017; pp. 235–242. [Google Scholar]
- Min, C.; Liu, Z.; Shi, Y.; Lu, X. Improving the Strength Performance of Cemented Phosphogypsum Backfill with Sulfate-Resistant Binders. Constr. Build. Mater. 2023, 409, 133974. [Google Scholar] [CrossRef]
- Nizevičienė, D.; Vaičiukynienė, D.; Kielė, A.; Vaičiukynas, V. Mechanical Activation on Phosphogypsum: Hydrosodalite System. Waste Biomass Valorization 2019, 10, 3485–3491. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Dino, G.A.; Zhang, L.; Ruan, Z.; Zhang, M.; Li, J.; Wu, A. Degradation of Hemihydrate Phosphogypsum-Based Backfill in Underground Mining: Mechanical and Microstructural Insights on the Effects of PH and Temperature of Mine Water. Process Saf. Environ. Prot. 2025, 193, 272–285. [Google Scholar] [CrossRef]
- Jiang, G.; Wu, A.; Wang, Y.; Wang, Y.; Li, J. Determination of Utilization Strategies for Hemihydrate Phosphogypsum in Cemented Paste Backfill: Used as Cementitious Material or Aggregate. J. Environ. Manag. 2022, 308, 114687. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Wu, L.; Wu, A.; Ruan, Z.; Zhang, M.; Zhao, R. Effective Reuse of Red Mud as Supplementary Material in Cemented Paste Backfill: Durability and Environmental Impact. Constr. Build. Mater. 2022, 328, 127002. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Chen, Q.; Qi, C. Alkali Activation of Blast Furnace Slag Using Bayer Red Mud as an Alternative Activator to Prepare Cemented Paste Backfill. Constr. Build. Mater. 2024, 453, 139061. [Google Scholar] [CrossRef]
- Rai, S.B.; Wasewar, K.L.; Agnihotri, A. Treatment of Alumina Refinery Waste (Red Mud) through Neutralization Techniques: A Review. Waste Manag. Res. 2017, 35, 563–580. [Google Scholar] [CrossRef]
- Feng, W.; Yu, Z.; Bao, R.; Xiong, J.; Yan, K.; Liu, R.; Zhang, R.; Lu, X. Manufacture of Tailings-Based Cementitious Materials: Insights into Tailings Activation Strategies. Constr. Build. Mater. 2024, 439, 137194. [Google Scholar] [CrossRef]
- Liu, J.; Ge, X.; Liu, P.; Song, G.; Hu, Z. Experimental Study on the Preparation of Cementitious Materials from Iron Ore Tailings by Activation. Constr. Build. Mater. 2023, 385, 131409. [Google Scholar] [CrossRef]
- Sagade, A.; Fall, M. Study of Fresh Properties of Cemented Paste Backfill Material with Ternary Cement Blends. Constr. Build. Mater. 2024, 411, 134287. [Google Scholar] [CrossRef]
- Jiang, H.; Qi, Z.; Yilmaz, E.; Han, J.; Qiu, J.; Dong, C. Effectiveness of Alkali-Activated Slag as Alternative Binder on Workability and Early Age Compressive Strength of Cemented Paste Backfills. Constr. Build. Mater. 2019, 218, 689–700. [Google Scholar] [CrossRef]
- Krupnik, L.A.; Shaposhnik, Y.N.; Shaposhnik, S.N.; Nurshaiykova, G.T.; Tungushbaeva, Z.K. Technology of Backfill Preparation Based on Cement-and-Slag Binder in Orlov Mine. J. Min. Sci. 2017, 53, 77–83. [Google Scholar] [CrossRef]
- Nunes, V.A.; Borges, P.H.R. Recent Advances in the Reuse of Steel Slags and Future Perspectives as Binder and Aggregate for Alkali-Activated Materials. Constr. Build. Mater. 2021, 281, 122605. [Google Scholar] [CrossRef]
- Peyronnard, O.; Benzaazoua, M. Alternative By-Product Based Binders for Cemented Mine Backfill: Recipes Optimisation Using Taguchi Method. Miner. Eng. 2012, 29, 28–38. [Google Scholar] [CrossRef]
- Zhou, S.; Li, X.; Zhou, Y.; Min, C.; Shi, Y. Effect of Phosphorus on the Properties of Phosphogypsum-based Cemented Backfill. J. Hazard. Mater. 2020, 399, 122993. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Fourie, A.; Xin, C. Utilization of Phosphogypsum and Phosphate Tailings for Cemented Paste Backfill. J. Environ. Manag. 2017, 201, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Sutar, H.; Chandra Mishra, S.; Kumar Sahoo, S.; Prasad Chakraverty, A.; Sekhar Maharana, H. Progress of Red Mud Utilization: An Overview. Chem. Sci. Int. J. 2014, 4, 255–279. [Google Scholar] [CrossRef]
- Guner, N.U.; Yilmaz, E.; Sari, M.; Kasap, T. Cementitious Backfill with Partial Replacement of Cu-Rich Mine Tailings by Sand: Rheological, Mechanical and Microstructural Properties. Minerals 2023, 13, 437. [Google Scholar] [CrossRef]
- Jhatial, A.A.; Nováková, I.; Gjerløw, E. A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods. Buildings 2023, 13, 526. [Google Scholar] [CrossRef]
- GB/T 18046-2017; Granulated Blast Furnace Slag Powder Used in Cement, Mortar, and Concrete. National Standards of China: Beijing, China, 2017.
- Xie, G.; Suo, Y.; Liu, L.; Zhu, M.; Xie, L.; Qu, H.; Sun, W. Mechanical Grinding Activation of Modified Magnesium Slag and Its Use as Backfilling Cementitious Material. Case. Studies. Constr. Mater. 2023, 18, e01778. [Google Scholar] [CrossRef]
- Cao, L.; Shen, W.; Huang, J.; Yang, Y.; Zhang, D.; Huang, X.; Lv, Z.; Ji, X. Process to Utilize Crushed Steel Slag in Cement Industry Directly: Multi-Phased Clinker Sintering Technology. J. Clean. Prod. 2019, 217, 520–529. [Google Scholar] [CrossRef]
- Bull, A.J.; Fall, M. Thermally Induced Changes in Metalloid Leachability of Cemented Paste Backfill That Contains Blast Furnace Slag. Miner. Eng. 2020, 156, 106520. [Google Scholar] [CrossRef]
- Hao, J.; Zhou, Z.; Chen, Z.; Che, Z.; Wang, X. Review of Hydration and Hardening Properties of Steel Slag in Mine Filling Cementitious Materials. J. Min. Sci. Technol. 2024, 9, 573–585. [Google Scholar] [CrossRef]
- Helinski, M.; Fourie, A.; Fahey, M.; Ismail, M. Assessment of the Self-Desiccation Process in Cemented Mine Backfills. Can. Geotech. J. 2007, 44, 1148–1156. [Google Scholar] [CrossRef]
- Xin, J.; Liu, L.; Jiang, Q.; Yang, P.; Qu, H.; Xie, G. Early-Age Hydration Characteristics of Modified Coal Gasification Slag-Cement-Aeolian Sand Paste Backfill. Constr. Build. Mater. 2022, 322, 125936. [Google Scholar] [CrossRef]
- Lin, F.; Meyer, C. Hydration Kinetics Modeling of Portland Cement Considering the Effects of Curing Temperature and Applied Pressure. Cem. Concr. Res. 2009, 39, 255–265. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, L.; Lv, G.; Zhang, D.; Liao, L.; Guo, L.; Hu, J.; Bai, Y. Research Progress of Heavy Metal Immobilization in Non-Ferrous Smelting Slag-Based Cementitious Materials. Nonferrous Met. Eng. 2024, 14, 185–193. [Google Scholar] [CrossRef]
- Bothe, J.V.; Brown, P.W. Arsenic Immobilization by Calcium Arsenate Formation. Environ. Sci. Technol. 1999, 33, 3806–3811. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, S.; Wang, C.; Yang, X.; Guo, L.; Xue, S. Preparation of Cementitious Material Using Smelting Slag and Tailings and the Solidification and Leaching of Pb2+. Adv. Mater. Sci. Eng. 2015, 2015, 352567. [Google Scholar] [CrossRef]
- Yılmaz, T.; Ercikdi, B.; Deveci, H. Evaluation of Geochemical Behaviour of Flooded Cemented Paste Backfill of Sulphide-Rich Tailings by Dynamic-Tank Leaching Test. Int. J. Min. Reclam. Environ. 2021, 35, 336–355. [Google Scholar] [CrossRef]
- Romaniuk, N.A.; McFarlane, L.; Hariharan, N. Development of Slag Alternatives for Paste Backfill Operations. In Proceedings of the Paste 2024: 26th International Conference on Paste, Thickened and Filtered Tailings, Melbourne, Australia, 16–18 April 2024; Fourie, A.B., Reid, D., Eds.; Australian Centre for Geomechanics: Crawley, WA, USA, 2024; pp. 535–544. [Google Scholar]
- Wang, C.; Qiao, H.; Li, Q.; Su, R.; An, B. Advances in Recycled Concrete Research – Improving Shrinkage for Sustainable Building Applications. Archit. Eng. Des. Manag. 2024, 20, 1589–1611. [Google Scholar] [CrossRef]
- Liu, L.; Fang, Z.; Wang, S.; Gao, G.; Zhang, B.; Zhao, Y.; Zhu, M.; Liu, Z.; Wang, J.; Jia, Q.; et al. Theoretical Basis and Technical Conception of Backfill Carbon Fixation in Coal Mine. Coal Sci. Technol. 2024, 52, 292–308. [Google Scholar] [CrossRef]
- GB/T175-2023; General Portland Cement. National Standards of China: Beijing, China, 2023.
- ASTM ASTM C150/C150M-21; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2021; p. D3699.
- ASTM Committee C09.27 ASTM C989/C989M-14; Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM International: West Conshohocken, PA, USA, 2014.
Binder Types | Examples | Key Features | References |
---|---|---|---|
Cement and blend cement | Ordinary Portland cement | Not applicable for ultra-fine tailings | [19] |
Slag, FA, etc., blend cement | SCM replacement ratio 20–80 wt.% | [51] | |
Metallurgical slag developed binders | Alkali + BFS + gypsum | 70–90 wt.% BFS, excellent binding performance | [21,52,53] |
SS + BFS + gypsum | 30–60 wt.% SS, good binding performance, low-cost | [3,54] | |
Nonferrous metallurgical slag binders | Cement partially replaced by copper, nickel, lead, zinc slag | Low reactivity of slag, slag replace ratio < 30 wt.%, heavy metal iron leaching risk | [29,30] |
Thermal slag developed binders | FA + BFS + gypsum; FA + SS + gypsum | 30–60 wt.% FA, good binding performance, low cost | [17,35,55] |
Chemical industry slag-based binders | PG + BFS + alkali | Up to 70 wt.% of PG can be used, good binding performance, low cost | [45,56,57] |
BRM + BFS + gypsum | Good performance, low cost, alkaline leaching risk | [47,58] | |
Tailings-based binders | Tailings + alkali + BFS | Tailings ratio < 30 wt.%, limited tailing types | [34,59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xiao, B.; Liu, X.; Ruan, Z. Trends and Applications of Green Binder Materials for Cemented Paste Backfill Mining in China. Minerals 2025, 15, 97. https://doi.org/10.3390/min15020097
Wang J, Xiao B, Liu X, Ruan Z. Trends and Applications of Green Binder Materials for Cemented Paste Backfill Mining in China. Minerals. 2025; 15(2):97. https://doi.org/10.3390/min15020097
Chicago/Turabian StyleWang, Jiandong, Bolin Xiao, Xiaohui Liu, and Zhuen Ruan. 2025. "Trends and Applications of Green Binder Materials for Cemented Paste Backfill Mining in China" Minerals 15, no. 2: 97. https://doi.org/10.3390/min15020097
APA StyleWang, J., Xiao, B., Liu, X., & Ruan, Z. (2025). Trends and Applications of Green Binder Materials for Cemented Paste Backfill Mining in China. Minerals, 15(2), 97. https://doi.org/10.3390/min15020097