Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities
Abstract
:1. Introduction
2. LA-ICP-MS Trace Element Microanalysis
2.1. Melts, Aerosols, Vapours and Mineral Decomposition
2.2. Reference Materials and Matrix Effects
2.3. What Is Being Analyzed?
2.4. Trace Element Mineral Signatures—TESIM
2.5. Mineral Textures
2.6. Spots, Rasters and Element Maps
3. Trace Element Distributions in Common Minerals
4. LA-ICP-MS Analysis in Ore Petrogenesis
4.1. Orthomagmatic Ore Deposits
4.2. Skarn Formation
4.3. Iron-Oxide-Apatite (IOA) and Iron-Oxide Copper Gold (IOCG) Deposits
4.4. Trace Elements in Pyrite in Hydrothermal Ore Deposits
5. Trace Element Vector Approaches in Mineral Exploration
6. Element Deportment, Geometallurgy and Forensic Applications
7. Discussion
7.1. How Many Analyses?—And Which Elements?
7.2. Statistical Treatment of LA-ICP-MS Data
7.3. Current Trends and Future Opportunities
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sylvester, P. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues; Mineralogical Association of Canada: Québec, QC, Canada, 2008; Volume 40. [Google Scholar]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Gilbert, S.E.; Danyushevsky, L.V.; Rodemann, T.; Shimizu, N.; Gurenko, A.; Meffre, S.; Thomas, H.; Large, R.R.; Death, D. Optimisation of laser parameters for the analysis of sulphur isotopes in sulphide minerals by laser ablation ICP-MS. J. Anal. Atom. Spectrom. 2014, 29, 1042–1051. [Google Scholar] [CrossRef]
- Woodhead, J.; Hergt, J.; Meffre, S.; Large, R.R.; Danyushevsky, L.; Gilbert, S. In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS. Chem. Geol. 2009, 262, 344–354. [Google Scholar] [CrossRef]
- Darling, J.R.; Storey, C.D.; Hawkesworth, C.J.; Lightfoot, P.C. In-situ Pb isotope analysis of Fe–Ni–Cu sulphides by laser ablation multi-collector ICPMS: New insights into ore formation in the Sudbury impact melt sheet. Geochim. Cosmochim. Acta 2012, 99, 1–17. [Google Scholar] [CrossRef]
- McFarlane, C.R.M.; Luo, Y. U–Pb Geochronology using 193 nm excimer LA-ICP-MS optimized for in situ accessory mineral dating in thin sections. Geosci. Can. 2012, 39, 158–172. [Google Scholar]
- Ciobanu, C.L.; Wade, B.; Cook, N.J.; Schmidt Mumm, A.; Giles, D. Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: A geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambr. Res. 2013, 238, 129–147. [Google Scholar] [CrossRef]
- Courtney-Davies, L.; Zhu, Z.Y.; Ciobanu, C.L.; Wade, B.S.; Cook, N.J.; Ehrig, K.; Cabral, A.R.; Kennedy, A. Matrix-matched iron-oxide laser ablation ICP-MS U–Pb geochronology using mixed solution standards. Minerals 2016, 6, 85. [Google Scholar] [CrossRef]
- Thompson, J.; Meffre, S.; Maas, R.; Kamenetsky, V.; Kamenetsky, M.; Goemann, K.; Ehrig, K.; Danyushevsky, L. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. J. Anal. Atom. Spectrom. 2016, 31, 1206–1215. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhang, R.Q.; Ding, X.; Ling, M.X.; Fan, W.M.; Sun, W.D. Dating cassiterite using laser ablation ICP-MS. Ore Geol. Rev. 2016, 72, 313–322. [Google Scholar] [CrossRef]
- McFarlane, C.R.M. Allanite U–Pb geochronology by 193 nm LA ICP-MS using NIST610 glass for external calibration. Chem. Geol. 2016, 438, 91–102. [Google Scholar] [CrossRef]
- McFarlane, C.; Lentz, D.; Dehnavi, A.S. Pb-isotopic study of galena by LA-Q-ICP-MS: Testing a new methodology with applications to base-metal sulphide deposits. Minerals 2016, 6, 96. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Yang, T.; Ciobanu, C.L.; Cook, N.J.; Zhao, K.D.; Jiang, S.Y. Mapping of S isotopes and trace elements in sulfides by LA-(MC)-ICP-MS: Potential problems and implications. Minerals 2016, 6, 110. [Google Scholar]
- Heinrich, C.A.; Pettke, T.; Halter, W.E.; Aigner-Torres, M.; Audétat, A.; Günther, D.; Hattendorf, B.; Bleiner, D.; Guillong, M.; Horn, I. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 2003, 67, 3473–3497. [Google Scholar] [CrossRef]
- Zajacz, Z.; Halter, W. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: Quantification, data analysis and mineral/melt partitioning. Geochim. Cosmochim. Acta 2007, 71, 1021–1040. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 2005, 308, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Hayden, L.A.; Watson, E.B.; Wark, D.A. A thermobarometer for sphene (titanite). Contrib. Mineral. Petrol. 2008, 155, 529–540. [Google Scholar] [CrossRef]
- Russo, R.E.; Mao, X.L.; Gonzalez, J.J.; Mao, S.S. Femtosecond laser ablation ICP-MS. J. Anal. Atom. Spectrom. 2002, 17, 1072–1075. [Google Scholar] [CrossRef]
- Koch, J.; Günther, D. Femtosecond laser ablation inductively coupled plasma mass spectrometry: Achievements and remaining problems. Anal. Bioanal. Chem. 2007, 387, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.C.; Lindner, H.; von Bohlen, A.; Vadla, C.; Niemax, K. Elemental fractionation and stoichiometric sampling in femtosecond laser ablation. J. Anal. Atom. Spectrom. 2008, 23, 470–478. [Google Scholar] [CrossRef]
- Ohata, M.; Tabersky, D.; Glaus, R.; Koch, J.; Hattendorf, B.; Günther, D.J. Comparison of 795 nm and 265 nm femtosecond and 193 nm nanosecond laser ablation inductively coupled plasma mass spectrometry for the quantitative multi-element analysis of glass materials. J. Anal. Atom. Spectrom. 2014, 29, 1345–1353. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Jochum, K.P. Capability of fs-LA-ICP-MS for sulfide analysis in comparison to ns-LA-ICP-MS: Reduction of laser induced matrix effects? J. Anal. Atom. Spectrom. 2015, 30, 2469–2480. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Jiang, S.Y.; Yang, T.; Ciobanu, C.L.; Cook, N.J. Sulfur isotope fractionation in pyrite during laser ablation: Implications for laser ablation multiple collector inductively coupled plasma mass spectrometry mapping. Chem. Geol. 2016, in press. [Google Scholar]
- Gilbert, S.E.; Danyushevsky, L.V.; Goemann, K.; Death, D. Fractionation of sulphur relative to iron during laser ablation-ICP-MS analyses of sulphide minerals: Implications for quantification. J. Anal. Atom. Spectrom. 2014, 29, 1024–1033. [Google Scholar] [CrossRef]
- Günther, D.; von Quadt, A.; Wirz, A.; Cousin, H.; Dietrich, V.J. Elemental analyses using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of geological samples fused with Li2B4O7 and calibrated without matrix-matched standards. Mikrochim. Acta 2001, 136, 101–107. [Google Scholar] [CrossRef]
- Jackson, S.E.; Günther, D. The nature and sources of laser induced isotopic fractionation in laser ablation-multicollector-inductively coupled plasma-mass spectrometry. J. Anal. Atom. Spectrom. 2003, 18, 205–212. [Google Scholar] [CrossRef]
- Günther, D.; Koch, J. Formation of aerosols generated by laser ablation and their impact on elemental fractionation in LA-ICP-MS. In Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues; Sylvester, P., Ed.; Mineralogical Association of Canada: Québec, QC, Canada, 2008; Volume 40, pp. 19–34. [Google Scholar]
- Sylvester, P.J. Matrix effects in laser ablation ICP-MS. In Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues; Mineralogical Association of Canada: Québec, QC, Canada, 2008; Volume 40, pp. 67–78. [Google Scholar]
- Norman, M.D.; Pearson, N.J.; Sharma, A.; Griffin, W.L. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses. Geostand. Newslett. 1996, 20, 247–261. [Google Scholar] [CrossRef]
- Norman, M.; Robinson, P.; Clark, D. Major- and trace-element analysis of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF: New data on international reference materials. Can. Mine. 2003, 41, 293–305. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Ballhaus, C.; Berndt, J.; Stotter, V.; Meisel, T. Synthesis of PGE sulphide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Contrib. Mineral. Petrol. 2007, 154, 607–617. [Google Scholar] [CrossRef]
- Danyushevsky, L.; Robinson, P.; Gilbert, S.; Norman, M.; Large, R.; McGoldrick, P.; Shelley, M. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochem. Explor. Environ. Anal. 2011, 11, 51–60. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.S.; Yang, Y.H.; Hu, Z.C. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci. 2016, 1, 5–27. [Google Scholar] [CrossRef]
- Gilbert, S.; Danyushevsky, L.; Robinson, P.; Wohlgemuth-Ueberwasser, C.; Pearson, N.; Savard, D.; Norman, M.; Hanley, J. A comparative study of five reference materials and the Lombard meteorite for the determination of the platinum-group elements and gold by LA-ICP-MS. Geostand. Geoanal. Res. 2013, 37, 51–64. [Google Scholar] [CrossRef]
- Savard, D.; Barnes, S.J.; Sunder Raju, P.V. Accurate LA-ICP-MS calibration for magnetite analysis using multiple reference materials. Geochim. Cosmochim. Acta 2010, 74, A914. [Google Scholar]
- Tabersky, D.; Luechinger, N.A.; Rossier, M.; Reusser, E.; Hametner, K.; Aeschlimann, B.; Frick, D.A.; Halim, S.C.; Thompson, J.; Danyushevsky, L.; Günther, D. Development and characterization of custom-engineered and compacted nanoparticles as calibration materials for quantification using LA-ICP-MS. J. Anal. Atom. Spectrom. 2014, 29, 955–962. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Nadoll, P.; Koenig, A.E. LA-ICP-MS of magnetite: Methods and reference materials. J. Anal. Atom. Spectrom. 2011, 26, 1872–1877. [Google Scholar] [CrossRef]
- Wilson, S.A. The Collection, Preparation, and Testing of USGS Reference Material BCR-2, Columbia River, Basalt; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 1997.
- Jochum, H.P.; Willbold, M.; Raczek, I.; Stoll, B.; Herwig, K. Chemical characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 2005, 29, 285–302. [Google Scholar] [CrossRef]
- Flanagan, F.J. Descriptions and Analysis of Eight New USGS Rock Standards; U.S. Geological Survey Professional Paper; U.S. Government Printing Office: Washington, DC, USA, 1976; Volume 840.
- Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. Atom. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Yuan, J.H.; Zhan, X.C.; Fan, C.Z.; Zhao, L.H.; Sun, D.Y.; Jia, Z.R.; Hu, M.Y.; Kuai, L.J. Quantitative analysis of sulfide minerals by laser ablation-inductively coupled plasma-mass spectrometry using glass reference materials with matrix normalization plus sulfur internal standardization calibration. Chin. J. Anal. Chem. 2012, 40, 201–207. [Google Scholar] [CrossRef]
- Ding, L.; Yang, G.; Xia, F.; Lenehan, C.E.; Qian, G.; McFadden, A.; Brugger, J.; Zhang, X.; Chen, G.; Pring, A. A LA-ICP-MS sulphide calibration standard based on a chalcogenide glass. Mineral. Mag. 2011, 75, 279–287. [Google Scholar] [CrossRef]
- Jackson, S.E.; Fryer, B.J.; Gosse, W.; Healey, D.C.; Longerich, H.P.; Strong, D.F. Determination of the precious metals in geological materials by ICP-MS with nickel sulfide fire assay collection and tellurium coprecipitation. Chem. Geol. 1990, 83, 119–132. [Google Scholar] [CrossRef]
- Sung, Y.H.; Brugger, J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Nugus, M. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineral. Depos. 2009, 44, 765–791. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Mao, J.W. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton, (Hebei Province, China). Chem. Geol. 2009, 264, 101–121. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Meria, D.; Silcock, D.; Wade, B. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements. Econ. Geol. 2013, 108, 1273–1283. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Utsunomiya, S.; Pring, A.; Green, L. Focussed ion beam–transmission electron microscopy applications in ore mineralogy: Bridging micron- and nanoscale observations. Ore Geol. Rev. 2011, 42, 6–31. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Utsunomiya, S.; Kogagwa, M.; Green, L.; Gilbert, S.; Wade, B. Gold-telluride nanoparticles revealed in arsenic-free pyrite. Am. Mineral. 2012, 97, 1515–1518. [Google Scholar] [CrossRef]
- Junge, M.; Wirth, R.; Oberthür, T.; Melcher, F. Mineralogical siting of platinum-group elements in pentlandite from the Bushveld Complex, South Africa. Mineral. Depos. 2015, 50, 41–54. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, J.; Chen, H.Y.; Yang, L.Q.; Cooke, D.; Danyushevsky, L.; Gong, Q.J. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Res. 2014, 26, 557–575. [Google Scholar] [CrossRef]
- Ismail, R.; Ciobanu, C.L.; Cook, N.J.; Teale, G.S.; Giles, D.; Schmidt Mumm, A.; Wade, B. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide-copper-gold deposit, Yorke Peninsula, South Australia. Lithos 2014, 184–187, 456–477. [Google Scholar] [CrossRef]
- Ubide, T.; McKenna, C.A.; Chew, D.M.; Kamber, B.S. High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. Chem. Geol. 2015, 409, 157–168. [Google Scholar] [CrossRef]
- Ulrich, T.; Kamber, B.S.; Jugo, P.J.; Tinkham, D.K. Imaging element-distribution patterns in minerals by laser ablation—Inductively coupled plasma—Mass spectrometry (LA-ICP-MS). Can. Mineral. 2009, 47, 1001–1012. [Google Scholar] [CrossRef]
- Agangi, A.; Hofmann, A.; Wohlgemuth-Ueberwasser, C.C. Pyrite zoning as a record of mineralization in the Ventersdorp contact Reef, Witwatersrand Basin, South Africa. Econ. Geol. 2013, 108, 1243–1272. [Google Scholar] [CrossRef]
- Gagnevin, D.; Menuge, J.F.; Kronz, A.; Barrie, C.; Boyce, A.J. Minor Elements in Layered Sphalerite as a Record of Fluid Origin, Mixing, and Crystallization in the Navan Zn–Pb Ore Deposit, Ireland. Econ. Geol. 2014, 109, 1513–1528. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol. Rev. 2016, 77, 97–116. [Google Scholar] [CrossRef]
- Li, K.; Etschmann, B.; Rae, N.; Reith, F.; Ryan, C.G.; Kirkham, R.; Howard, D.; Rosa, D.R.N.; Zammit, C.; Pring, A.; et al. Ore petrography using megapixel X-ray imaging: Rapid insights into element distribution and mobilization in complex Pt and U–Ge–Cu Ores. Econ. Geol. 2016, 111, 487–502. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Danyushevsky, L.; Shimizu, M.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Nadoll, P.; Angerer, T.; Mauk, J.L.; French, D.; Walshe, J. The chemistry of hydrothermal magnetite: A review. Ore Geol. Rev. 2014, 61, 1–32. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Pring, A.; Brugger, J.; Danushevsky, L.; Shimizu, M. ‘Invisible gold’ in bismuth chalcogenides. Geochim. Cosmochim. Acta 2009, 73, 1970–1999. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Kelson, C.R.; Guerin, R.; Kalleske, N.; Danyushevsky, L. Trace element heterogeneity in molybdenite fingerprints stages of mineralization. Chem. Geol. 2013, 347, 175–189. [Google Scholar] [CrossRef]
- Ye, L.; Cook, N.J.; Ciobanu, C.L.; Liu, Y.P.; Zhang, Q.; Gao, W.; Yang, Y.L.; Danyushevsky, L.V. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Brugger, J.; Etschmann, B.; Howard, D.J.; de Jonge, M.; Ryan, C.G.; Paterson, D. Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy. Am. Mineral. 2012, 97, 476–479. [Google Scholar] [CrossRef]
- Murakami, H.; Ishihara, S. Trace elements of indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study. Ore Geol. Rev. 2013, 53, 223–243. [Google Scholar] [CrossRef]
- Lockington, J.; Cook, N.J.; Ciobanu, C.L. Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineral. Petrol. 2014, 108, 873–890. [Google Scholar] [CrossRef]
- Belissont, R.; Boiron, M.-C.; Luais, B.; Cathelineau, M. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac—Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Cook, N.J.; Etschmann, B.; Ciobanu, C.L.; Geraki, K.; Howard, D.L.; Williams, T.; Rae, N.; Pring, A.; Chen, G.; Johannessen, B.; et al. Distribution and substitution mechanism of Ge in a Ge-(Fe)-bearing sphalerite. Minerals 2015, 5, 117–132. [Google Scholar] [CrossRef]
- Butler, I.B.; Nesbitt, R.W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth Plan. Sci. Lett. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljoen, F.; Petersen, S.; Vorster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim. Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Trace Elements in Chalcopyrite. Mineral. Mag. In press.
- Cook, N.J.; Ciobanu, C.L.; Danyushevsky, L.V.; Gilbert, S. Minor elements in bornite and associated Cu-(Fe)-sulfides: A LA-ICPMS study. Geochim. Cosmochim. Acta 2011, 73, 4761–4791. [Google Scholar] [CrossRef]
- George, L.; Cook, N.J.; Ciobanu, C.L.; Wade, B. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Am. Mineral. 2015, 100, 548–569. [Google Scholar] [CrossRef]
- Large, R.R.; Maslenikov, V.V.; Robert, F.; Danyushevsky, L.V.; Chang, Z. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi log deposit, Lena Gold Province, Russia. Econ. Geol. 2007, 102, 1233–1267. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Winderbaum, L.; Ciobanu, C.L.; Cook, N.J.; Paul, M.; Metcalfe, A.; Gilbert, S. Multivariate analysis of an LA-ICP-MS trace element dataset for pyrite. Mathematical Geosci. 2012, 44, 823–842. [Google Scholar] [CrossRef]
- Ingham, E.S.; Cook, N.J.; Cliff, J.; Ciobanu, C.L.; Huddleston, A. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia. Geochim. Cosmochim. Acta 2014, 125, 440–465. [Google Scholar] [CrossRef]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Plan. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- Morey, A.A.; Tomkins, A.G.; Bierlein, F.P.; Weinberg, R.F.; Davidson, G.J. Bimodal distribution of gold in pyrite and Arsenopyrite: Examples from the Archean Boorara and Bardoc Shear Systems, Yilgarn Craton, Western Australia. Econ. Geol. 2008, 103, 599–614. [Google Scholar] [CrossRef]
- Lawley, C.J.M.; Creaser, R.A.; Jackson, S.E.; Yang, Z.P.; Davis, B.J.; Pehrsson, S.J.; Dubé, B.; Mercier-Langevin, P.; Vaillancourt, D. Unraveling the western Churchill province Paleoproterozoic Gold Metallotect: Constraints from Re–Os Arsenopyrite and U-Pb Xenotime geochronology and LA-ICP-MS Arsenopyrite trace element chemistry at the BIF-Hosted meliadine gold district, Nunavut, Canada. Econ. Geol. 2015, 110, 1425–1454. [Google Scholar] [CrossRef]
- Deyell, C.L.; Hedenquist, J.W. Trace element geochemistry of enargite in the Mankayan District, Philippines. Econ. Geol. 2011, 106, 1465–1478. [Google Scholar] [CrossRef]
- Barnes, S.J.; Prichard, H.M.; Cox, R.A.; Fisher, P.C.; Godel, B. The location of the chalcophile and siderophile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): Implications for the formation of the deposits. Chem. Geol. 2008, 248, 295–317. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.J.; Beaudoin, G.; Méric, J.; Boutroy, E.; Potvin-Doucet, C. Trace elements in magnetite as petrogenetic indicators. Mineral. Depos. 2014, 49, 785–796. [Google Scholar] [CrossRef]
- Pagé, P.; Barnes, S.J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Econ. Geol. 2009, 104, 997–1018. [Google Scholar] [CrossRef]
- O’Brien, J.J.; Spry, P.G.; Teale, G.S.; Jackson, S.E.; Rogers, D. Major and trace element chemistry of gahnite as an exploration guide to Broken Hill-Type Pb-Zn-Ag Mineralization in the Broken Hill Domain, New South Wales, Australia. Econ. Geol. 2015, 110, 1027–1057. [Google Scholar] [CrossRef]
- Goldmann, S.; Melcher, F.; Gäbler, H.-E.; Dewaele, S.; De Clerq, F.; Muchez, P. Mineralogy and trace element chemistry of ferberite/reinite from Tungsten Deposits in Central Rwanda. Minerals 2013, 3, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Song, G.X.; Qin, K.Z.; Li, G.M.; Evans, N.J.; Chen, L. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W–Mo deposits in the Chizhou Area, Anhui Province, Eastern China. Am. Mineral. 2014, 99, 303–317. [Google Scholar] [CrossRef]
- Hazarika, P.; Mishra, B.; Pruseth, K.L. Scheelite, apatite, calcite and tourmaline compositions from the late Archean Hutti orogenic gold deposit: Implications for analogous two stage ore fluids. Ore Geol. Rev. 2016, 72, 989–1003. [Google Scholar] [CrossRef]
- Raju, P.V.S.; Hart, C.J.R.; Sangurmath, P. Scheelite geochemical signatures by LA-ICP-MS and potential for rare earth elements from Hutti Gold Mines and fingerprinting ore deposits. J. Afr. Earth Sci. 2016, 114, 220–227. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; O’Rielly, D.; Wilson, K.; Das, K.; Wade, B. Mineral chemistry and element partitioning in hydrothermal Rare Earth Element (REE) mineralization, Browns Ranges, Western Australia. Lithos 2013, 172–173, 192–213. [Google Scholar] [CrossRef]
- Smith, M.P.; Henderson, P.; Jeffries, T.E.R.; Long, J.; Williams, C.T. The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constraints on processes in a dynamic hydrothermal system. J. Petrol. 2004, 45, 457–484. [Google Scholar] [CrossRef]
- Gaspar, M.; Knaack, C.; Meinert, L.D.; Moretti, R. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim. Cosmochim. Acta 2008, 72, 185–205. [Google Scholar] [CrossRef]
- Xu, J.; Ciobanu, C.L.; Cook, N.J.; Zheng, Y.; Sun, X.; Wade, B.P. Skarn formation and trace elements in garnet and associated minerals from Zhibula copper deposit, Gangdese Belt, southern Tibet. Lithos 2016, 262, 213–231. [Google Scholar] [CrossRef]
- Kontonikas-Charos, A.; Ciobanu, C.L.; Cook, N.J. Albitization and redistribution of REE and Y in IOCG systems: Insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos 2014, 208–209, 178–201. [Google Scholar] [CrossRef]
- Smith, M.P.; Storey, C.D.; Jeffries, T.E.; Ryan, C. In situ U–Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden: New constraints on the timing and origin of mineralization. J. Petrol. 2009, 50, 2063–2094. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, X.M.; Zhou, H.Y.; Lin, H.; Yang, T.J. In-situ LA-ICP-MS U–Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China. Ore Geol. Rev. 2016, 77, 43–56. [Google Scholar] [CrossRef]
- He, H.L.; Yu, S.Y.; Song, X.Y.; Du, Z.S.; Dai, Z.H.; Zhou, T.; Xie, W. Origin of nelsonite and Fe-Ti oxides ore of the Damiao anorthosite complex, NE China: Evidence from trace element geochemistry of apatite, plagioclase, magnetite and ilmenite. Ore Geol. Rev. 2016, 79, 367–381. [Google Scholar] [CrossRef]
- She, Y.W.; Song, X.Y.; Yu, S.Y.; Chen, L.M.; Zheng, W.Q. Apatite geochemistry of the Taihe layered intrusion, SW China: Implications for the magmatic differentiation and the origin of apatite-rich Fe-Ti oxide ores. Ore Geol. Rev. 2016, 78, 151–165. [Google Scholar] [CrossRef]
- Gagnon, J.E.; Samson, I.M.; Fryer, B.J.; Williams-Jones, A.E. Compositional heterogeneity in fluorite and the genesis of fluorite deposits: Insights from LA-ICP-MS analysis. Can. Mineral. 2003, 41, 365–382. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.J.; Prichard, H.M. The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Mineral. Depos. 2010, 45, 765–793. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.J.; Prichard, H.M.; Fisher, P.C. Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite. Mineral. Depos. 2011, 46, 381–407. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.J.; Beaudoin, G. Variation in trace element content of magnetite crystallized from fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochim. Cosmochim. Acta 2012, 88, 27–50. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.J.; Prichard, H.M.; Fisher, P.C. Mineralogy and geochemistry of Cu-rich ores from the McCreedy East Ni–Cu–PGE deposit (Sudbury, Canada): Implications for the behavior of platinum group and chalcophile elements at the end of crystallization of a sulfide liquid. Econ. Geol. 2014, 109, 343–366. [Google Scholar] [CrossRef]
- Duran, C.J.; Barnes, S.J.; Corkery, J.T. Chalcophile and platinum-group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Implications for post-cumulus re-equilibration of the ore and the use of pyrite compositions in exploration. J. Geochem. Explor. 2015, 158, 223–242. [Google Scholar] [CrossRef]
- Godel, B.; Barnes, S.J. Platinum-group elements in sulfide minerals and the whole rock of the J–M Reef (Stillwater complex): Implication for the formation of the reef. Chem. Geol. 2008, 24, 272–294. [Google Scholar] [CrossRef]
- Godel, B.; Barnes, S.J.; Maier, W.D. Platinum-group elements in sulphide minerals, platinum-group minerals, and whole-rocks of the Merensky Reef (Bushveld Complex, South Africa): Implications for the formation of the reef. J. Petrol. 2007, 48, 1569–1604. [Google Scholar] [CrossRef]
- Holwell, D.A.; Keays, R.R.; McDonald, I.; Williams, M.R. Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: Evidence from LA-ICP-MS analysis of sulfides in the Skaergaard Intrusion, east Greenland. Contrib. Mineral. Petrol. 2015, 170, 1–26. [Google Scholar] [CrossRef]
- Piña, R.; Gervilla, F.; Barnes, S.J.; Ortega, L.; Lunar, R. Partition coefficients of platinum group and chalcophile elements between arsenide and sulfide phases as determined in the Beni Bousera Cr–Ni mineralization (North Morocco). Econ. Geol. 2013, 108, 935–951. [Google Scholar] [CrossRef]
- Piña, R.; Gervilla, F.; Barnes, S.J.; Ortega, L.; Lunar, R. Liquid immiscibility between arsenide and sulfide melts: Evidence from a LA-ICP-MS study in magmatic deposits at Serranía de Ronda (Spain). Mineral. Depos. 2015, 50, 265–279. [Google Scholar] [CrossRef]
- Piña, R.; Gervilla, F.; Barnes, S.J.; Oberthür, T.; Lunar, R. Platinum-group element concentrations in pyrite from the Main Sulfide Zone of the Great Dyke of Zimbabwe. Mineral. Depos. 2016, in press. [Google Scholar]
- Duran, C.J.; Barnes, S.-J.; Corkery, J.T. Trace element distribution in primary sulfides and Fe–Ti oxides from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Constraints on processes controlling the composition of the ore and the use of pentlandite compositions in exploration. J. Geochem. Explor. 2016, 166, 45–63. [Google Scholar]
- Nikolakopoulos, D. Ore vectoring in IOCG Systems: Trace Elements in Garnets from the Groundhog Skarn, Punt Hill, South Australia. Unpublished Bachelor’s Thesis, The University of Adelaide, Adelaide, Australia, 2013. [Google Scholar]
- Peng, H.J.; Zhang, C.Q.; Mao, J.W.; Santosh, M.; Zhou, Y.M. Garnets in porphyry-skarn systems: A LA-ICP-MS, fluid inclusion, and stable isotope study of garnets from the Hongniu–Hongshan copper deposit, Zhongdian area, NW Yunnan Province, China. J. Asian Earth Sci. 2015, 103, 229–251. [Google Scholar] [CrossRef]
- Zhao, W.W.; Zhou, M.F. In-situ LA-ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China. Ore Geol. Rev. 2015, 65, 872–883. [Google Scholar] [CrossRef]
- Groves, D.I.; Bierlein, F.P.; Meinert, L.D.; Hitzman, M.W. Iron oxide copper-gold (IOCG) deposits through earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ. Geol. 2010, 105, 641–654. [Google Scholar] [CrossRef]
- Huang, X.W.; Zhou, M.F.; Qiu, Y.Z.; Qi, L. In-situ LA-ICP-MS trace elemental analyses of magnetite: The Bayan Obo Fe-REE-Nb deposit, North China. Ore Geol. Rev. 2015, 65, 884–899. [Google Scholar] [CrossRef]
- Knipping, J.L.; Bilenker, L.D.; Simon, A.C.; Reich, M.; Barra, F.; Deditius, A.P.; Heinrich, C.A.; Holtz, F.; Munizaga, R. Trace elements in magnetite from massive iron oxide apatite deposits indicate a combined formation by igneous and magmatic hydrothermal processes. Geochim. Cosmochim. Acta 2015, 171, 15–38. [Google Scholar] [CrossRef]
- Tollari, N.; Barnes, S.-J.; Cox, R.A.; Nabil, H. Trace element concentrations in apatites from the Sept-Îles Intrusive Suite, Canada—Implications for the genesis of nelsonites. Chem. Geol. 2008, 252, 180–190. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhou, M.F.; Li, X.C.; Gao, J.F.; Hou, K.J. In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India. Ore Geol. Rev. 2015, 65, 929–939. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Wade, B.P.; Kamenetsky, V.S. Trace element signatures in iron oxides from the Olympic Dam IOCG deposit, South Australia. In Proceedings of the 13th Biennial SGA Meeting, Mineral Resources in a Sustainable World, Nancy, France, 24–27 August 2015; Volume 3, pp. 1071–1074.
- Ehrig, K.; McPhie, J.; Kamenetsky, V. Geology and mineralogical zonation of the Olympic Dam Iron Oxide Cu-U-Au-Ag deposit, South Australia. In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Society of Economic Geologists Special Publication: Littleton, CO, USA, 2012; pp. 237–267. [Google Scholar]
- Dupuis, C.; Beaudoin, G. Discrimination diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral. Depos. 2011, 46, 319–335. [Google Scholar] [CrossRef]
- Krneta, S.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Kamenetsky, V.S. REY-Signatures in Apatite Monitor Evolution of IOCG Systems: Examples from Olympic Dam and Acropolis, South Australia; Abstract; Australian Earth Science Convention: Adelaide, Australia, 2016. [Google Scholar]
- Dare, S.A.S.; Barnes, S.J.; Beaudoin, G. Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineral. Depos. 2015, 50, 607–617. [Google Scholar] [CrossRef]
- Thomas, H.V.; Large, R.R.; Bull, S.W.; Maslennikov, V.; Berry, R.F.; Fraser, R.; Froud, S.; Moye, R. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: Insights for ore genesis. Econ. Geol. 2011, 106, 1–31. [Google Scholar] [CrossRef]
- Deol, S.; Deb, M.; Large, R.R.; Gilbert, S. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization. Chem. Geol. 2012, 326–327, 72–87. [Google Scholar] [CrossRef]
- Large, R.R.; Meffre, S.; Burnett, R.; Guy, B.; Bull, S.; Gilbert, S.; Goemann, K.; Danyushevsky, L. Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Econ. Geol. 2013, 108, 1215–1241. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Lounejeva Baturina, E.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Steadman, J.A.; Large, R.R.; Meffre, S.; Olin, P.H.; Danyushevsky, L.V.; Gregory, D.D.; Belousov, I.; Lounejeva, E.; Ireland, T.R.; Holden, P. Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the golden mile deposit, Kalgoorlie, Western Australia. Econ. Geol. 2015, 110, 1157–1191. [Google Scholar] [CrossRef]
- Genna, D.; Gaboury, D. Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-Mcleod deposits, Abitibi, Canada, and Implications for Exploration. Econ. Geol. 2015, 110, 2087–2108. [Google Scholar] [CrossRef]
- Mills, S.E.; Tomkins, A.G.; Weinberg, R.F.; Fan, H.R. Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, northeast China. Ore Geol. Rev. 2015, 71, 150–168. [Google Scholar] [CrossRef]
- Boutroy, E.; Dare, S.A.S.; Beaudoin, G.; Barnes, S.J.; Lightfoot, P.C. Magnetite composition in Ni–Cu–PGE deposits worldwide: Application to mineral exploration. J. Geochem. Explor. 2014, 145, 64–81. [Google Scholar] [CrossRef]
- Le Vaillant, M.; Barnes, S.J.; Fiorentini, M.L.; Miller, J.; McCuaig, T.C.; Muccilli, P. A hydrothermal Ni–As–PGE geochemical halo around the miitel komatiite-hosted nickel sulfide deposit, Yilgarn Craton, Western Australia. Econ. Geol. 2015, 110, 505–530. [Google Scholar] [CrossRef]
- Acosta-Góngora, P.; Gleeson, S.A.; Samson, I.M.; Ootes, L.; Corriveau, L. Trace Element geochemistry of magnetite and its relationship to Cu–Bi–Co–Au–Ag–U–W mineralization in the great bear magmatic zone, NWT, Canada. Econ. Geol. 2015, 109, 1901–1928. [Google Scholar] [CrossRef]
- Belousov, I.; Large, R.R.; Meffre, S.; Danyushevsky, L.V.; Steadman, J.; Beardsmore, T. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geol. Rev. 2016, 79, 474–499. [Google Scholar] [CrossRef]
- Canil, D.; Grondahl, C.; Lacourse, T.; Pisiak, L.K. Trace elements in magnetite from porphyry Cu–Mo–Au deposits in British Columbia, Canada. Ore Geol. Rev. 2016, 72, 1116–1128. [Google Scholar] [CrossRef]
- Nadoll, P.; Mauk, J.L.; Hayes, T.S.; Koenig, A.E.; Box, S.E. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the mesoproterozoic belt supergroup, United States. Econ. Geol. 2012, 107, 1275–1292. [Google Scholar] [CrossRef]
- Hanley, J.J.; Bray, C.J. The trace metal content of amphibole as a proximity indicator for Cu–Ni–PGE mineralization in the footwall of the Sudbury Igneous Complex, Ontario, Canada. Econ. Geol. 2009, 104, 113–125. [Google Scholar] [CrossRef]
- Warren, M.R.; Hanley, J.J.; Ames, D.E.; Jackson, S.E. The Ni–Cr–Cu content of biotite as pathfinder elements for magmatic sulfide exploration associated with mafic units of the Sudbury Igneous Complex, Ontario, Canada. J. Geochem. Explor. 2015, 153, 11–29. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Chang, Z.; Cooke, D.R.; Baker, M.J.; Wilkinson, C.C.; Inglis, S.; Chen, H.; Gemmell, J.B. The chlorite proximitor: A new tool for detecting porphyry ore deposits. J. Geochem. Explor. 2015, 152, 10–26. [Google Scholar] [CrossRef]
- Mao, M.; Rukhlov, A.S.; Rowins, S.M.; Spence, J.; Coogan, L.A. Apatite trace element compositions: A robust new tool for mineral exploration. Econ. Geol. 2016, 111, 1043–1072. [Google Scholar] [CrossRef]
- Makvandi, S.; Ghasemzadeh-Barvarz, M.; Beaudoin, G.; Grunsky, E.C.; McClenaghan, M.B.; Duchesne, C. Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geol. Rev. 2016, 72, 60–85. [Google Scholar] [CrossRef]
- Makvandi, S.; Ghasemzadeh-Barvarz, M.; Beaudoin, G.; Grunsky, E.C.; McClenaghan, M.B.; Duchesne, C.; Boutroy, E. Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration. Ore Geol. Rev. 2016, 78, 388–408. [Google Scholar] [CrossRef]
- Lane, D.J.; Cook, N.J.; Grano, S.R.; Ehrig, K. Selective leaching of penalty elements from copper concentrates: A review. Miner. Eng. 2016, 98, 110–121. [Google Scholar] [CrossRef]
- Andersen, J.C.Ø.; Stickland, R.J.; Rollinson, G.K.; Shail, R.K. Indium mineralisation in SW England: Host parageneses and mineralogical relations. Ore Geol. Rev. 2016, 78, 213–238. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, G.G.; Palessky, S.V.; Borisenko, A.S.; Vladimirov, A.G.; Seifert, T.; Phan, L.A. Indium in cassiterite and ores of tin deposits. Ore Geol. Rev. 2015, 66, 99–113. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L. Mineral hosts for critical metals in hydrothermal ores. In Mineral Resources in a Sustainable World, Proceedings of the 13th Biennial SGA Conference, Nancy, France, 24–27 August 2015; Volume 5, pp. 707–710.
- Dalpé, C.; Hudon, P.; Ballantyne, D.J.; Williams, D.; Marcotte, D. Trace element analysis of rough diamond by LA-ICP-MS: A case of source discrimination? J. Forensic Sci. 2010, 55, 1443–1456. [Google Scholar]
- Coney, L.; Moila, A.V.; Quadling, A.G. Gem-quality diamonds: Source discrimination. S. Afr. J. Geol. 2012, 115, 33–46. [Google Scholar] [CrossRef]
- Melcher, F.; Graupner, T.; Henjes-Kunst, F.; Oberthür, T.; Sitnikova, M.; Gäbler, H.E. Analytical fingerprint of columbite-tantalite (coltan) mineralization in pegmatites: Focus on Africa. In Proceedings of the 9th International Congress for Applied Mineralogy, Australasian Institute of Mining and Metallurgy, Melbourne, Australia, 8–10 September 2008; pp. 615–624.
- Gäbler, H.E.; Rehder, S.; Bahr, A.; Melcher, F.; Goldmann, S. Cassiterite fingerprinting by LA-ICP-MS. J. Anal. Atom. Spectrom. 2013, 28, 1247–1255. [Google Scholar] [CrossRef]
- Giussani, B.; Monticelli, D.; Rampazzi, L. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: A review. Anal. Chim. Acta 2009, 635, 6–21. [Google Scholar] [CrossRef] [PubMed]
- De Marques Sá, C.; Noronha, F.; Ferreira da Silva, E. Factor analysis characterization of minor element contents in sulfides from Pb–Zn–Cu–Ag hydrothermal vein deposits in Portugal. Ore Geol. Rev. 2014, 62, 54–71. [Google Scholar] [CrossRef]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Debruyne, D.; Hulsbosch, N.; Muchez, P. Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source—Sink system. Ore Geol. Rev. 2016, 72, 232–252. [Google Scholar] [CrossRef]
- Li, X.F.; Cheng, H.; Wang, C.Z.; Wang, L. Genesis of the Huangshaping W–Mo–Cu–Pb–Zn polymetallic deposit in Southeastern Hunan Province, China: Constraints from fluid inclusions, trace elements, and isotopes. Ore Geol. Rev. 2016, 79, 1–25. [Google Scholar]
- Xu, L.; Bi, X.; Hu, R.; Tang, Y.; Wang, X.; Xu, Y. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang–Red River alkaline igneous belt, SW China. Mineral. Petrol. 2015, 109, 181–200. [Google Scholar] [CrossRef]
- Jaques, A.L. Major and trace element variations in oxide and titanate minerals in the West Kimberley lamproites, Western Australia. Mineral. Petrol. 2016, 110, 159–197. [Google Scholar] [CrossRef]
- Velasquez, A. Trace Element Analysis of Native Gold by Laser Ablation ICP-MS: A Case Study in Greenstone-Hosted Quartz-Carbonate Vein Ore Deposits, Timmins, Ontario. Ph.D. Thesis, University of British Columbia, Kelowna, BC, Canada, 2014. [Google Scholar]
- Kołodziejczyk, J.; Pršek, J.; Voudouris, P.; Melfos, V.; Asllani, B. Sn-bearing minerals and associated sphalerite from lead-zinc deposits, Kosovo: An electron microprobe and LA-ICP-MS study. Minerals 2016, 6, 42. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Maunders, C.; Wade, B.P.; Ehrig, K. Focused ion beam and advanced electron microscopy for minerals: Insights and outlook from bismuth sulphosalts. Minerals 2016, 6, 112. [Google Scholar]
- Baele, J.-M.; Monin, L.; Navez, J.; André, L. Systematic REE Partitioning in Cubo-Dodecahedral Fluorite from Belgium Revealed by Cathodoluminescence Spectral Imaging and Laser Ablation-ICP-MS. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), Trondheim, Norway, 1–5 August 2011; Springer: Berlin, Germany, 2012. [Google Scholar]
- Gros, K.; Słaby, E.; Förster, H.-J.; Michelak, P.P.; Munnik, F.; Gδtze, J.; Rhede, D. Visualization of trace-element zoning in fluorapatite using BSE and CL imaging, and EPMA and μPIXE/μPIGE mapping. Mineral. Petrol. 2016. [Google Scholar] [CrossRef]
- Garbe-Schönberg, D.; Müller, S. Nano-particulate pressed powder tablets for LA-ICP-MS. J. Anal. Atom. Spectrom. 2014, 29, 990–1000. [Google Scholar] [CrossRef]
- Garbe-Schönberg, D.; Müller, S.; Nordstad, S.; Schönberg, L. Particle size matters: A new strategy for manufacturing microanalytical reference standards from nano-particulate powder pellets. In Proceedings of the 9th International Conference on the Analysis of Geological and Environmental Materials, Leoben, Austria, 8–14 August 2015; Abstract OP-25. p. 64.
- Onuk, P.; Melcher, F.; Walkner, C. Development of the matrix-matched sphalerite (ZnS) standards MUL-ZnS-1 and MUL-ZnS-2 for in-situ analysis of trace elements by laser ablation inductively coupled plasma-mass spectroscopy (LA-ICP-MS). In Proceedings of the 9th International Conference on the Analysis of Geological and Environmental Materials, Leoben, Austria, 8–14 August 2015; Abstract OP-26. p. 65.
- Savard, D.; Raymond, V.; Barnes, S.J. LA-ICP-MS analysis of massive sulphides: Progress towards a new calibration material. In Proceedings of the 9th International Conference on the Analysis of Geological and Environmental Materials, Leoben, Austria, 8–14 August 2015; Abstract P-39. p. 116.
Standard | Matrix Type | Suitability | Comments | References |
---|---|---|---|---|
NIST-610, -612 | Synthetic glass | Silicates | Widely used for silicates; have been used as secondary RM for Fe-oxides (low Fe content but some trace elements (e.g., As) not present in primary RM such as BHVO | Norman et al. (1996) [29], Jochum et al. (2011) [37], Nadoll and Koenig [38] |
BCR-2G | Columbia River basalt glass | - | Secondary RM for some silicates | Wilson (1997) [39] |
GSE-1G, GSD-1G | Synthetic glasses | Fe-oxides | Doped with most elements found in Fe-oxides | Jochum et al. (2005) [40] |
BHVO-1 | Hawaiian basalt glass | - | Suitable RM for Fe-oxides | Flanagan (1976) [41] |
MASS-1 | Cold-pressed pellet | Sulphides | Commercially available RM for sulphides; widely applied | Wilson et al. (2002) [42], Yuan et al. (2012) [43] |
(Fe,Ni)1-xS and (Fe,Cu)1-xS | Synthetic sulphides | Sulphides | - | Wohlgemuth-Ueberwasser et al. (2007) [31] |
STDGL2b-2 | Fused glass disk (25% Zn concentrate and 75% pyrrhotite), mixture of CANMET international reference materials RTS-4 and CZN-1 doped with a range of trace elements | Sulphides | Wide range of chalcophile, siderophile and lithophile elements | Danyushevsky et al. (2011) [32] |
NiS-3 | - | Sulphides | - | Gilbert et al. (2013) [34] |
IMER-1 | Chalcogenide glass (Ge28Sb12S60) | Sulphides | 4 minor elements, 34 trace elements | Ding et al. (2012) [44] |
Minerals | Reference(s) |
---|---|
Sphalerite | Cook et al. (2009) [61], Ye et al. (2011) [65], Cook et al. (2012) [66], Murakami and Ishihara (2013) [67], Lockington et al. (2014) [68], Belissont et al. (2014) [69], Cook et al. (2015) [70] |
Chalcopyrite | Butler and Nesbitt (1999) [71], Wohlgemuth-Ueberwasser et al. (2015) [72], George et al. (in review) [73] |
Bornite, chalcocite-group | Cook et al. (2011) [74] |
Galena | George et al. (2015) [75] |
Pyrite | Large et al. (2007) [76], Cook et al. (2009) [47], Large et al. (2009) [77], Winderbaum et al. (2012) [78], Ingham et al. (2014) [79], Large et al. (2014) [80] |
Arsenopyrite | Morey et al. (2008) [81], Sung et al. (2008) [46], Cook et al. (2013) [48], Lawley et al. (2015) [82] |
Enargite | Deyell and Hedenquist (2011) [83] |
Molybdenite | Ciobanu et al. (2013) [64] |
Pyrrhotite–pentlandite– (pyrite, Ni-arsenides) in magmatic ores, including PGE deposits | Barnes et al. (2008) [84]; see also Table 3 |
Bismuth chalcogenides and sulphosalts | Ciobanu et al. (2009) [63] |
Hematite | Ciobanu et al. (2013) [7] |
Magnetite | Nadoll et al. (2014) [62], Dare et al. (2014) [85] |
Chromite | Pagé and Barnes (2009) [86] |
Gahnite | O’Brien et al. (2015) [87] |
Scheelite, wolframite, ferberite | Goldmann et al. (2013) [88], Song et al. (2014) [89], Hazarika et al. (2016) [90], Raju et al. (2016) [91] |
Xenotime, florencite | Cook et al. (2013) [92] |
(Calcic, skarn) garnet and other skarn calc-silicates (pyroxenes, clinozoisite, etc.) | Smith et al. (2004) [93], Gaspar et al. (2008) [94], Ismail et al. (2014) [53], Xu et al. (2016) [95] |
Feldspars | Kontonikas-Charos et al. (2014) [96] |
Rutile and titanite | Smith et al. (2009) [97], Ismail et al. (2014) [53], Fu et al. (2016) [98] |
Apatite | Ismail et al. (2014) [53], He et al. (2016) [99], She et al. (2016) [100] |
Fluorite | Gagnon et al. (2003) [101] |
Reference | Mineral(s) Analyzed | Deposit(s) Studied | Significant Findings |
---|---|---|---|
Barnes et al. (2008) [84] | Pentlandite, chalcopyrite, cubanite, pyrrhotite | Compilation of data from various Pt-rich ore deposits (Noril’sk, Great Dyke, Bushveld and others | Siderophile and chalcophile element distributions in pentlandite, chalcopyrite and pyrrhotite from platinum-rich ore deposits are compared. Re, Os, Ir, Ru and Rh are concentrated in both pentlandite and pyrrhotite. Pentlandite also concentrates Ni, Co and Pd. Cu, Zn, Cd and Ag are concentrated in chalcopyrite or cubanite. Au and Pt do not preferentially concentrate in any particular BMS, with very little of these elements located in BMS. Significant differences in trace element distribution between ore systems can be related to temperature evolution, abundance of sulphides and availability of other minor elements (As, Te, Bi, etc.). |
Dare et al. (2010) [102] | BMS (pyrrhotite, pentlandite, chalcopyrite, pyrite) | Creighton Ni–Cu–PGE sulphide deposit, Sudbury, Canada | BMS host all Co and Se, a significant proportion (40%–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb and Te. Os and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (~1 ppm) are concentrated in pentlandite. Ag, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Se is present in equal proportions in all three BMS. Ir Rh, and Pt are present in euhedrally zoned PGE sulph-arsenides. Enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te and Zn in chalcopyrite explained by fractional crystallization of MSS from sulphide liquid followed by sulphide exsolution. The bulk of Pd in pentlandite cannot be explained by sulphide fractionation alone because Pd should have partitioned into residual Cu-rich liquid and be in chalcopyrite or in PGM around chalco-pyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during exsolution from MSS. |
Dare et al. (2011) [103] | Pyrrhotite, pentlandite, chalcopyrite, pyrite | McCreedy East, Sudbury, Canada | Os, Ir, Ru, Rh (IPGE), and Re concentrated in pyrrhotite, pentlandite, and pyrite. Pd present in pentlandite. Some Pt noted in oscillatory-zoned pyrite. |
Dare et al. (2012) [104] | Magnetite | Sudbury, Canada | Fe-oxide geochemistry a sensitive petrogenetic indicator for the degree of fractionation of the sulphide liquid. In sulphide-bearing liquids, lithophile elements are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming titanomagnetite, which crystallized with Fe-rich MSS. Late-forming magnetite, which crystallized from residual Cu-rich liquid, is depleted in these elements. Behavior of chalcophile elements in magnetite largely controlled by the crystallization of sulphides. Local trace element redistribution occurs at subsolidus temperatures (ilmenite ex-solution from titanomagnetite, Al-spinel exsolution from magnetite). |
Dare et al. (2014a) [85] | Magnetite | Compilation of data from magmatic and hydrothermal environments | Discussion of trace element partitioning behaviour between magnetite, melt/fluid, and co-crystallizing phases. Trace elements aid discrimination of magnetite formed in different environments, with applications in petrogenetic and provenance studies. |
Dare et al. (2014b) [105] | BMS, also sphalerite and galena | McCreedy East, Sudbury, ON, Canada | Distribution of PGE and trace elements in different sulphides reported and comprehensive genetic model presented. |
Duran et al. (2015) [106] | Pyrite | Lac des Iles Pd deposits, ON, Canada | Atypical deposits in which pyrite contains Os, Ir, Ru and Rh (also present in pyrrhotite and pentlandite), possibly redistributed during cooling. Pyrite is zoned: IPGE–Rh and As towards pyrite cores, Co and Se towards the rims. Pb, Bi and Ag present in thin overgrowths on pyrite margins (also some Pt, Te and Sn). |
Godel et al. (2007) [107] | BMS (pyrrhotite, pentlandite, chalcopyrite) | Merensky Reef, Bushveld Complex | ~65% up to ~85% of PGE hosted by PGM. Lesser amounts of PGE in solid solution within BMS. Pentlandite is the principal BMS host of all PGE, except Pt (preferentially enriched in Pd, Rh and Co). Pyrrhotite contains, Rh, Os, Ir and Ru, but excludes both Pt and Pd. Chalcopyrite contains very little PGE. The PGE content in the BMS varies only slightly as a function of the stratigraphy (twice as much PGE in BMS from chromitites compared to silicate rocks). |
Godel and Barnes (2008) [108] | BMS (pyrrhotite, pentlandite, chalcopyrite) | J-M Reef, Stillwater Complex | Pentlandite main host for Pd. Pt occurs almost exclusively found as PGM and do not partition into BMS. Other PGE present in BMS. Highest PGE noted in samples containing secondary magnetite. Pd precipitated as an alloy, later diffusing into pentlandite. |
Holwell et al. (2015) [109] | sulphide microdroplets | Platinova Reef, Skaergaard E Greenland | Extreme trace element enrichment in sulphide droplets in closed-system layered intrusions, forming unusual low-sulphide deposits. |
Piña et al. (2013) [110] | Maucherite, pyrrhotite, pentlandite, chalcopyrite | Beni Bousera, Morocco | Partition coefficients for PGE, Au, Re, Ag, Se, Bi, Te, and Sb, between arsenide and sulphide phases estimated. Maucherite strongly enriched in all chalcophile elements, except Se, relative to sulphide minerals. Results highlight the strong affinity of PGE for arsenide phases and the importance of these phases as potential carriers of PGE. |
Piña et al. (2015) [111] | Ni-arsenides (nickeline, maucherite, löllingite) | Serranía de Ronda, Málaga, Spain | PGE, Au, Ag, Se, Sb, Bi and Te contents of arsenide and sulphide assemblages determined. Arsenides enriched in all PGE, but especially in Ir, Rh and Pt. Se and Ag partition preferentially into the sulphide assemblage. |
Piña et al. (2016) [112] | Pyrite | Main Sulphide Zone, Great Dyke, Zimbabwe | PGE and other trace element contents in pyrite reported from several mines. Two types of pyrite differentiated. Py1 is PGE rich (higher Os, Ir, Ru, Rh, and Pt contents than the associated pyrrhotite, pentlandite, and chalcopyrite); Py2 has low PGE contents. Py1 inferred to have formed by late, low temperature (<300 °C) decomposition of residual Ni-rich mss; Py2 suggested to have formed by replacement of pyrrhotite and pentlandite caused by late magmatic/hydrothermal fluids. |
Duran et al. (2016) [113] | Sulphides, Fe-Ti-oxides | Lac des Iles Pd deposits, ON, Canada | Trace element concentration data for pyrrhotite, pentlandite and chalcopyrite and co-existing Fe-Ti oxides (magnetite and ilmenite). The study shows how the trace element composition of sulphides can vary as a function of the degree of fractionation of the parental silicate magma. Findings carry strong implications for the petrogenesis of orthomagmatic deposits. |
Vector Mineral | Reference | Geochemical Signature and Comment(s) |
---|---|---|
Magnetite | Boutroy et al. (2014) [134] | Compilation of trace element compositions in magnetite from 13 major Ni–Cu–PGE deposits. Controls on magnetite composition discussed. Discrimination diagrams introduced to distinguish primary from secondary magnetite. Magnetite considered a useful indicator mineral in exploration, particularly if used to detect eroded Ni–Cu–PGE deposits in surficial sediments. |
Ni-arsenides (gersdorffite, nickeline) | Le Vaillant et al. (2015) [135] | Case study: Miitel komatiite-hosted nickel sulphide deposit, Western Australia Elevated Pd and Pt associated with Ni and As enrichment. Pd- and Pt-enriched trace arsenides in country rocks considered a proximity indicator for Ni-sulphides in hydrothermally altered terranes. |
Magnetite | Acosta-Góngora et al. (2015) [136] | Major differences in the V, Ni, Cr, and Co concentrations within magnetite are reported from the Paleoproterozoic Great Bear magmatic zone. Cr/Co and V/Ni ratios are useful to distinguish barren alteration from mineralization. The results highlight potential use of magnetite as an indicator mineral in exploration for IOCG deposits. |
Pyrite | Belousov et al. (2016) [137] | Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Australia are distinct. The data are useful for distinguishing signatures at the exploration stage and have valuable implications for the deportment of precious metals in these ores. |
Magnetite | Canil et al. (2016) [138] | Trace element compositions are reported from hydrothermal magnetite in 5 porphyry Cu–Mo–Au deposits and two skarns from B.C., Canada. Compositions are found to vary with temperature, redox potential, and the acidity of the ore-forming fluids. Concentrations of Mn, Sn and Mo in hydrothermal magnetite are shown to vary with fluid acidity. Variations in Ti, Al and V are inferred to depend on temperature and fO2. |
Gahnite | O’Brien et al. (2015) [87] | Major and trace element data for gahnite in the Broken Hill domain, N.S.W., Australia is reported. Gahnite chemistry may be used to distinguish prospective exploration targets from non-prospective occurrences. Principal component analysis and variation of Zn/Fe vs. Ni + Cr + V distinguishes gahnite in the Broken Hill deposit from that associated with sulphide-poor mineralization and barren rocks. Gahnite is proposed as an exploration guide to high-grade ore in analogous metamorphosed terranes. |
Magnetite | Nadoll et al. (2012) [139] | Magnetite compositions from different geological settings in western Montana and northern Idaho are compared. Subtle differences are correlated with formation temperatures. Factor analysis is used to discriminate genetic types of magnetite. Magnetite is thus proposed as a useful discriminator and pathfinder for hydrothermal deposits. |
Amphibole | Hanley and Bray (2009) [140] | Elevated Ni, Cu and Sn in amphiboles are noted within 10 to 20 m from sulphide veins at Sudbury, ON, Canada. The mineral is suggested to be a valuable proximity indicator for hidden footwall-style sulphide deposits. |
Biotite | Warren et al. (2015) [141] | The Ni, Cr, and Cu contents of biotite vary as a function of proximity to mineralization at Sudbury, ON, Canada. |
Chlorite | Wilkinson et al. (2015) [142] | Chlorite compositions reflect proximity to ore in the propylitic environment of porphyry deposits, potentially over as much as 2.5 km. The elements K, Li, Mg, Ca, Sr, Ba, Ti, V, Mn, Co, Ni, Zn and Pb, were shown to be likely incorporated in the lattice and display spatial variation. Chlorite is proposed as a precise vectoring tool in porphyry domains where few other vector tools are available. |
Apatite | Mao et al. (2016) [143] | A compilation of apatite compositions shows that trace-element compositions from various magmatic-hydrothermal deposits are distinct from those in carbonatites and un-mineralized rocks. Apatite composition shows potential for identifying specific types of buried deposits. |
Magnetite | Makvandi et al. (2016a, b) [144,145] | The authors compare compositional data for magnetite from VMS-type mineralization, associated bedrocks, and surrounding till samples, showing the value of preserved magnetite for prospecting in glaciated terranes. |
Pyrite | Duran et al. (2015, 2016) [106,113] | The two papers show that pyrite from magmatic Ni–Cu–PGE and hydrothermal deposits, and pentlandite from Ni–Cu sulphide and PGE-dominated deposits, have distinct compositions, and can be good indicators of mineralization type. |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cook, N.; Ciobanu, C.L.; George, L.; Zhu, Z.-Y.; Wade, B.; Ehrig, K. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities. Minerals 2016, 6, 111. https://doi.org/10.3390/min6040111
Cook N, Ciobanu CL, George L, Zhu Z-Y, Wade B, Ehrig K. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities. Minerals. 2016; 6(4):111. https://doi.org/10.3390/min6040111
Chicago/Turabian StyleCook, Nigel, Cristiana L. Ciobanu, Luke George, Zhi-Yong Zhu, Benjamin Wade, and Kathy Ehrig. 2016. "Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities" Minerals 6, no. 4: 111. https://doi.org/10.3390/min6040111
APA StyleCook, N., Ciobanu, C. L., George, L., Zhu, Z. -Y., Wade, B., & Ehrig, K. (2016). Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities. Minerals, 6(4), 111. https://doi.org/10.3390/min6040111