Geology and Age Constraints on the Origin of the Intrusion-Related, Sheeted Vein-Type Åkerberg Gold Deposit, Skellefte District, Sweden
Abstract
:1. Introduction
2. Results and Discussion
2.1. Geology of the Åkerberg Area
2.2. The Ore and Occurrence of Gold at Åkerberg
2.3. Local Deformation and Metamorphism
2.4. Analytical Results
2.4.1. U-Pb Dating of the Gabbro
Grain/Spot # a | U ppm | Pb ppm | Th/Ucalc b | 206Pb/204Pb c | f206% d | Disc% e | 206Pb/238U ±1 s | 207Pb/ 235U ±1 s | 207Pb/206Pb ±1 s | 206Pb/238U age | 207Pb/235U age | 207Pb/206Pb age |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Granodiorite (session number, n1711) | ||||||||||||
1a, cen | 779 | 301 | 0.34 | 70211 | 0.03 | −6.1 | 0.3166 ± 1.57 | 5.002 ± 1.59 | 0.1146 ± 0.24 | 1773 | 1820 | 1873 |
2a, ed | 174 | 67 | 0.22 | 22820 | 0.08 | −4.0 | 0.3238 ± 1.57 | 5.115 ± 1.67 | 0.1146 ± 0.55 | 1808 | 1839 | 1873 |
2b, ed | 151 | 59 | 0.21 | 18588 | 0.10 | −3.0 | 0.3302 ± 1.57 | 5.259 ± 1.66 | 0.1155 ± 0.54 | 1839 | 1862 | 1888 |
5a, ce | 563 | 194 | 0.21 | 10966 | 0.17 | −13.8 | 0.2906 ± 1.57 | 4.591 ± 1.62 | 0.1146 ± 0.40 | 1645 | 1748 | 1873 |
7a, ce | 406 | 111 | 0.09 | 6761 | 0.28 | −27.8 | 0.2385 ± 1.57 | 3.700 ± 1.63 | 0.1125 ± 0.42 | 1379 | 1571 | 1841 |
7b, ce | 485 | 170 | 0.14 | 24516 | 0.08 | −9.9 | 0.3013 ± 1.58 | 4.724 ± 1.61 | 0.1137 ± 0.32 | 1698 | 1772 | 1860 |
9a, ed | 936 | 355 | 0.08 | 29203 | 0.06 | −1.3 | 0.3329 ± 1.38 | 5.259 ± 1.41 | 0.1146 ± 0.26 | 1853 | 1862 | 1873 |
9b, ce | 477 | 197 | 0.10 | 1734 | 1.08 | 7.9 | 0.3620 ± 1.39 | 5.695 ± 1.44 | 0.1141 ± 0.40 | 1992 | 1931 | 1866 |
12a, ed | 95 | 90 | 2.33 | 25640 | 0.07 | 1.7 | 0.5227 ± 1.40 | 13.140 ± 1.50 | 0.1823 ± 0.55 | 2711 | 2690 | 2674 |
12b, ed | 39 | 32 | 1.58 | 2997 | 0.62 | −1.5 | 0.5016 ± 1.40 | 12.451 ± 1.66 | 0.1800 ± 0.89 | 2621 | 2639 | 2653 |
19a, ed | 491 | 190 | 0.27 | 7976 | 0.23 | −5.6 | 0.3231 ± 1.38 | 5.174 ± 1.43 | 0.1162 ± 0.37 | 1805 | 1848 | 1898 |
Gabbro (session number, n572) | ||||||||||||
2a, ce | 1790 | 698 | 0.25 | 471 | 3.97 | −1.4 | 0.3286 ± 4.70 | 5.135 ± 8.17 | 0.1133 ± 6.68 | 1832 | 1842 | 1854 |
3b, ce | 449 | 122 | 0.35 | 51813 | 0.04 | −29.1 | 0.2181 ± 0.78 | 3.181 ± 0.85 | 0.1058 ± 0.34 | 1272 | 1453 | 1728 |
3c, tip | 3914 | 523 | 0.12 | 13026 | 0.14 | −51.3 | 0.1151 ± 3.23 | 1.385 ± 3.74 | 0.0873 ± 1.89 | 702 | 883 | 1367 |
4a, ce | 2168 | 637 | 0.19 | 143802 | 0.01 | −25.1 | 0.2478 ± 0.73 | 3.851 ± 0.80 | 0.1127 ± 0.31 | 1427 | 1603 | 1844 |
5a, tip | 161 | 65 | 0.52 | 139723 | 0.01 | −1.0 | 0.3182 ± 0.77 | 4.817 ± 0.89 | 0.1098 ± 0.43 | 1781 | 1788 | 1796 |
5b, ce | 1001 | 320 | 0.24 | 2019 | 0.93 | −14.5 | 0.2686 ± 0.77 | 3.986 ± 0.87 | 0.1077 ± 0.40 | 1533 | 1631 | 1760 |
6a, co | 1102 | 274 | 0.33 | 12359 | 0.15 | −31.0 | 0.2005 ± 1.62 | 2.794 ± 1.77 | 0.1011 ± 0.70 | 1178 | 1354 | 1644 |
7a, ce | 450 | 159 | 0.17 | 2629 | 0.71 | −10.3 | 0.3020 ± 0.73 | 4.762 ± 0.88 | 0.1144 ± 0.49 | 1701 | 1778 | 1870 |
8a, tip | 2276 | 938 | 0.43 | 61350 | 0.03 | −2.7 | 0.3314 ± 0.76 | 5.281 ± 0.77 | 0.1156 ± 0.16 | 1845 | 1866 | 1889 |
8b, ce | 2165 | 825 | 0.30 | 22645 | 0.08 | −6.5 | 0.3156 ± 0.73 | 4.992 ± 0.75 | 0.1147 ± 0.16 | 1768 | 1818 | 1875 |
Analysis number (number of grains) | U/Th | Pbc/Pbtot (1) | 206Pb/204Pb Raw (2) | 207Pb/235U [corr] (3) | ±2 s err% | 206Pb/238U | ±2 s err% | 207Pb/235U [age, Ma] | 206Pb/238U | 207Pb/206Pb | ±2 s err% | Concord |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Åk-a (3 grains) | 104.7 | 0.004 | 15554 | 5.2739 | 0.46 | 0.33306 | 0.45 | 1864.6 | 1853.2 | 1877.4 | 2.0 | 0.987 |
Åk-1 (1 grain) | 103.7 | 0.011 | 5652 | 5.2547 | 0.50 | 0.33168 | 0.48 | 1861.5 | 1846.5 | 1878.3 | 2.1 | 0.983 |
2.4.2. U-Pb Dating of the Granodiorite
2.4.3. Fluid Inclusion Results
2.5. Discussion
2.5.1. Ages of Rocks and Other Geological Constraints on Ore Formation at Åkerberg
2.5.2. Field and Genetic Relationships between Rocks and Mechanisms for Quartz Veining
2.5.3. Factors Controlling Gold Transport, Ore-Associated Alteration and Distribution of Veins and Gold
2.5.4. Classifying the Åkerberg Gold Deposit: An Intrusion-Related Type of Mineralization
Deposit | Location | Geological setting | Host rock and ore setting | Ore | Vein mineralogy | Alteration | References |
---|---|---|---|---|---|---|---|
Intrusion-hosted examples (continental margin setting—behind arcs), spatially related to felsic granitoids showing porphyry textures and associated with aplites/pegmatites, carbonic fluids, sheeted vein-style, minor alteration, elevated Bi, W, As and Te, coeval with plutonism) | |||||||
Åkerberg | East of SOD 1 | Gabbro-granite complex, at border back-arc/marine basin | Gabbro, ore at the tip of an elongate granite intrusion | Sheeted, thin parallell qz 2 veins, dense spacing | Qz + very minor sulfides (py 3, po 4, rare sp 7 and cpy 5), minor W | Very minor (albitisation) | This study |
Björkdal | 14 km SSW of Åkerberg | Felsic intrusion, volc-sedimentary rocks at border back- arc/marine basin | Contact between granodiorite and marble | Decimetre-metre veins in radial pattern | Qz, minor amounts of sulfides (cpy 5, py 3, po 4), sch 8, tour 9, cc 10 and Sb-Bi phases | Minor (act, sericite, biotite) | [5,6,7] |
Mokskro | Bohemia | Folded and metamor-phosed Jilové sequence | Contact between granodiorite apophysis and volc-sedimentary rocks | Parallel, thin sheeted qz 2 veinlets in granodiorite-hosted ore | Qz and minor sulfides (mainly apy 6); Bi-Te | Very minor (microcline and recrystallised amphibole and biotite) | [60] |
Dublin Gulch | Yukon territory | Miogeoclinal | Granodiorite stock within meta-sediments | Sheeted quartz veins, vein density may exceed 20 veins/m | Minor sulfides, scheelite, Bi-minerals | Moderate (K-fsp, minor albite, some sericite-carbonate) | [62] |
IOCG type examples (arc or fore-arc setting, mainly hosted by sedimentary and volcanic rocks, carbonic fluids, antithetic tensional vein arrays, minor-moderate alteration, timing is syn-regional metamorphism) | |||||||
Fäboliden | W of SOD | Supracrustals at border fore-arc/marine basin | Mainly a greywacke | Sheared qz 2 veinlets, alteration zones | Qz + moderate amounts of apy 6, po 4, loell 11 | Significant (mainly K-fsp, diopside, amp 12, biotite, qz 2) | [18] |
3. Experimental Section
3.1. Sample Descriptions and Analytical Techniques
4. Conclusion: A Genetic Model for the Åkerberg Gold Deposit
Acknowledgements
References
- Allen, R.L.; Weihed, P.; Svensson, S.-Å. Setting of Zn-Cu-Au-Ag sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte district, Sweden. Econ. Geol. 1996, 91, 1022–1053. [Google Scholar] [CrossRef]
- Nicolson, D.; Rickard, D.; Jonsson, R. Gold distribution in volcanogenic massive sulfide ores, Skellefte district, N. Sweden. Geol. Soc. Aust. Abstr. Ser. 1988, 23, 161–164. [Google Scholar]
- Weihed, J.B.; Bergström, U.; Billström, K.; Weihed, P. Geology, tectonic setting and origin of the Paleoproterozoic Boliden Cu-Au-As deposit, Skellefte district, northern Sweden. Econ. Geol. 1996, 91, 1073–1097. [Google Scholar] [CrossRef]
- Gáal, G.; Gorbatschev, R. An outline of the Precambrian evolution of the Baltic shield. Precambrian Res. 1987, 35, 15–52. [Google Scholar] [CrossRef]
- Broman, C.; Billström, K.; Gustavsson, K.; Fallick, A.E. Fluid inclusions, stable isotopes and gold deposition at Björkdal, northern Sweden. Miner. Deposita 1994, 29, 139–149. [Google Scholar]
- Weihed, P.; Weihed, J.B.; Sorjonen-Ward, P. Structural evolution of the Björkdal gold deposit, Skellefte district, northern Sweden: Implications for early Proterozoic mesothermal gold in the late stage of the Svecokarelian orogen. Econ. Geol. 2003, 98, 1291–1310. [Google Scholar] [CrossRef]
- Billström, K.; Broman, C.; Jonsson, E.; Recio, R.; Boyce, A.J.; Torssander, P. Geochronological, stable isotopes and fluid inclusion constraints for a premetamorphic development of the intrusive-hosted Björkdal Au deposit, northern Sweden. Int. J. Earth Sci. 2009, 98, 1027–1052. [Google Scholar] [CrossRef]
- Weihed, P.; Bergström, U. Proterozoic gold mineralizations in the Skellefte district, northern Sweden. In Proceeding of International Symposium Bicentennial Gold '88, Melbourne, Australia, 16-20 May 1988.
- Bergström, U.; Weihed, P. Structural aspects of some gold mineralizations in the Skellefte district. Geol. Fören. Stockh. Förh. 1991, 113, 42–44. [Google Scholar] [CrossRef]
- Weihed, P. Litogeochemistry, metal and alteration zoning in the Proterozoic Tallberg porphyry-type deposit, northern Sweden. J. Geochem. Explor. 1992, 42, 301–325. [Google Scholar] [CrossRef]
- Bejgarn, T.; Årebäck, H.; Weihed, P.; Nylander, J. Geology, petrology and alteration geochemistry of the Palaeoproterozoic intrusive hosted Älgträsk Au deposit, northern Sweden. Geol. Soc. Lond. 2011, 350, 105–132. [Google Scholar]
- Broman, C.; Bergström, U.; Lindblom, S. Fluid evolution in gold-bearing veins associated with feldspar porphyry dikes at Vinliden in the Skellefte District, northern Sweden. Geol. Fören. Stockh. Förh. 1995, 117, 233–244. [Google Scholar]
- Bergström, U. Gold mineralization in the Vinliden area, Skellefte District, northern Sweden. Geol. Fören. Stockh. Förh. 1996, 118, A43–A44. [Google Scholar]
- Sundblad, K.; Weihed, P.; Billström, K.; Markkula, H.; Mäkelä, M. Source of metals and age constraints for epigenetic gold deposits in the Skellefte and Pohjanmaa districts, central part of the Fennoscandian Shield. Miner. Deposita 1993, 28, 181–190. [Google Scholar]
- Bergman, J.; Bergström, U.; Weihed, P. Genesis and structural evolution of early Proterozoic gold lode deposits in the Skellefte district, northern Sweden. In Proceedings of the 28th International Geological Congress, Washington, DC, USA, 9-19 July 1989.
- Bergman, J. Structural geology of Grundfors, a quartz vein related gold deposit in the Skellefte district, northern Sweden. Geol. Fören. Stockh. Förh. 1992, 114, 227–234. [Google Scholar] [CrossRef]
- Hart, I.; Marsh, S.; Laurent, I. Svartliden—A new style of mineralization in the Skellefte district. In Gold '99 Trondheim: Precambrian Gold in Fennoscandian and Ukrainian Shields and Related Areas: Abstract Volume, Proceeding of Nordic Mineral resources Symposium, Trondheim, Norway, 4–6 May 1999; Cook, N.J., Sundblad, K., Eds.; Geological Survey of Norway: Trondheim, Norway, 1999; pp. 87–88. [Google Scholar]
- Bark, G.; Weihed, P. Orogenic gold in the new Lycksele-Storuman ore province, northern Sweden: The Palaeproterozoic Fäboliden deposit. Ore Geol. Rev. 2007, 32, 431–451. [Google Scholar] [CrossRef]
- Robert, F.; Poulsen, K.H.; Dubé, B. Gold deposits and their geological classification. In Geophysics and Geochemistry at the Millennium: Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration, Proceeding of Fourth Decennial International Conference on Mineral Exploration, Toronto, Canada, 14–18 September 1997; Gubins, A.G., Ed.; Prospectors and Developers Association of Canada: Toront, ON, Canada, 1997; pp. 209–220. [Google Scholar]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Hart, C.J.R.; Goldfarb, R.J. Distinguishing intrusion-related from orogenic gold systems. In Proceedings of the 2005 New Zealand Minerals Conference, Auckland, New Zealand, 13–16 November 2005; pp. 125–133.
- Billström, K.; Eilu, P.; Martinsson, O.; Niiranen, T.; Broman, C.; Weihed, P.; Wanhainen, C.; Ojala, J. IOCG and related mineral deposits of the northern Fennoscandian shield. In Hydrothermal Iron Oxide Copper—Gold and Related Deposits; Porter, T.M., Smith, M.P., Coppard, J., Herrington, R., Eds.; PGC Publishing: Adelaide, Australia, 2011; Volume IV, pp. 381–414. [Google Scholar]
- Mattson, B.; Lundstam, E. Bedrock Sampling and Diamond Drilling in Åkerberg, Skellefte Field, 1995–1998; Boliden Internal Report GP 99009; Boliden Mineral AB: Boliden, Sweden, 1999; pp. 1–10. [Google Scholar]
- Bergström, U. Marginal basin magmatism in an ancient volcanic arc: Petrology of the Palaeoproterozoic Malå-group basalts, Skellefte District, Northern Sweden. GFF 1997, 119, 151–157. [Google Scholar] [CrossRef]
- Kathol, B.; Weihed, P. Description of Regional Geological and Geophysical Maps of the Skellefte District and Surrounding Areas; Geological Survey of Sweden: Uppsala, Sweden, 2005. [Google Scholar]
- Wilson, M.R.; Hamilton, P.J.; Fallick, A.E.; Aftalion, M.; Michard, A. Granites and proterozoic crustal evolution in Sweden: Evidence from Sm-Nd, U-Pb and O systematics. Earth Planet. Sci. Lett. 1985, 72, 376–388. [Google Scholar] [CrossRef]
- González-Roldán, M.J. Mineralogía, Petrología y geoquÍmica de Intrusions Sin-volcánicas en el Distrito Minero de Skellefte, Norte de Suecia. Ph.D. Thesis, University of Huelva, Huelva, Spain, 2010. [Google Scholar]
- Bejgarn, T.; Söderlund, U.; Weihed, P.; Årebäck, H.; Ernst, R.E. Palaeoproterozoic porphyry Cu-Au, intrusion-hosted Au and ultramafic Cu-Ni deposits in the Fennoscandian Shield: Temporal constraints using U-Pb geochronology. Lithos 2012, in press. [Google Scholar]
- Lundström, I. Description to the rock map sheet 23K Boliden SO. Geol. Surv. Swed. 2000, 113, 243–248. [Google Scholar]
- Årebäck, H.; Mattsson, B.; Wasström, A. Geochemical Characteristics of Granitoids in the Skellefte District and Surrounding Areas: Development for Au Exploration; Boliden Internal Report GP2005–25; Boliden Mineral AB: Boliden, Sweden, 2004; pp. 1–15. [Google Scholar]
- Lundström, I.; Persson, P.-O.; Bergström, U. Indications of early deformational events in the northeastern part of the Skellefte field. Indirect evidence from geologic and radiometric data from the Stavaträsk-Klintån area, Boliden map-sheet. Geol. Surv. Swed. C 1999, 831, 52–69. [Google Scholar]
- Teertstra, D.K.; Černý, P.; Langhof, J.; Smeds, S.-A.; Grensman, F. Pollucite in Sweden: Occurrences, crystal chemistry, petrology and subsolidus history. Geol. Fören. Stockh. Förh. 1996, 118, 141–150. [Google Scholar]
- Grensman, F.; Langhof, J. Åkerberget: Guldgruva med litiumpegmatite. Stein 1991, 18, 20–22. [Google Scholar]
- Romer, R.L.; Smeds, S.-A. Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Res. 1994, 67, 141–158. [Google Scholar] [CrossRef]
- Weihed, P.; Bergman, J.; Bergström, U. Metallogeny and tectonic evolution of the early Proterozoic Skellefte District, northern Sweden. Precambrian Res. 1992, 58, 143–167. [Google Scholar] [CrossRef]
- Billström, K. Epigenetic gold along the margin of the Skellefte district, Sweden. In Gold '99 Trondheim: Precambrian Gold in Fennoscandian and Ukrainian Shields and Related Areas: Abstract Volume, Proceeding of Nordic Mineral Resources Symposium, Trondheim, Norway, 4–6 May 1999; Cook, N.J., Sundblad, K., Eds.; Geological Survey of Norway: Trondheim, Norway, 1999; pp. 25–27. [Google Scholar]
- Sundblad, K. Metallogeny of gold in the Precambrian of northern Europe. Econ. Geol. 2003, 98, 1271–1290. [Google Scholar] [CrossRef]
- Eilu, P.; Weihed, P. Fennoscandian shield—orogenic gold deposits. Ore Geol. Rev. 2005, 27, 326–327. [Google Scholar] [CrossRef]
- Dahlenborg, L. A rock magnetic study of the Åkerberg gold deposit, northern Sweden. M.Sc. Thesis, Lund University, Lund, Sweden, 2007. [Google Scholar]
- Weihed, J.B. Regional Deformation Zones in the Skellefte and Arvidsjaur Areas; Final Research Report SGU-Project 03–862/93; Geological Survey of Sweden: Uppsala, Sweden, 1997. [Google Scholar]
- Rutland, R.W.R.; Skiöld, T.; Page, R.W. Age of deformation episodes in the Palaeoproterozoic domain of northern Sweden, and evidence for a pre-1.9 Ga crustal layer. Precambrian Res. 2001, 112, 239–259. [Google Scholar] [CrossRef]
- Weihed, P.; Billström, K.; Persson, P.-O.; Weihed, J.B. Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield. GFF 2002, 124, 163–180. [Google Scholar]
- Billström, K.; Weihed, P.; Allen, R.L. U-Pb Crustal evolution and temporal constraints on ore formation in the Skellefte ore district and surrounding areas, Sweden—new insights from single zircon U-Pb data. GFF 2012. submitted for publication. [Google Scholar]
- Larson, S.-Å.; Tullborg, E.-L. Why Baltic Shield zircons yield late Paleozoic, lower-intercept ages on U-Pb Concordia. Geology 1998, 26, 919–922. [Google Scholar] [CrossRef]
- Bodnar, R.J. Introduction to aqueous fluid systems. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Mineralogical Association of Canada: Ottawa, ON, Canada, 2003; pp. 81–99. [Google Scholar]
- Bakker, R.J.; Dubessy, J.; Cathelineau, M. Improvements in clathrate modelling: I. The system H2O-CO2 with various salts. Geochim. Cosmochim. Acta 1996, 60, 1657–1681. [Google Scholar] [CrossRef]
- Claesson, S.; Lundqvist, T. Origins and ages of Proterozoic granitoids in the Bothnian Basin, central Sweden; isotopic and geochemical constraints. Lithos 1995, 36, 115–140. [Google Scholar] [CrossRef]
- Lundqvist, T.; Vaasjoki, M.; Persson, P.-O. U-Pb ages of plutonic and volcanic rocks in the Svecofennian Bothnian Basin, central Sweden, and their implications for the Palaeoproterozoic Evolution of the Basin. Geol. Fören. Stockh. Förh. 1998, 120, 357–363. [Google Scholar]
- Billström, K.; Weihed, P. Age and provenance of host rocks and ores in the Paleoproterozoic Skellefte district, northern Sweden. Econ. Geol. 1996, 91, 1054–1072. [Google Scholar]
- Montelius, C.; Billström, K.; Allen, R.L.; Barrett, T.J.; Mortensen, J.K.; Weihed, P.; Svenson, S.-Å. The Genetic Relationship between Rhyolitic Volcanism and Zn-Cu-Au Deposits in the Maurliden Volcanic Centre, Skellefte District, Sweden: Volcanic Facies, Lithogeochemistry and Geochronology. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2005. [Google Scholar]
- Kerrich, R.; King, R. Hydrothermal zircons and baddeleyite in Val d’OrArchean mesothermal gold deposit: Characteristics, compositions, and inclusion properties, with implications for timing of primary gold mineralization. Can. J. Earth Sci. 1993, 30, 2334–2351. [Google Scholar] [CrossRef]
- Fraser, G.L.; Pattison, D.R.M.; Heaman, L.M. Age of the Ballachulish and Glencoe Igneous Complexes (Scottish Highlands), and paragenesis of zircon, monazite and baddeleyite in the Ballachulish Aureole. J. Geol. Soc. Lond. 2004, 161, 447–462. [Google Scholar] [CrossRef]
- Billström, K.; Wasström, A.; Bergström, U.; Stigh, J. Age, geochemistry and crustal contamination of the Hemberget mafic-ultramafic layered intrusion in the Knaften area, northern Sweden. In Radiometric Dating Results 5; Bergman, S., Ed.; Sveriges geologiska undersökning: Uppsala, Sweden, 2002; pp. 18–30. [Google Scholar]
- Thomas, R.; Webster, J.D.; Davidson, P. Understanding pegmatite formation: The melt and fluid inclusion approach. In Melt Inclusions in Plutonic Rocks; Webster, J.D., Ed.; Mineralogical Association of Canada: Ottawa, ON, Canada, 2006; Chapter 9, pp. 189–210. [Google Scholar]
- De Assis Janasi, V.; Antenor Faria, C.; de Freitas, V.A.; Farias Vlach, S.R. Silicic segregations in subvolcanic intrusions: Clues to the origin of bimodal basalt-rhyolite associations in the northern Paraná magmatic province? In Proceeding of IV Simpósio de Vulcanismo e Ambientes Associados, Foz do Iguaçu, Brazil, 11 April 2008.
- Williams-Jones, A.E.; Heinrich, C.A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Heinrich, C.A.; Driesner, T.; Stefansson, A.; Seward, T.M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 2004, 32, 761–764. [Google Scholar] [CrossRef]
- Herrington, R.J.; Wilkinson, J.J. Colloidal gold and silica in mesothermal vein systems. Geology 1993, 21, 539–542. [Google Scholar]
- Shelton, K.L.; So, C.-S.; Chang, J.S. Gold-rich mesothermal vein deposits of the Republic of Korea: Geochemical studies of the Jungwon gold area. Econ. Geol. 1988, 83, 1221–1237. [Google Scholar]
- Cliff, D.C.; Morávek, P. The Mokrsko gold deposit, central Bohemia, Czech Republic. In Mineral Deposits: From Their Origin to Their Environmental Impacts; Pasava, J., Kribek, B., Zák, S., Eds.; Balkema: Rotterdam, the Netherland, 1995; pp. 105–108. [Google Scholar]
- Boiron, M-C.; Barakat, A.; Cathelineau, M.; Banks, D.A.V.; Durisova, J.; Morávek, P. Geometry and P-V-T-X conditions of microfissural ore fluid migration: the Mokrsko gold deposit (Bohemia). Chem. Geol. 2001, 173, 207–225. [Google Scholar] [CrossRef]
- Maloof, T.; Baker, T.; Thompson, J. The Dublin gulch intrusion-hosted gold deposit, Tombstone plutonic suite, Yukon territory, Canada. Miner. Deposita 2001, 36, 583–593. [Google Scholar] [CrossRef]
- Stephens, J.R.; Mair, J.L.; Oliver, N.H.S.; Hart, C.J.R.; Baker, T. Structural and mechanical controls on intrusion-related deposits of the Tombstone Gold Belt, Yukon, Canada, with comparisons to other vein-hosted ore-deposit types. J. Struct. Geol. 2004, 26, 1025–1041. [Google Scholar] [CrossRef]
- Lefebure, D.V.; Hart, C. Plutonic-related Au quartz veins & veinlets (L02). In Selected British Columbia Mineral Deposit Profiles: Volume 2, Metallic Deposits; Lefebure, D.V., Hõy, T., Eds.; British Columbia, Energy and Minerals Division, Geological Survey Branch; Open file (British Columbia. Geological Survey Branch) 1996-13, Victoria, BC, Canada, 1996. [Google Scholar]
- Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research and exploration significance. Econ. Geol. 2003, 98, 1–29. [Google Scholar]
- Whitehouse, M.J.; Kamber, B.; Moorbath, S. Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland—A reassessment based on combined ion-microprobe and imaging studies. Chem. Geol. 1999, 160, 201–224. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramer, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot/Ex Version 2.2. A Geochronological Toolkit for a Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2000. [Google Scholar]
- Wiedebeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberlie, F.; von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf trace element and REE analysis. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar]
- Söderlund, U.; Johansson, L. A simple way to extract baddeleyite (ZrO2). Geochem. Geophys. Geosyst. 2002, 3, 1014–1010. [Google Scholar] [CrossRef]
- Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.C.; Essling, A.M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. 1971, 4, 1889–1906. [Google Scholar]
- Smith, J.V. En échelon sigmoidal vein arrays hosted by faults. J. Struct. Geol. 1996, 18, 1173–1179. [Google Scholar] [CrossRef]
- Tomkins, A.G.; Mavrogenes, J.A. Mobilization of gold as a polymetallic melt during pelite anatexis at the Challenger deposit, south Australia: A metamorphosed Archean gold deposit. Econ. Geol. 2002, 97, 1249–1271. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Billström, K.; Mattson, B.; Söderlund, U.; Årebäck, H.; Broman, C. Geology and Age Constraints on the Origin of the Intrusion-Related, Sheeted Vein-Type Åkerberg Gold Deposit, Skellefte District, Sweden. Minerals 2012, 2, 385-416. https://doi.org/10.3390/min2040385
Billström K, Mattson B, Söderlund U, Årebäck H, Broman C. Geology and Age Constraints on the Origin of the Intrusion-Related, Sheeted Vein-Type Åkerberg Gold Deposit, Skellefte District, Sweden. Minerals. 2012; 2(4):385-416. https://doi.org/10.3390/min2040385
Chicago/Turabian StyleBillström, Kjell, Benny Mattson, Ulf Söderlund, Hans Årebäck, and Curt Broman. 2012. "Geology and Age Constraints on the Origin of the Intrusion-Related, Sheeted Vein-Type Åkerberg Gold Deposit, Skellefte District, Sweden" Minerals 2, no. 4: 385-416. https://doi.org/10.3390/min2040385
APA StyleBillström, K., Mattson, B., Söderlund, U., Årebäck, H., & Broman, C. (2012). Geology and Age Constraints on the Origin of the Intrusion-Related, Sheeted Vein-Type Åkerberg Gold Deposit, Skellefte District, Sweden. Minerals, 2(4), 385-416. https://doi.org/10.3390/min2040385