Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration
Abstract
:1. Introduction
2. Methods
3. Regional Geological and Metallogenetic Setting
4. Local Geology and Petrography
4.1. Sapes–Kirki–Esymi
4.2. Maronia
4.3. Melitena
5. Mineralization and Alteration
5.1. Sapes-Kirki-Esymi
5.2. Maronia
5.3. Melitena
Deposit | Type | Re in molybdenites (g/t) | Cu/Mo | Au (g/t) | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Min. | Max. | Average | |||||||||
Greece | ||||||||||||
THRACE | ||||||||||||
Pagoni Rachi | Porphyry Cu–Mo | 175 | 379 | 46,900 | 16,318 | 22 | 0.57 | [13,14,15] | ||||
Konos | Porphyry Cu–Mo | 7 | 750 | 31,100 | 15,621 | 4.95 | 0.04 | [15], this study | ||||
Maronia | Porphyry Cu–Mo | 55 | 1,200 | 28,800 | 7,600 | 15 | 0.10 | [39] | ||||
Melitena | Porphyry Mo ± Cu | 49 | 2,100 | 17,400 | 7,900 | 0.2 | 0.16 | [15,17], this study | ||||
Myli | Porphyry Cu–Mo | 32 | 440 | 19,200 | 2,733 | 35 | 0.09 | [15,60], this study | ||||
Kimmeria | Porphyry Mo–W | 47 | 10 | 550 | 134 | - | - | [15], this study | ||||
CHALKIDIKI | ||||||||||||
Skouries | Porphyry Cu–Au | 4 | 800 | 1,000 | 900 | 37 | 0.80 | [19] | ||||
KILKIS | ||||||||||||
Axioupolis | Porphyry Mo–W | 9 | 10 | 1,000 | 344 | - | - | [15], this study | ||||
AEGEAN SEA | ||||||||||||
Sardes, Limnos Isl. | Porphyry Cu–Mo | 7 | 1,100 | 5,200 | 3,785 | - | - | [15,61] | ||||
Fakos, Limnos Isl | Porphyry Cu | 5 | 910 | 2,220 | 1,396 | 69 | 0.03 | [15,62] | ||||
Stypsi, Lesvos Isl. | Porphyry Cu | 10 | 300 | 10,600 | 2,460 | 40 | 0.10 | [15,61] | ||||
Serifos | Porphyry Mo–W | 11 | 10 | 1,030 | 345 | - | - | [15], this study | ||||
ATTICA | ||||||||||||
Lavrion | Porphyry Mo–W | 27 | 10 | 1,310 | 229 | - | - | [15], this study | ||||
Bulgaria | ||||||||||||
Assarel | Porphyry Cu | 1 | - | - | 739 | 200 | 0.20 | [3,63,64,65,66] | ||||
Elatsite | Porphyry Cu-Au | 19 | 273 | 2,740 | 1,250 | 30–60 | 0.21 | [19,63,64,65,66,67] | ||||
Medet | Porphyry Cu | 22 | 565 | 1,163 | 905 | 37 | 0.10 | [3,63,64,65,66,67] | ||||
Serbia | ||||||||||||
Bor | Porphyry Cu–Au | 3 | - | - | 1,520 | - | 0.84 | [3,19,68] | ||||
Majdnapek | Porphyry Cu–Au | 3 | 2,320 | 3,550 | 2,770 | 120 | 0.35 | [68,69] | ||||
Sweden | ||||||||||||
Aitik | Porphyry Cu | 13 | 20 | 784 | 226 | 133 | 0.2 | [70,71] | ||||
Russia | ||||||||||||
Aksug | Porphyry Cu–Mo | 1 | - | - | 460 | 70 | 0.06 | [19,72] | ||||
Zhireken | Porphyry Mo–Cu | 7 | 12 | 57 | 29 | 1 | 0.03 | [19,72] | ||||
Sora | Porphyry Mo–Cu | 9 | 6 | 18 | 14 | 15 | 0.02 | [19,72] | ||||
Tominskoe | Porphyry Cu | - | - | 1,080 | 113 | 0.12 | [3] | |||||
Kazakhstan | ||||||||||||
Borly | Porphyry Cu–Au | 19 | 250 | 5,500 | 3,160 | 31 | 0.3 | [19,73] | ||||
Boshchekul | Porphyry Cu–Au | 23 | 230 | 1,500 | 825 | 66 | 0.05 | [19,73] | ||||
Kounrad | Porphyry Cu–Au | 20 | 620 | 4,050 | 1,540 | 40 | 0.19 | [19,73] | ||||
Uzbekistan | ||||||||||||
Kal’makyr | Porphyry Cu–Au | 20 | 700 | 2,000 | 1,500 | 80 | 0.51 | [19,73] | ||||
Armenia | ||||||||||||
Agarak | Porphyry Cu–Au | 106 | 57 | 6,310 | 820 | 22 | 0.6 | [19,73] | ||||
Kadzharan | Porphyry Cu–Au | 237 | 33 | 2,620 | 245 | 13 | 0.65 | [19,73] | ||||
Iran | ||||||||||||
Sar Cheshmeh | Porphyry Cu–Au | 15 | 11 | 517 | 192 | 40 | 0.27 | [74] | ||||
Mongolia | ||||||||||||
Erdenetium–Obo | Porphyry Cu–Mo | 3 | 104 | 199 | 164 | 213 | 0.02 | [19,72] | ||||
USA | ||||||||||||
Bagdad, Arizona | Porphyry Cu–Mo | 9 | 330 | 642 | 479 | 40 | 0.001 | [19,73,75] | ||||
Bingham, Utah | Porphyry Cu–Au | 6 | 130 | 2,000 | 360 | 18 | 0.38 | [19,73,75] | ||||
Castle Dome | Porphyry Cu | 1,200 | 1,750 | 1,550 | 60 | 0.03 | [19,73,75] | |||||
Esperanza | Porphyry Cu–Mo | 90 | 1,800 | 610 | 9 | 0.03 | [19,73,75] | |||||
Miami | Porphyry Cu–Mo | 600 | 63 | 0.01 | [19,73,75] | |||||||
Morenci | Porphyry Cu–Mo | 5 | 100 | 4,100 | 1,180 | 6 | 0,03 | [19,73,75] | ||||
San Manuel | Porphyry Cu–Mo | 5 | 700 | 1,200 | 950 | 55 | 0.02 | [19,73,75] | ||||
Santa Rita | Porphyry Cu | 5 | 200 | 1,100 | 750 | 59 | 0.06 | [19,73,75] | ||||
Silver Bell | Porphyry Cu–Mo | 18 | 470 | 340 | 470 | 40 | 0.03 | [19,73,75] | ||||
Twin Buttes | Porphyry Cu–Mo | 600 | 22 | 0.02 | [19,73,75] | |||||||
Climax | Porphyry Mo | 28 | 35 | 11 | 80 | [19,73,75] | ||||||
Canada | ||||||||||||
Adanac | Porphyry Mo | 4 | 8 | 22 | 12 | 0.02 | - | [3] | ||||
Ajax West | Porphyry Cu–Au | 1 | - | - | 3,161 | 62 | 0.2 | [3] | ||||
Berg | Porphyry Cu–Mo | 4 | 67 | 215 | 152 | 13 | 0.06 | [3] | ||||
Bethlehem | Porphyry Cu | 3 | 190 | 980 | 553 | 80 | 0.01 | [3] | ||||
Boss Mountain | Porphyry Mo | 7 | 49 | 157 | 80 | [3] | ||||||
Brenda | Porphyry Cu–Mo | 12 | 95 | 145 | 115 | 4 | 0.01 | [3] | ||||
Bronson Slope | Porphyry Cu–Au | 1 | 180 | 28 | 0.44 | [3] | ||||||
Endako 1 | Porphyry Mo | 12 | 15 | 67 | 35 | 0.03 | - | [3] | ||||
Endako 2 | Porphyry Mo | 3 | 204 | 397 | 302 | 0.03 | - | [3] | ||||
Gibraltar | Porphyry Cu | 4 | 238 | 750 | 443 | 48 | 0.01 | [3] | ||||
Glacier Gulch (Davidson) | Porphyry Mo | 2 | 34 | 41 | 38 | 0.23 | - | [3] | ||||
Granisle | Porphyry Cu | 4 | 522 | 528 | 526 | 86 | 0.13 | [3] | ||||
Huckleberry | Porphyry Cu | 2 | 247 | 258 | 253 | 86 | 0.13 | [3] | ||||
Ingerbelle | Porphyry Cu–Au | 1 | - | - | 1,620 | 215 | 0.16 | [3] | ||||
Island Copper | Porphyry Cu | 2 | 1,704 | 1,863 | 1,784 | 38 | 0.19 | [3] | ||||
Kemess South | Porphyry Cu–Au | 2 | 3,106 | 4,609 | 3,858 | 28 | 0.65 | [3] | ||||
Kitsault | Porphyry Mo | 2 | 57 | 102 | 80 | 0.03 | - | [3] | ||||
Lomex | Porphyry Cu | 1 | - | - | 345 | 29 | 0.006 | [3] | ||||
Maggie | Porphyry Cu–Mo | 1 | - | - | 643 | 9.7 | - | [3] | ||||
McIntyre-Copper Zone | Porphyry Cu–Au | 1,192 | 50 | 1.30 | [3] | |||||||
McLeod Lake | Porphyry Cu–Mo | 184 | 9 | 0.04 | [3] | |||||||
Mitchell (Sulphurets) | Porphyry Cu–Au | 2 | 7,012 | 8,170 | 7,590 | 36 | 0.69 | [3] | ||||
Ryan Lake | Porphyry Cu–Mo | 104 | 9 | 0.09 | [3] | |||||||
Schaft Creek | Porphyry Cu–Mo | 1 | 590 | 13.2 | 0.18 | [3] | ||||||
Philippines | ||||||||||||
Sipalay | Porphyry Cu | 1 | - | - | 1,700 | 34 | 0.05 | [22] | ||||
Santo Thomas II | Porphyry Cu–Au | 6 | 700 | 15,400 | 10,183 | 33 | 0.64 | [76] | ||||
Peru | ||||||||||||
Michiquillay, Cajamarca | Porphyry Cu | 8 | 127 | 736 | 494 | 50 | 0.16 | [77] | ||||
Galeno, Cajamarca | Porphyry Cu | 1 | - | - | 810 | 47 | 0.11 | [77] | ||||
Chile | ||||||||||||
Chuquicamata | Porphyry Cu–Mo | 3 | 194 | 245 | 220 | 16 | 0.01 | [19,73] | ||||
Collahuasi | Porphyry Cu–Mo | 2 | 368 | 448 | 410 | 22 | 0.01 | [19,73] | ||||
El Salvador | Porphyry Cu | 570 | 141 | 0.01 | [19,73] | |||||||
El Teniente | Porphyry Cu | 6 | 182 | 1,154 | 390 | 48 | 0.01 | [19,73] | ||||
Escondida | Porphyry Cu–Au | 1 | - | - | 1,355 | 156 | 0.25 | [19,73] | ||||
Los Pelambres | Porphyry Cu–Mo | 3 | 450 | 820 | 600 | 39 | 0.03 | [19,73] |
6. Mineralogy of Rhenium-Bearing Phases
wt % | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Mo | 55.11 | 55.59 | 60.06 | 57.25 | 58.76 | 58.90 | 59.09 | 57.57 | 56.82 | 57.44 |
Re | 3.11 | 2.15 | 1.92 | 0.91 | 1.74 | 1.33 | 1.22 | 2.00 | 4.14 | 3.28 |
Fe | bd | 0.57 | bd | bd | bd | 0.02 | bd | bd | bd | 0.51 |
S | 42.98 | 41.67 | 38.48 | 40.90 | 39.03 | 39.08 | 39.49 | 39.65 | 39.25 | 39.21 |
Total | 101.20 | 99.98 | 100.46 | 100.32 | 99.54 | 99.33 | 99.76 | 99.23 | 100.21 | 100.44 |
Chemical formula (based on 3 apfu) | ||||||||||
Mo | 0.891 | 0.914 | 1.006 | 0.934 | 0.999 | 1.001 | 0.996 | 0.974 | 0.966 | 0.972 |
Re | 0.026 | 0.019 | 0.016 | 0.008 | 0.015 | 0.012 | 0.011 | 0.017 | 0.036 | 0.029 |
Fe | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.00 | 0.015 |
S | 2.082 | 2.051 | 1.978 | 2.058 | 1.986 | 1.987 | 1.993 | 2.008 | 1.997 | 1.984 |
7. Discussion
7.1. Causes of Re-Enrichment in Molybdenite from Northern Greece
7.2. Implications for Re–Au Exploration
8. Conclusions
Acknowledgments
References
- Newberry, R.J.J. Polytypism in molybdenite (I): A non-equilibrium, impurity-induced phenomenon. Am. Mineral. 1979, 64, 758–767. [Google Scholar]
- Melfos, V.; Voudouris, P.; Arikas, K.; Vavelidis, M. Rhenium-rich molybdenites in Thracian Μο±Cu porphyry occurrences, NE Greece [in Greek]. Bull. Geol. Soc. Greece 2001, 34, 1015–1022. [Google Scholar]
- Sinclair, D.W.; Jonasson, I.R.; Kirkham, R.V.; Soregaroli, A.E. Rhenium and Other Platinum-Group Metals in Porphyry Deposits; Open File 6181; Geological Survey of Canada: Ottawa, Canada, 2009. [Google Scholar]
- Ekström, M.; Hålenius, U. A new rhenium-rich sulfide from two Swedish localities. N. Jb. Miner. Mnh. 1982, 1, 6–10. [Google Scholar]
- Mitchell, R.H.; Laflamme, J.H.; Cabri, L.J. Rhenium sulfide from the Coldwell Complex, northwester Ontario. Mineral. Mag. 1989, 53, 635–637. [Google Scholar]
- Tarkian, M.; Housley, R.M.; Volborth, R.M.; Greis, O.; Moh, G. Unnamed Re-Mo-Cu sulfide from the Stillwater Complex, and crystal chemistry of its synthetic equivalent spinel type (Cu, Fe)(Re, Mo)4S8. Eur. J. Mineral. 1991, 3, 977–982. [Google Scholar]
- Barkov, A.Y.; Lednev, A.I. A rhenium-molybenum-copper sulfide from the Lukkulaisvarra layered intrusion, northern Karelia, Russia. Eur. J. Mineral. 1993, 6, 1227–1233. [Google Scholar]
- Kojonen, K.K.; Roberts, A.C.; Isomaki, O.P.; Knauff, V.V.; Johanson, B.; Pakkanen, L. Tarkianite, (Cu,Fe)(Re,Mo)4S8, a new mineral species from the Hitura mine, Nivala, Finland. Can. Mineral. 2004, 42, 539–544. [Google Scholar] [CrossRef]
- Bobrov, A.; Hurskiy, D.; Merkushyn, I.; Voloshyn, O.; Stepanyuk, L.; Lysenko, O.; Goshovksi, S. The First Occurrence of Native Rhenium in Natural Geological Systems. In Proceedings of 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008.
- Poplavko, E.M.; Marchakova, I.D.; Zak, S.Sh. A rhenium mineral in the ores of the Dzhezkazgan locality [in Russian]. Dokl. Acad. Nauk. USSR 1962, 146, 433–436. [Google Scholar]
- Lavrov, O.B.; Kuleshevich, L.V. The first finds of rhenium minerals in Karelia. Dokl. Earth Sci. 2010, 432, 598–601. [Google Scholar] [CrossRef]
- Korzhinsky, M.A.; Tkachenko, S.I.; Shumulovich, K.I.; Taran, Y.A.; Steinberg, G.S. Discovery of a pure rhenium mineral at Kudriavy volcano. Nature 1994, 369, 51–52. [Google Scholar] [CrossRef]
- Voudouris, P.C.; Melfos, V.; Spry, P.G.; Bindi, L.; Kartal, T.; Arikas, K.; Moritz, R.; Ortelli, M. Rhenium-rich molybdenite and rheniite (ReS2) in the Pagoni Rachi-Kirki Mo-Cu-Te-Ag-Au deposit, Northern Greece: Implications for the rhenium geochemistry of porphyry style Cu-Mo and Mo mineralization. Can. Mineral. 2009, 47, 1013–1036. [Google Scholar]
- Voudouris, P.; Melfos, V.; Moritz, R.; Spry, P.G.; Ortelli, M.; Kartal, T. Molybdenite Occurrences in Greece: Mineralogy, Geochemistry and Rhenium Content. In Scientific Annals of the School of Geology AUTH, Proceedings of the XIX Congress of the Carpathian-Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010; pp. 369–378.
- Voudouris, P.C.; Melfos, V.; Spry, P.G.; Kartal, T.; Schleicher, H.; Moritz, R.; Ortelli, M. The Pagoni Rachi/Kirki Cu-Mo±Re±Au deposit, northern Greece: Mineralogical and fluid inclusion constrains on the evolution of a telescoped porphyry-epithermal system. Can. Mineral. 2013, 51, 411–442. [Google Scholar]
- Arikas, K. A porphyry Mo-Cu occurence near Kirki (western Thrace, Greece). N. Jb. Miner. Abh. 1979, 137, 74–82. [Google Scholar]
- Filippidis, A.; Vavelidis, M.; Michailidis, K.; Evangelou, E. Re-rich and Re-poor molybdenite in the Melitena porphyritic intrusion, Rhodope massif. Fortschr. Mineral. 1986, 64, 47. [Google Scholar]
- Michailidis, K.; Filippidis, A.; Kassoli-Fournaraki, A. Polytypism and rhenium-contents of molybdenites from two Mo-deposits in northern Greece. In Current Research in Geology Applied to Ore Deposits, Proceedings of the second biennial SGA meeting, Granada, Spain, 9–11 September 1993; Fenoll Hach-Ali, P., Torres-Ruiz, J., Gervilla, F., Eds.; University of Granada: Granada, Spain, 1993; pp. 641–644. [Google Scholar]
- Berzina, A.N.; Sotnikov, V.I.; Economou-Eliopoulos, M.; Eliopoulos, D.G. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geol. Rev. 2005, 26, 91–113. [Google Scholar] [CrossRef]
- Newberry, R.J.J. Polytypism in molybdenite (II): Relationships between polytypism, ore deposition/alteration stages and rhenium contents. Am. Mineral. 1979, 64, 768–775. [Google Scholar]
- Fleisher, M. The geochemistry of rhenium with special reference to its occurrence in molybdenite. Econ. Geol. 1959, 54, 1406–1413. [Google Scholar] [CrossRef]
- Terada, K.; Osaki, S.; Ishihara, S.; Kiba, T. Distribution of rhenium in molybdenites from Japan. Geochem. J. 1971, 4, 123–141. [Google Scholar] [CrossRef]
- Stein, H.J.; Marke, R.J.; Morgan, J.W.; Hannah, J.L.; Scherstén, A. The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova 2001, 13, 479–486. [Google Scholar] [CrossRef]
- Brown, M.; Lazo, F.; Carter, P.; Goss, B.; Kirwin, D. The Geology and Discovery of the Merlin Mo-Re Zone of the Mount Dore Deposit, Mount Isa Inlier, NW Queensland, Australia. SGA News, 27 June 2010; 9–15. [Google Scholar]
- Lycopodium Minerals QLD Pty Ltd. Merlin Molybdenum Rhenium Project: Feasibility Study Northwest Queensland, Australia. Available online: http://www.ivanhoeaustralia.com/i/pdf/NI43-101_Merlin_Technical_Report.pdf (accessed on 16 April 2012).
- Jolivet, L.; Brun, J.P. Cenozoic geodynamic evolution of the Aegean region. Int. J. Earth Sci. 2010, 99, 109–138. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C.; Huet, B.; Labrousse, L.; Le Pourhiet, L.; Lacombe, O.; Lecomte, E.; Burov, E.; Denèle, Y.; Brun, J.P.; et al. Aegean tectonics: Strain localization, slab tearing and trench retreat. Tectonophysics 2012. [Google Scholar] [CrossRef] [Green Version]
- Ring, U.; Glodny, J.; Will, T.; Thomson, S. The Hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Ann. Rev. Earth Planet. Sci. 2010, 38, 45–76. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Hafkenscheid, E.; Spakman, W.; Meulenkamp, J.E.; Wortel, R. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 2005, 33, 325–328. [Google Scholar] [CrossRef]
- Brun, J.P.; Faccenna, C. Exhumation of high-pressure rocks driven by slab roll-back. Earth Planet. Sci. Lett. 2008, 272, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Marchev, P.; Kaiser-Rohrmeier, M.; Heinrich, Ch.; Ovtcharova, M.; von Quadt, A.; Raicheva, R. Hydrothermal ore deposits related to post-orogenic extentional magmatism and core complex formation: the Rhodope Massif of Bulgaria and Greece. Ore Geol. Rev. 2005, 27, 53–89. [Google Scholar] [CrossRef]
- Wüthrich, E.D. Low Temperature Thermochronology of the Northern Aegean Rhodope Massif. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2009. [Google Scholar]
- Foster, M.; Lister, G. Core-complex-related extension of the Aegean lithosphere initiated at the Eocene-Oligocene transition. J. Geophys. Res. Solid Earth 2009, 114, B02401:1–B02401:36. [Google Scholar] [CrossRef]
- Burg, J.P. Rhodope: From Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame. J. Virtual Explor. 2012, 42, Paper 1. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.W. Unique features of the Cenozoic igneous rocks of Greece. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Dilek, Y., Pavlides, S., Eds.; Geological Society of America Special Paper 409; The Geological Society of America: Boulder, CO, USA, 2006; pp. 259–282. [Google Scholar]
- Innocenti, F.; Kolios, N.; Manetti, O.; Mazzuoli, R.; Peccerillo, G.; Rita, F.; Villari, L. Evolution and geodynamic significance of the Tertiary orogenic volcanism in northeastern Greece. Bull. Vulcanol. 1984, 47, 25–37. [Google Scholar] [CrossRef]
- Perugini, D.; Poli, G.; Christofides, G.; Eeftheriadis, G.; Koroneos, A.; Soldatos, T. Mantle-derived and crustal melts dichotomy in northern Greece: spatiotemporal and geodynamic implications. Geol. J. 2004, 39, 63–80. [Google Scholar] [CrossRef]
- Fytikas, M.; Innocenti, F.; Manetti, O.; Mazzuoli, R.; Peccerillo, G.; Villari, L. Tertiary to Quaternary evolution of volcanism in the Aegean region. In The Geological Evolution of the Eastern Mediterranean; Geological Society Special Publications No. 17; Dixon, J.E., Robertson, A.H.F., Eds.; The Geological Society: London, UK, 1984; pp. 687–699. [Google Scholar]
- Melfos, V.; Vavelidis, M.; Christofides, G.; Seidel, E. Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Miner. Depos. 2002, 37, 648–668. [Google Scholar] [CrossRef]
- Moritz, R.; Márton, I.; Ortelli, M.; Marchev, P.; Voudouris, P.; Bonev, N.; Spikings, R.; Cosca, M. A Review of Age Constraints of Epithermal Precious and Base Metal Deposits of the Tertiary Eastern Rhodopes: Coincidence with Late Eocene-Early Oligocene Tectonic Plate Reorganization along the Tethys. In Scientific Annals of the School of Geology AUTH, Proceedings of the 19th Congress of the Carpathian-Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010; pp. 351–358.
- Arvanitidis, N.D.; Constantinides, D. Base and precious metal sulfide mineralization of the Greek Rhodope Massif. Geol. Rhodop. 1989, 1, 298–305. [Google Scholar]
- Arikas, K.; Voudouris, P. Hydrothermal alterations and mineralizations of magmatic rocks in the southern Rhodope Massif. Acta Volcan. 1998, 10, 353–365. [Google Scholar]
- Voudouris, P. Comparative mineralogical study of Tertiary Te-rich epithermal and porphyry systems in northeastern Greece. Mineral. Petrol. 2006, 87, 241–275. [Google Scholar] [CrossRef]
- Márton, I.; Moritz, R.; Spikings, R. Application of low-temperature thermochronology to hydrothermal ore deposits: Formation, preservation and exhumation of epithermal gold systems from the Eastern Rhodopes, Bulgaria. Tectonophysics 2010, 483, 240–254. [Google Scholar] [CrossRef]
- Eliopoulos, D.; Kilias, S.P. Marble-hosted submicroscopic gold mineralization at Asimotrypes area, Mount Pangeon, southern Rhodope Core Complex, Greece. Econ. Geol. 2011, 106, 751–780. [Google Scholar] [CrossRef]
- Voudouris, P.; Tarkian, M.; Arikas, K. Mineralogy of telluride-bearing epithermal ores in Kassiteres-Sappes area, western Thrace, Greece. Mineral. Petrol. 2006, 87, 31–52. [Google Scholar] [CrossRef]
- Ortelli, M. Tertiary Porphyry and Epithermal Association of the Sapes/Kassiteres District, Eastern Rhodopes, Greece. Master’s Thesis, University of Geneva, Geneva, Switzerland, October 2009. [Google Scholar]
- Ortelli, M.; Moritz, R.; Voudouris, P.; Spangenberg, J. Tertiary porphyry and epithermal association of the Sapes-Kassiteres district, eastern Rhodopes, Greece. In Smart Science for Exploration and Mining, Proceedings of the 10th Biennial SGA Meeting, Townsville, Australia, 17–20 August 2009; Williams, P.J., Ed.; Economic Geology Research Unit, James Cook University: Douglas, Australia, 2009; pp. 536–538. [Google Scholar]
- Papadopoulou, L.; Christofides, G.; Koroneos, A.; Brӧcker, M.; Soldatos, T.; Eleftheriadis, G. Evolution and origin of the Maronia pluton, Thrace, Greece. Bull. Geol. Soc. Greece 2004, 36, 568–577. [Google Scholar]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zenettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Streckeisen, A.; Le Maitre, R.W. A chemical approximation to the modal QAPF classification of the igneous rocks. N. Jb. Miner. Abh. 1979, 136, 169–206. [Google Scholar]
- Eleftheriadis, G. Petrogenesis of the Oligocene volcanics from the Central Rhodope massif (N. Greece). Eur. J. Mineral. 1995, 7, 1169–1182. [Google Scholar]
- Voudouris, P.; Melfos, V. Aluminum-phosphate-sulfate (APS) minerals in the sericitic-advanced argillic alteration zone of the Melitena porphyry-epithermal Mo-Cu-±Au±Re prospect, western Thrace, Greece. N. Jb. Mineral. Abh. 2012, 190, 11–27. [Google Scholar]
- Gustafson, L.B.; Hunt, J.P. The porphyry copper deposit at El Salvador, Chile. Econ. Geol. 1975, 70, 857–912. [Google Scholar] [CrossRef]
- Dilles, J.H.; Einaudi, M.T. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—A 6-km vertical reconstruction. Econ. Geol. 1992, 87, 1963–2001. [Google Scholar] [CrossRef]
- Muntean, J.L.; Einaudi, M.T. Porphyry-epithermal transition: Maricunga belt, Northern Chile. Econ. Geol. 2001, 96, 743–772. [Google Scholar] [CrossRef]
- Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. Econ. Geol. 2005, 100, 251–298. [Google Scholar]
- Arancibia, O.N.; Clark, A.H. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit, British Columbia. Econ. Geol. 1996, 91, 402–438. [Google Scholar] [CrossRef]
- Katirtzoglou, C. The Metallogenesis of the Tertiary Sulfide Mineralization of the Essymi Region, Evros County. Ph.D. Thesis, University of Athens, Athens, Greece, 1986. [Google Scholar]
- Voudouris, P.; Alfieris, D. New porphyry-Cu±Mo occurrences in northeastern Aegean/Greece: Ore mineralogy and transition to epithermal environment. In Mineral Deposit Research: Meeting the Global Challenge, Proceedings of the 8th Biennial SGA Meeting, Beijing, China, 18–21 August 2005; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin, Germany, 2005; pp. 473–476. [Google Scholar]
- Fornadel, A.P.; Voudouris, P.; Spry, P.G.; Melfos, V. Mineralogical, stable isotope and fluid inclusion studies of spatially related porphyry Cu-Mo and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece. Mineral. Petrol. 2012, 105, 85–111. [Google Scholar] [CrossRef]
- Todorov, T. Genetic types and metal-formation of molybdenum mineralization in Bulgaria. J. Southeast Asian Earth Sci. 1973, 8, 307–311. [Google Scholar]
- Tarkian, M.; Stribny, B. Platinium group elements in porphyry copper deposits: A reconnaissance study. Mineral. Petrol. 1999, 65, 161–183. [Google Scholar] [CrossRef]
- Strashimirov, S.; Petrunov, R.; Kanazirski, M. Porphyry-copper mineralization in the central Srednogorie zone, Bulgaria. Miner. Depos. 2002, 37, 587–598. [Google Scholar] [CrossRef]
- Tockmakchieva, M. Valuable minor components in the composition of porphyry copper deposits. In Annual Report of the University of Mining and Geology “St. Ivan Rilski” Volume 45, Part I, Geology, Sofia; University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2002; pp. 71–75. [Google Scholar]
- Todorov, T.; Staikov, M. Rhenium content in molybdenite from ore mineralizations in Bulgaria. Geol. Balc. 1985, 15, 45–58. [Google Scholar]
- Armstrong, R.; Kozelj, D.; Herrington, R. The Majdanpek Cu-Au deposit of eastern Serbia, a review. In Super Porphyry Copper and Gold Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2005; Volume 2, pp. 453–466. [Google Scholar]
- Pavicevic, M.K.; Krajnovic, D.; Cvetcovic, L.; Grzetic, I. The Trace Elements in Chalcopyrite and Pyrite in the Bor Copper Deposits. In Proceedings of XV Congress of the Carpatho-Balcan Geological Association, Athens, Greece, 17–20 September 1995; pp. 804–807.
- Wanhainen, C.; Billström, K.; Martinsson, O. Copper and gold distribution at the Aitik deposit, Gällivare area, northern Sweden. Appl. Earth Sci. 2003, 112, 260–267. [Google Scholar] [CrossRef]
- Nigatu, W. Rhenium in the Aitik Cu-Au-Ag-(Mo) Deposit. Master’s Thesis, Lulea University of Technology, Lulea, Sweden, December 2011. [Google Scholar]
- Sotnikov, V.I.; Berzina, A.N.; Economou-Eliopoulos, M.; Eliopoulos, D.G. Palladium, platinum and gold distribution in porphyry Cu±Mo deposits of Russia and Mongolia. Ore Geol. Rev. 2001, 18, 95–111. [Google Scholar] [CrossRef]
- Singer, D.A.; Berger, V.I.; Moring, B.B. Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models; Open-File Report 2008-1155; U.S. Geological Survey: Reston, VA, USA, 2008. Available online: http://pubs.usgs.gov/of/2008/1155/ (accessed on 6 June 2008).
- Aminzadeh, B.; Shahabpour, J.; Maghami, M. Variation of rhenium contents in molybdenites from the Sar Cheshmeh porphyry Cu-Mo deposit in Iran. Res. Geol. 2011, 61, 290–295. [Google Scholar] [CrossRef]
- Gilles, D.L.; Schilling, J.H. Variation in Rhenium Content of Molybdenite. In Proceedings of the 24th International Geological Congress Section 10, Montreal, Canada, 1972; pp. 145–152.
- Tarkian, M.; Koopmann, G. Platinum-group minerals in the Santo Thomas II (Philex), porphyry copper-gold deposit Luzon Island, Philippines. Miner. Depos. 1995, 30, 39–47. [Google Scholar]
- Marinov, D. Re-Os molybdenite geochronology from Michiquillay and Galeno porphyry copper deposits, Cajamarca, Perú. In Let’s Talk Ore Deposits, Proceedings of the 11th Biennial SGA Meeting, Antofagasta, Chile, 26–29 September 2011; Barra, F., Reich, M., Campos, E., Tornos, F., Eds.; Universidad Católica del Norte: Antofagasta, Chile, 2011. [Google Scholar]
- Drábek, M.; Rieder, M.; Bӧhmová, V. The Re-Mo-S system: New data on phase relations between 400 and 1200 °C. Eur. J. Mineral. 2010, 22, 479–484. [Google Scholar] [CrossRef]
- Kosler, J.A.; Simonetti, A.; Sylvester, P.J.; Cox, R.A.; Tubrett, M.N.; Wilton, D.H.C. Laser ablation ICP-MS measurements of Re/Os in molybdenite and implications for Re-Os geochronology. Can. Mineral. 2003, 41, 307–320. [Google Scholar] [CrossRef]
- Selby, D.; Creaser, R.A. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Econ. Geol. 2001, 96, 197–204. [Google Scholar] [CrossRef]
- Selby, D.; Creaser, R.A. Macroscale NTIMS and mircoscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restriction for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochim. Cosmochim. Acta 2004, 68, 3897–3908. [Google Scholar] [CrossRef]
- Grabezhev, A.I.; Shagalov, E.S. Rhenium distribution in molybdenite: Results of microprobe scanning (copper porphyry deposits, the Urals). Dokl. Earth Sci. 2010, 431, 351–355. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, Z.; Zhang, Z.; Du, A. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian Mountains and its geological significance. Geochim. Cosmochim. Acta 1999, 63, 1815–1818. [Google Scholar] [CrossRef]
- Blevin, P.L. The primacy of magma compositions in determining the Re and W contents of molybdenite. In Proceedings of the 24th International Applied Geochemistry Symposium, Fredericton, Canada, 1 June to 4 June 2009; pp. 119–122.
- Selby, D.; Creaser, R.A.; Hart, C.J.R.; Rombach, C.S.; Thompson, J.F.H.; Smith, T.; Bakke, A.; Goldfarb, R. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology 2002, 30, 791–794. [Google Scholar] [CrossRef]
- Selby, D.; Creaser, R.A.; Heaman, L.M.; Hart, C.J.R. Re-Os and U-Pb geochronology of the Clear Creek, Dublin Gulch, and Mactung deposits, Tombstone Gold Belt, Yukon, Canada: absolute timing relationships between plutonism and mineralization. Can. J. Earth Sci. 2003, 40, 1839–1852. [Google Scholar] [CrossRef]
- Jones, C.E.; Tarney, J.; Baker, J.H.; Gerouki, F. Tertiary granitoids of Rhodope, northern Greece: Magmatism related to extensional collapse of the Hellenic Orogen? Tectonophysics 1992, 210, 295–314. [Google Scholar] [CrossRef]
- Christofides, G.; Soldatos, T.; Elefthertiadis, G.; Koroneos, A. Chemical and isotopic evidence for source contamination and crustal assimilation in the Hellenic Rhodope plutonic rocks. Acta Volcanol. 1998, 10, 305–318. [Google Scholar]
- Altherr, R.; Siebel, W. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contrib. Mineral. Petrol. 2002, 143, 397–415. [Google Scholar] [CrossRef]
- Skarpelis, N.; Tsikouras, B.; Pe-Piper, G. The Miocene igneous rocks in the Basal Unit of Lavrion (SE Attica, Greece): Petrology and geodynamic implications. Geol. Mag. 2008, 145, 1–15. [Google Scholar]
- Christofides, G.; Soldatos, T.; Koroneos, A. Geochemistry and evolution of the Fanos granite, N. Greece. Mineral. Petrol. 1990, 43, 49–63. [Google Scholar] [CrossRef]
- Iglseder, C.; Grasemann, B.; Schneider, D.A.; Petrakakis, K.; Miller, C.; Klötzlid, U.S.; Thöni, M.; Zámolyi, A.; Rambousek, C. I and S-type plutonism on Seriphos (W-Cyclades, Greece). Tectonophysics 2009, 473, 69–83. [Google Scholar] [CrossRef]
- Xiong, Y.; Wood, S.A. Experimental determination of the solubility of ReS2 and the Re-ReO2 buffer assemblage and transport of rhenium under supercritical conditions. Geochem. Trans. 2002, 3, 1–10. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J. The Igneous Rocks of Greece: The Anatomy of an Orogen; Pe-Piper, G., Piper, D.J.W., Eds.; Beiträge zur regionalen Geologie der Erde 30; Gebruder Borntraeger: Berlin, Germany, 2002. [Google Scholar]
- Del Moro, A.; Innocenti, F.; Kyriakopoulos, C.; Manetti, P.; Papadopoulos, P. Tertiary granitoids from Thrace (Northern Greece): Sr isotopic and petrochemical data. N. Jb. Miner. Abh. 1988, 159, 113–135. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.; Koukouvelas, I.; Dolansky, L.M.; Kokkalas, S. Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece. Geol. Soc. Am. Bull. 2009, 121, 39–54. [Google Scholar]
- Kroll, T.; Muller, D.; Seifert, T.; Herzig, P.M.; Schneider, A. Petrology and geochemistry of the shoshonite-hosted Skouries porphyry Cu-Au deposit, Chalkidiki, Greece. Miner. Depos. 2002, 37, 137–144. [Google Scholar] [CrossRef]
- Richards, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Richards, J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 2011, 40, 1–26. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Santosh, M.; Yao, J.M.; Sun, Y.L.; Li, J. The 1.85 Ga Mo mineralization in the Xiong’er Terrane, China: Implications for metallogeny associated with assembly of the Columbia supercontinent. Precambrian Res. 2011, 186, 220–232. [Google Scholar] [CrossRef]
- Jensen, E.P.; Barton, M.D. Gold deposits related to alkaline magmatism. Rev. Econ. Geol. 2000, 13, 279–314. [Google Scholar]
- Sun, W.; Arculus, R.J.; Bennett, V.C.; Eggins, S.M.; Binns, R.A. Evidence for rhenium enrichment in the mantle wedge from submarine arc like volcanic glasses (Papua New Guinea). Geology 2003, 31, 845–848. [Google Scholar] [CrossRef]
- Tessalina, S.G.; Yudovskaya, M.A.; Chaplygin, I.V.; Birck, J.-L.; Capmas, F. Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano. Geochim. Cosmochim. Acta 2008, 72, 889–909. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Damian, G.; Damian, F. Telluride and sulfosalt associations at Sǎcǎrîmb. In Au-Ag-Telluride Deposits of the Golden Quadrilateral, Apuseni Mts., Romania; Cook, N.J., Ciobanu, C.L., Eds.; International Field Workshop of IGCP Project 486; IAGOD Guidebook Series 12; Romanian Geological Survey: Alba Iulia, Romania, 2004; pp. 145–186. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Damian, G.; Damian, F. Tellurides and sulfosalts from deposits in the Golden Quadrilateral. In Au-Ag-Telluride Deposits of the Golden Quadrilateral, Apuseni Mts., Romania; Cook, N.J., Ciobanu, C.L., Eds.; International Field Workshop of IGCP Project 486; IAGOD Guidebook Series 12; Romanian Geological Survey: Alba Iulia, Romania, 2004; pp. 111–144. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L. Bismuth tellurides and sulfosalts from the Larga hydrothermal system, Metaliferi Mts, Romania: Paragenesis and genetic significance. Mineral. Mag. 2004, 68, 301–321. [Google Scholar] [CrossRef]
- Harris, C.R.; Pettke, T.; Heinrich, C.A.; Rosu, E.; Woodland, S.; Fry, B. Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu-Au-Te mineralizing magmas, Apuseni Mountains (Romania). Earth Planet. Sci. Lett. 2013, 366, 122–136. [Google Scholar] [CrossRef]
- Tarkian, M.; Eliopoulos, D.G.; Economou-Eliopoulos, M. Mineralogy of precious metals in the Skouries porphyry copper deposit, Northern Greece. N. Jb. Miner. Abh. 1991, 12, 529–537. [Google Scholar]
- Spry, P.G.; Foster, F.; Truckle, J.S.; Chadwick, T.H. The mineralogy of the Golden Sunlight gold-silver telluride deposit, Whitehall, Montana, U.S.A. Mineral. Petrol. 1997, 59, 143–164. [Google Scholar] [CrossRef]
- LeFort, D.; Hanley, J.; Guillong, M. Subepithermal Au-Pd mineralization associated with an alkalic porphyry Cu-Au deposit, Mount Milligan, Quesnel Terrane, British Columbia, Canada. Econ. Geol. 2011, 106, 781–808. [Google Scholar] [CrossRef]
- Zimmerman, A.; Stein, H.J.; Hannah, J.L.; Kozelj, D.; Bogdanov, K.; Berza, T. Tectonic configuration of the Apuseni-Banat-Timrok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re-Os. Miner. Depos. 2008, 43, 1–21. [Google Scholar] [CrossRef]
- Leng, C.-B.; Zhang, X.-C.; Hu, R.-Z.; Wang, S.-X.; Zhong, H.; Wang, W.-Q.; Bi, X.-W. Zircon U-Pb and molybdenite Re-Os Geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. J. Asian Earth Sci. 2012, 60, 31–48. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Voudouris, P.; Melfos, V.; Spry, P.G.; Bindi, L.; Moritz, R.; Ortelli, M.; Kartal, T. Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration. Minerals 2013, 3, 165-191. https://doi.org/10.3390/min3020165
Voudouris P, Melfos V, Spry PG, Bindi L, Moritz R, Ortelli M, Kartal T. Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration. Minerals. 2013; 3(2):165-191. https://doi.org/10.3390/min3020165
Chicago/Turabian StyleVoudouris, Panagiotis, Vasilios Melfos, Paul G. Spry, Luca Bindi, Robert Moritz, Melissa Ortelli, and Tamara Kartal. 2013. "Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration" Minerals 3, no. 2: 165-191. https://doi.org/10.3390/min3020165
APA StyleVoudouris, P., Melfos, V., Spry, P. G., Bindi, L., Moritz, R., Ortelli, M., & Kartal, T. (2013). Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration. Minerals, 3(2), 165-191. https://doi.org/10.3390/min3020165