Selective Recovery of Mushistonite from Gravity Tailings of Copper–Tin Minerals in Tajikistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Minerals and Reagents
2.2. Analysis Methods
2.3. Flotation Experiments
3. Results and Discussion
3.1. Mineralogical Analysis
3.2. Flotation Experiments of Copper–Tin Minerals
3.2.1. Effect of Pulp pH Value
3.2.2. Effects of Depressant CMC
3.2.3. Effects of Depressant SSF
3.2.4. Effects of Activator Lead Nitrate
3.2.5. Effects of Collector BHA
3.2.6. Closed Circuit Flotation Tests
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rahimov, F.K.; Mamadjonov, Y.M. Mineral resource potential of Tajikistan: As an important component of sustainable development of the silk road economic belt. J. Resour. Ecol. 2015, 6, 125–128. [Google Scholar] [CrossRef]
- Fleischer, M.; Cabri, L.J.; Chao, G.Y.; Pabst, A. New mineral names. Am. Mineral. 1980, 65, 1065–1070. [Google Scholar]
- Fleischer, M.; Cabri, L.J.; Chao, G.Y.; Mandarino, J.A.; Pabst, A. New mineral names. Am. Mineral. 1982, 67, 1074–1082. [Google Scholar]
- Dunn, P.J.; Ferraiolo, J.A.; Fleischer, M.; Gobel, V.; Grice, J.D.; Langley, R.H.; Shigley, J.E.; Vanko, D.A.; Zilczer, J.A. New mineral names. Am. Mineral. 1985, 70, 1329–1335. [Google Scholar]
- Dunn, P.J.; Roberts, W.L. Cuprocassiterite discredited as mushistonite and an unnamed tin mineral from the Etta mine. Mineral. Rec. 1986, 17, 383. [Google Scholar]
- Ivanov, O.P.; Yeremenko, L.Y.; Voronov, A.I.; Zorin, Y.M.; Kuzovenko, A.I.; Khar’Kevich, K.A.; Kanoatov, S.I. Mineralogy and technology of new economic types of tin ores. Int. Geol. Rev. 1993, 35, 603–612. [Google Scholar] [CrossRef]
- Welch, M.D.; Wunder, B. A single-crystal X-ray diffraction study of the 3.65 Å-phase MgSi(OH)6, a high-pressure hydroxide perovskite. Phys. Chem. Miner. 2012, 39, 693–697. [Google Scholar] [CrossRef]
- Ottens, B. Xuebaoding: Pingwu county, Sichuan province, China. Mineral. Rec. 2005, 36, 45–47. [Google Scholar]
- Zhang, D.; Peng, J.; Coulson, I.M.; Hou, L.; Li, S. Cassiterite U–Pb and muscovite40Ar–39Ar age constraints on the timing of mineralization in the Xuebaoding Sn–W–be deposit, western China. Ore Geol. Rev. 2014, 62, 315–322. [Google Scholar] [CrossRef]
- Levine, R.M.; Bond, A.R. Tin reserves and production in the Russian federation. Int. Geol. Rev. 1994, 36, 301–310. [Google Scholar] [CrossRef]
- Yuan, W.; Yang, Y.; Jin, Z.; Liu, T.; Li, H. Review and prospection on process mineralogy research. Yunnan Metall. 2013, 42, 1–4. [Google Scholar]
- Vlcek, L.; Zhang, Z.; Machesky, M.L.; Fenter, P.; Rosenqvist, J.; Wesolowski, D.J.; Anovitz, L.M.; Predota, M.; Cummings, P.T. Electric double layer at metal oxide surfaces: Static properties of the cassiterite-water interface. Langmuir 2007, 23, 4925–4937. [Google Scholar] [CrossRef] [PubMed]
- Mamontov, E.; Vlcek, L.; Wesolowski, D.J.; Cummings, P.T.; Wang, W.; Anovitz, L.M.; Rosenqvist, J.; Brown, C.M.; Garcia Sakai, V. Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations. J. Phys. Chem. C 2007, 111, 4328–4341. [Google Scholar] [CrossRef]
- Tian, M.; Hu, Y.; Sun, W.; Liu, R. Study on the mechanism and application of a novel collector-complexes in cassiterite flotation. Colloids Surf. A 2017, 522, 635–641. [Google Scholar] [CrossRef]
- Gao, Z.; Li, C.; Sun, W.; Hu, Y. Anisotropic surface properties of calcite: A consideration of surface broken bonds. Colloids Surf. A 2017, 520, 53–61. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Z.; Sun, W.; Hu, Y. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process. 2016, 154, 10–15. [Google Scholar] [CrossRef]
- Piga, L. Thermogravimetry of a kaolinite-alunite ore. Thermochim. Acta 1995, 265, 177–187. [Google Scholar] [CrossRef]
- Ippolito, N.M.; Belardi, G.; Piga, L. Determination of mineralogical composition of spent fluorescent powders by coupling ICP-spectroscopy and electronic microprobe analyses. TrAC Trends Anal. Chem. 2017, 94, 14–20. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Y.; Tian, J.; Wu, H.; Yang, Y.; Zeng, X.; Wang, Z.; Wang, J. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Miner. Eng. 2016, 89, 84–92. [Google Scholar] [CrossRef]
- Ejtemaei, M.; Gharabaghi, M.; Irannajad, M. A review of zinc oxide mineral beneficiation using flotation method. Adv. Colloid Interface 2014, 206, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ke, L.; Sun, L. Study of the application and mechanism of benzohydroxamic acid in the flotation of cassiterite. J. China Univ. Min. Technol. 2013, 10, 1367–1382. [Google Scholar]
- Kangal, O.; Güney, A. Effects of modifying reagents on huntite flotation. Miner. Process. Extr. Metall. Rev. 2006, 28, 117–126. [Google Scholar] [CrossRef]
- Pearse, M.J. An overview of the use of chemical reagents in mineral processing. Miner. Eng. 2005, 18, 139–149. [Google Scholar] [CrossRef]
- Song, S.; Lopez-Valdivieso, A.; Martinez-Martinez, C.; Torres-Armenta, R. Improving fluorite flotation from ores by dispersion processing. Miner. Eng. 2006, 19, 912–917. [Google Scholar] [CrossRef]
- Fuerstenau, D.W. Design and development of novel flotation reagents for the beneficiation of Mountain Pass rare-earth ore. Miner. Metall. Process. 2013, 30, 1–9. [Google Scholar]
- Zhao, G.; Wang, S.; Zhong, H. Study on the activation of scheelite and wolframite by lead nitrate. Minerals 2015, 2, 247–258. [Google Scholar] [CrossRef]
- Zhou, Y.; Tong, X.; Song, S.; Wang, X.; Deng, Z.; Xie, X. Beneficiation of cassiterite fines from a tin tailing slime by froth flotation. Sep. Sci. Technol. 2014, 49, 458–463. [Google Scholar] [CrossRef]
- Houot, R.; Desbrosses, Y. Is the cassiterite contained in complex sulphide polymetallic ore recoverable? Int. J. Miner. Process. 1991, 32, 45–57. [Google Scholar] [CrossRef]
- Wu, X.Q.; Zhu, J.G. Selective flotation of cassiterite with benzohydroxamic acid. Miner. Eng. 2006, 19, 1410–1417. [Google Scholar] [CrossRef]
- Sun, L.; Hu, Y.; Sun, W. Effect and mechanism of octanol in cassiterite flotation using benzohydroxamic acid as collector. Trans. Nonferr. Met. Soc. 2016, 26, 3253–3257. [Google Scholar] [CrossRef]
- Han, H.; Liu, W.; Hu, Y.; Sun, W.; Li, X. A novel flotation scheme: Selective flotation of tungsten minerals from calcium minerals using Pb–BHA complexes in Shizhuyuan. Rare Met. 2017, 36, 533–540. [Google Scholar] [CrossRef]
- Yang, J.; Wu, Y.; Zhang, X. Study on separation of tin from a low-grade tin concentrate through leaching and low-temperature smelting processes. Miner. Process. Extr. Metall. 2014, 123, 228–233. [Google Scholar] [CrossRef]
Mineral Composition | Chemical Formula | Specific Gravity | Dissemination Size (mm) |
---|---|---|---|
Mushistonite | (Cu,Fe,Zn)Sn(OH)6 | 4.0–4.4 | 0.01–0.5 |
Cassiterite | SnO2 | 6.8–7.0 | 0.014–0.2 |
Stannite | Cu2FeSnS4 | 4.3–4.5 | 0.004–0.6 |
Malachite | Cu2[CO3](OH)2 | 3.9–4.0 | 0.004–0.8 |
Azurite | Cu3[CO3]2(OH)2 | 3.7–3.9 | 0.01–0.3 |
Dolomite | CaMg(CO3)2 | 2.8–2.9 | 0.06–0.25 |
Quartz | SiO2 | 2.2–2.6 | >0.004 |
Calcite | CaCO3 | 2.7 | >0.004 |
Talcum | Mg3[Si4O10](OH)2 | 2.6–2.8 | 0.004–0.2 |
Limonite | Fe2O3·nH2O | 3.3–4.0 | 0.004–0.2 |
Sericite | K{Al2[AlSi3O10](OH)2} | 2.6–2.7 | 0.004–0.1 |
Others | - | - | - |
Size Fraction (μm) | Yield (%) | Sn | Cu | ||
---|---|---|---|---|---|
Grade (%) | Distribution (%) | Grade (%) | Distribution (%) | ||
+75 | 40.26 | 0.054 | 3.75 | 0.081 | 5.76 |
−75 + 38 | 24.37 | 0.89 | 37.41 | 0.86 | 37.04 |
−38 + 18 | 30.96 | 0.96 | 51.27 | 0.91 | 49.79 |
−18 + 10 | 3.66 | 0.99 | 6.25 | 0.95 | 6.14 |
−10 | 0.75 | 1.02 | 1.32 | 0.96 | 1.27 |
Total | 100 | 0.58 | 100 | 0.57 | 100 |
Component | Sn | Cu | Zn | CaO | SiO2 | MgO | Al2O3 | FeO | K2O | S |
---|---|---|---|---|---|---|---|---|---|---|
Content (%) | 0.58 | 0.57 | 0.48 | 27.76 | 22.59 | 12.08 | 3.84 | 1.58 | 0.83 | 0.12 |
Product | Yield (%) | Sn | Cu | ||
---|---|---|---|---|---|
Grade (%) | Distribution (%) | Grade (%) | Distribution (%) | ||
Concentrates | 2.71 | 13.28 | 61.57 | 18.51 | 86.52 |
Final Tailings | 97.29 | 0.23 | 38.43 | 0.08 | 13.48 |
Feed | 100 | 0.58 | 100 | 0.57 | 100 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Hu, Y.; Sun, W.; Gao, Z.; Tian, M. Selective Recovery of Mushistonite from Gravity Tailings of Copper–Tin Minerals in Tajikistan. Minerals 2017, 7, 242. https://doi.org/10.3390/min7120242
Sun L, Hu Y, Sun W, Gao Z, Tian M. Selective Recovery of Mushistonite from Gravity Tailings of Copper–Tin Minerals in Tajikistan. Minerals. 2017; 7(12):242. https://doi.org/10.3390/min7120242
Chicago/Turabian StyleSun, Lei, Yuehua Hu, Wei Sun, Zhiyong Gao, and Mengjie Tian. 2017. "Selective Recovery of Mushistonite from Gravity Tailings of Copper–Tin Minerals in Tajikistan" Minerals 7, no. 12: 242. https://doi.org/10.3390/min7120242
APA StyleSun, L., Hu, Y., Sun, W., Gao, Z., & Tian, M. (2017). Selective Recovery of Mushistonite from Gravity Tailings of Copper–Tin Minerals in Tajikistan. Minerals, 7(12), 242. https://doi.org/10.3390/min7120242