Towards a Model for Albitite-Type Uranium
Abstract
:1. Introduction
District or Deposit | Country | Endowment (kt U3O8) | Host-Rock | Host-Rock Age | Ore Age (Ga) | Main Deposits |
---|---|---|---|---|---|---|
Kirovo- Grad | Ukraine | >250 | Gneiss, granite, iron-rich rocks | Archaean–Orosirian | 1.90–1.70 | Novaya, SeverinskoyeNovokonstantinovskoye |
Itataia | Brazil | 142 | Mylonitic marble, calc-silicate rock and gneiss | Orosirian–Stratherian | No Data | Itataia |
Lagoa Real | Brazil | 100 | Mylonitised gneiss (large scale ductile shear zone) | Orosirian | 1.87 ± 0.07 0.6 ± 0.2 | Cachoeira, Rabicha |
Central Mineral Belt | Canada | 74 | Mylonitised meta- rhyolite, meta- volcaniclastic rocks and metasediments | Orosirian | 1.83 ± 0.03 | Michelin, Jacque’s Lake, Kitts, Moran Lake |
Mount Isa | Australia | 57 | Mylonitised meta- basalt and meta- siltstone | Orosirian | 1.56–1.51 | Valhalla, Odin, Skal, Bikini |
Beaver- Lodge | Canada | 30 | Mylonitised and/or cataclased granitic gneiss and amphibolite | Archaean to Orosirian | 1.86–1.78 ± 0.02 | Fay, Ace, Verna, Gunnar |
2. Host Rocks & Structural Setting
3. Albitites and Uranium
4. The Ores at the Microscopic Scale
5. Chemical Characteristics of the Ores
Deposit | Sample Population | # Samples | Correlation Coefficients with U >0.50 | Correlation Coefficients with U 0.50–0.35 | Comments |
---|---|---|---|---|---|
Lagoa Real | All available samples Major Elements | 39 | MgO (0.69), CaO (0.52) | TiO2 (0.37), Na2O (0.36) | Suite of 15 minor elements analysed for, including V, Y & Nb. REE not analysed for. |
All available samples Minor Elements | 39 | Pb (0.77), Nb (0.85) | Th (0.58), V (0.48), Ni (0.43), Zr (0.40) | ||
Itataia | All available samples Major Elements | 86 | CO2 (0.78), S (0.73) | Fe2O3 (0.42), P2O5 (0.38), CaO (0.34) | Only U and Zr of minor elements were analysed for and not in all samples. |
Valhalla | U > 500 ppm | 2425 | Be (0.57), Y (0.57), Sr (0.51), Ag (0.51) | Zr (0.47), Ce (0.41) | Ga, Hf not analysed. Bi, Nb & Ta consistently BLD. |
All available samples Major Elements | 94 | No correlation | Na2O (0.44), LOI (0.36) | ||
All available samples Minor Elements | 12173 | Pb (0.72), Yb (0.58), Th (0.56), Zr (0.56) | Dy (0.48), Y (0.38), Sr (0.42), V (0.43), As (0.43) | ||
Michelin | U > 500 ppm | 1464 | Ag (0.76), Pb (0.66), Ga (0.55) | Zr (0.37) | Cs, Hf, Nb, Sn, most REE, Y, Yb analysed in only 214 samples (i.e., about 5% of total samples). |
All available samples Major Elements | 214 | No correlation | Na2O (0.49), Al2O3 (0.44) | ||
All available samples Minor Elements | 5138 | Ag (0.80), Pb (0.77), Zr (0.65), Hf (0.56), Y (0.53) | Gd, Dy, Ho, Tb (~0.50) | ||
Aricheng North | U > 500 ppm | 988 | Nb (0.53), Y (0.51) | Sn (0.47), Sc (0.43), La (0.38), Bi (0.38), Ta (0.36), Ag (0.34) | SiO2 not analysed. Yb, Ga not analysed. Many Zr analyses of ore samples above UDL of 2000 ppm, thus correlation coefficient (0.18) could be greater. |
All available samples Major Elements | 5790 | No correlation | No correlation | ||
All available samples Minor Elements | 5790 | Pb (0.95) | Bi (0.48), Y (0.42), Zr (0.42), Nb (0.32) | ||
Jacque’s Lake | U > 500 ppm Minors | 793 | Pb (0.90), Zr (0.88), Ag (0.71), Th (0.67), Hf (0.66), Ge (0.64), REE (0.50–0.65), Nb (0.59), Ce (0.53) | Sn (0.50), Y (0.47), Ta (0.42), Yb (0.41) | Few analyses (29) for most REE, Hf, Sn, Ta, Th, Y, Yb & Zr. (Only 6 analyses in high grade samples). |
All available samples Major Elements | 29 | No correlation | Na2O (0.35) | ||
All available samples Minor Elements | 4456 | Pb (0.94), Th (0.83), Hf (0.7), Ge (0.67) | Ag (0.44), Ga (0.39), V (0.34), REE (~0.35) | ||
Rainbow | U > 500 ppm | 42 | REE (0.96–0.78), Nb (0.93), Y (0.93), Sn (0.67), Th (0.65), Ta (0.60), Sr (0.54) | Mo (0.50) | Few analyses (17) for most REE, Hf, Sn, Ta, Th, Y, Yb & Zr. Only 8 analyses in high grade samples therefore correlations possibly unreliable. |
All available samples Major Elements | 17 | CaO (0.57) | No correlation | ||
All available samples Minor Elements | 353 | Pb (0.82), Eu (0.81), Hf (0.7), Ag (0.69), Zr (0.68), Y (0.66), REE (~0.55–0.40) | Mo (0.36) | ||
Odin | U > 500 ppm | 140 | Pb (0.8) | No correlation | Only 17 elements were analysed for. Suite did not include key elements such as Ag, Be, Nb, REE, Hf, Sn, Y, Ta & Th |
All available samples Major Elements | 669 | P (0.6) | No correlation | ||
All available samples Minor Elements | 669 | Pb (0.84), V (0.56) | Zr (0.37) Sr (0.39) | ||
Duke Batman | U > 500 ppm | 4 | Na2O (0.86), Al2O3 (56), K2O (0.67), CaO (0.56), Sr (0.97), Zr (0.55), Th (0.98), Co (0.6), Y (0.56), Ba (0.56), Hf (0.53), REE (>0.45) | Nb (0.44), Ta (0.44) | |
All available samples Major Elements | 14 | No correlation | No correlation | ||
All available samples Minor Elements | 14 | Th (0.98), Ni (0.69), Zn (0.62), Y (0.85), Hf (0.63), REE (0.77–0.80, except Nd) | Nb (0.41) | Many key elements not analysed for, e.g., Ag, Mo, Se, Be, Ge, etc. |
6. Discussion
7. Conclusions
Acknowledgments
References
- Belevtsev, Y.N. Endogenic uranium deposits of precambrian shields: Environment of deposition. In Albitized Uranium Deposits: Six Articles Translated from Russian Literature; Abou-Zied, S., Kerns, G., Eds.; U.S. Department of Energy: Washington, DC, USA, 1980; pp. 55–80. [Google Scholar]
- Grechishnicov, N.P. Structural setting of one type of uranium-albitite mineralisation in precambrian rocks. In Albitized Uranium Deposits: Six Articles Translated from Russian Literature; Abou-Zied, S., Kerns, G., Eds.; U.S. Department of Energy: Washington, DC, USA, 1980. [Google Scholar]
- Lobato, L.M.; Fyfe, W.S. Metamorphism, metasomatism, and mineralization at Lagoa Real, Bahia, Brazil. Econ. Geol. 1990, 85, 968–989. [Google Scholar] [CrossRef]
- Cordani, U.G.; Iyer, S.S.; Taylor, P.N.; Kawashita, K.; Sato, K.; McReath, I. Pb-Pb, Rb-Sr, and K-Ar systematics of the Lagoa Real uranium province (south-central Bahia, Brazil) and the Espinhao cycle (ca. 1.5–1.0 Ga). J. South Am. Earth Sci. 1992, 5, 33–46. [Google Scholar] [CrossRef]
- Alexandre, P. Mineralogy and geochemistry of the sodium metasomatism-related uranium occurrence of Aricheng South, Guyana. Miner Depos. 2009, 45, 351–367. [Google Scholar] [CrossRef]
- Cinelu, S.; Cuney, M. Sodic metasomatism and U-Zr mineralization: A model based on the Kurupung batholith (Guyana). Geochim. Cosmochim. Acta 2006, 70. [Google Scholar] [CrossRef]
- Emetz, A.V.; Cuney, M.; Yuzlenko, A.T. Petrochemical Model of Uranium-Mineralized Albitites of the Novokostantynivka Uranium Deposit (Ukraine). In Proceedings of International Conference on Ore Potential of Alkaline, Kimberlite and Carbonatite Magmatism, Minsk, Russia, 12–16 September 2011.
- Maruejol, P.; Cathelineau, M. Metasomatoses et Mineralisations Uraniferes du Bassin de Krivoi Rog (Ukraine): Le gisement de Zheltorechensk (Mine Novaya); CREGU report 87–04; Centre de Recherches sur la Geologie des Matieres Premieres Minerales et Energetiques: Nancy, France, January 1987. [Google Scholar]
- Angeiras, A.G. Geology and metallogeny of the northeastern Brazil uranium-phosphorus province emphasizing the Itataia deposit. Ore Geol. Rev. 1988, 3, 211–225. [Google Scholar] [CrossRef]
- Netto, A.M.; Meyer, A.; Cuney, M.; Poupou, G. A Thermo-Chronological Study of Itataia Phospho-Uraniferous Deposit (Ceara, Brazil) by Apatite Fission Track Analysis: Genetic Implications. In Source, Transport and Deposition of Metals, Proceedings of the 25 Years SGA Anniversary Meeting, Nancy, France, 30 August–3 September 1991; Pagel, M.A., LeRoy, J.L., Eds.; Taylor and Francis Group: Rotterdam, the Netherlands, 1991. [Google Scholar]
- Oliver, N.H.; Cleverley, J.S.; Mark, G.; Pollard, P.; Bin, F.; Marshall, L.; Rubenach, M.; Williams, P.; Baker, T. Modeling the role of sodic alteration in the genesis of iron oxide copper-gold deposits, eastern Mount Isa Block, Australia. Econ. Geol. 2004, 99, 1145–1176. [Google Scholar] [CrossRef]
- Kalayeav, G.I. Mode of albitite distribution in zones of the ukrainian shield. In Albitized Uranium Deposits: Six Articles Translated from Russian Literature; Abou-Zied, S., Kerns, G., Eds.; U.S. Department of Energy: Washington, DC, USA, 1980; pp. 1–13. [Google Scholar]
- Beck, L.S. General geology and uranium deposits of the Beaverlodge district. In Uranium Deposits of Canada; Evans, E.L., Ed.; Canadian Institute of Mining and Metallurgy: Montréal, Quebec, Canada, 1972; Volume 33, pp. 85–94. [Google Scholar]
- Tremblay, L.P. Geology of the Beaverlodge Mining Area, Saskatchewan; Department of Energy, Mines and Resources: Ottawa, Canada, 1972. [Google Scholar]
- Hoeve, J. Perspective on Uranium Mineralization at Beaverlodge; Report G745-1E82; Saskatchewan Research Council: Saskatoon, SK, Canada, 1982. [Google Scholar]
- Turek, A. Geology of Lake Cinch Mines Limited, Uranium City, Saskatchewan. Master’s Thesis, University of Alberta, Edmonton, Canada,, January 1962. [Google Scholar]
- Hoeve, J. Uranium metallogenic studies: Relationship between Hudsonian soda metasomatism and Beaverlodge vein-type mineralisation. In Saskatchewan Geological Survey; Government of Saskatchewan: Prince Albert, SK, Canada, 1982; pp. 57–59. [Google Scholar]
- Ward, D.M. Uranium Geology of the Beaverlodge Area; International Atomic Energy Agency: Vienna, Austria, 1984; pp. 269–284. [Google Scholar]
- Wilde, A.R.; Otto, A.; Jory, J.; Becker, E.; MacRae, C.; Pownceby, M.; Wilson, N.; Torpy, A. The Valhalla, Bikini & Skal uranium deposits, Mount Isa, Australia. Miner. Depos. 2012. submitted. [Google Scholar]
- Olmel’yanenko, B.I.; Mineyeva, I.G. Pre- and syn-ore vertical zonation in Precambrian uraniferous sodic metasomatites. Int. Geol. Rev. 1982, 24, 422–430. [Google Scholar] [CrossRef]
- Netto, A.M. Contributions a la Mineralogie a la Petrographie et a la Metallogenie du gisement Phospho-Uranifere D’Itataia, Ceara, Bresil. Ph.D. Thesis, Université de Clermont-Ferrand, Clermont-Ferrand, France, 1984. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wilde, A. Towards a Model for Albitite-Type Uranium. Minerals 2013, 3, 36-48. https://doi.org/10.3390/min3010036
Wilde A. Towards a Model for Albitite-Type Uranium. Minerals. 2013; 3(1):36-48. https://doi.org/10.3390/min3010036
Chicago/Turabian StyleWilde, Andy. 2013. "Towards a Model for Albitite-Type Uranium" Minerals 3, no. 1: 36-48. https://doi.org/10.3390/min3010036
APA StyleWilde, A. (2013). Towards a Model for Albitite-Type Uranium. Minerals, 3(1), 36-48. https://doi.org/10.3390/min3010036