Mineral Quantification with Simultaneous Refinement of Ca-Mg Carbonates Non-Stoichiometry by X-ray Diffraction, Rietveld Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Althoff, P.L. Structural refinements of dolomite and a magnesian calcite and implications for dolomite formation in the marine environment. Am. Mineral. 1977, 62, 772–783. [Google Scholar]
- Helpa, V.; Rybacki, E.; Morales, L.F.G.; Dresen, G. Influence of grain size, water, and deformation on dolomite reaction rim formation. Am. Mineral. 2016, 101, 2655–2665. [Google Scholar] [CrossRef]
- Letargo, C.M.; Lamb, W.M.; Park, J.S. Comparison of calcite + dolomite thermometry and carbonate + silicate equilibria: Constraints on the conditions of metamorphism of the Llano uplift, central Texas, USA. Am. Mineral. 1995, 80, 131–143. [Google Scholar] [CrossRef]
- Harker, R.I.; Tuttle, O.F. Studies in the system CaO-MgO-CO2; Part 2, Limits of solid solution along the binary join CaCO3-MgCO3. Am. J. Sci. 1955, 253, 274–282. [Google Scholar] [CrossRef]
- Graf, D.L.; Goldsmith, J.R. Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures. Geochim. Cosmochim. Acta 1955, 7, 109. [Google Scholar] [CrossRef]
- Goldsmith, J.R.; Newton, R.C. P-T-X relations in the system CaCO3,-MgCO3, at high temperatures and pressures. Am. J. Sci. 1969, 267, 160–190. [Google Scholar]
- Bickle, M.J.; Powell, R. Calcite-dolomite geothermometry for iron-bearing carbonates. Contrib. Mineral. Petrol. 1977, 59, 281–292. [Google Scholar] [CrossRef]
- Powell, R.; Condliffe, D.M.; Condliffe, E. Calcite–dolomite geothermometry in the system CaCO3–MgCO3–FeCO3: An experimental study. J. Metamorph. Geol. 1984, 2, 33–41. [Google Scholar] [CrossRef]
- Anovitz, L.M.; Essene, E.J. Phase equilibria in the system CaCO3-MgCO3-FeCO3. J. Petrol. 1987, 28, 389–415. [Google Scholar] [CrossRef]
- Stanley, S.M.; Ries, J.B.; Hardie, L.A. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proc. Natl. Acad. Sci. USA 2002, 99, 15323–15326. [Google Scholar] [CrossRef] [PubMed]
- Ries, J.B. Mg fractionation in crustose coralline algae: Geochemical, biological, and sedimentological implications of secular variation in the Mg/Ca ratio of seawater. Geochim. Cosmochim. Acta 2006, 70, 891–900. [Google Scholar] [CrossRef]
- Hardie, L.A. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology 1996, 24, 279–283. [Google Scholar] [CrossRef]
- Muniz, M.C.; Bosence, D.W.J. Pre-salt microbialites from the Campos Basin (offshore Brazil): Image log facies, facies model and cyclicity in lacustrine carbonates. Geol. Soc. Spec. Publ. 2015, 418, 221–242. [Google Scholar] [CrossRef]
- Carminatti, M.; Wolff, B.; Gamboa, L. New exploratory frontiers in Brazil. In Proceedings of the 19th World Petroleum Congress, Madrid, Spain, 29 June–3 July 2008. [Google Scholar]
- Gomes, P.O.; Kilsdonk, B.; Minken, J.; Grow, T.; Barragan, R. The outer high of the Santos Basin, Southern Sao Paulo Plateau, Brazil: Pre-salt exploration outbreak, paleogeographic setting, and evolution of the syn-rift structures. In Proceedings of the AAPG International Conference and Exhibition, Cape Town, South Africa, 26–29 October 2008. [Google Scholar]
- Jones, B.; Renaut, R.W. Calcareous spring deposits in continental settings. Dev. Sedimentol. 2010, 61, 177–224. [Google Scholar] [CrossRef]
- Wright, V.P. Lacustrine carbonates in rift settings: The interaction of volcanic and microbial processes on carbonate deposition. Geol. Soc. 2012, 370, 39–47. [Google Scholar] [CrossRef]
- Veysey, J.; Fouke, B.W.; Kandianis, M.T.; Schickel, T.J.; Johnson, R.W.; Goldenfeld, N. Reconstruction of water temperature, pH, and flux of ancient hot springs from travertine depositional facies. J. Sediment. Res. 2008, 78, 69–76. [Google Scholar] [CrossRef]
- Jones, B.; Luth, R.W. Petrography of finely crystalline Cenozoic dolostones as revealed by backscatter electron imaging: Case study of the Cayman Formation (Miocene), Grand Cayman, British West Indies. J. Sediment. Res. 2003, 73, 1022–1035. [Google Scholar] [CrossRef]
- Chave, K.E. A solid solution between calcite and dolomite. J. Geol. 1952, 60, 190–192. [Google Scholar] [CrossRef]
- Goldsmith, J.R.; Graf, D.L.; Joensuu, O. The occurrence of magnesian calcite in nature. Geochim. Cosmochim. Acta 1955, 7, 212–230. [Google Scholar] [CrossRef]
- Goldsmith, J.R.; Graf, D.L. Relation between lattice constants and composition of the Ca-Mg carbonates. Am. Mineral. 1958, 43, 84–101. [Google Scholar]
- Goldsmith, J.R.; Graf, D.L.; Heard, H.C. Lattice constants of the calcium-magnesium carbonates. Am. Mineral. 1961, 46, 453–459. [Google Scholar]
- Érenburg, B.G. Artificial mixed carbonates in the CaCO3−MgCO3 series. J. Struct. Chem. 1961, 2, 167–171. [Google Scholar] [CrossRef]
- Milliman, J.D.; Gastner, M.; Müller, J. Utilization of magnesium in coralline algae. Geol. Soc. Am. Bull. 1971, 82, 573–580. [Google Scholar] [CrossRef]
- Bischoff, W.D.; Bishop, F.C.; Mackenzie, F.T. Biogenically produced magnesian calcite: Inhomogeneities in chemical and physical properties; comparison with synthetic phases. Am. Mineral. 1983, 68, 1183–1188. [Google Scholar]
- Mackenzie, F.T.; Bischoff, W.D.; Bishop, F.C.; Loijens, M.; Choonmaker, J.; Wollast, R. Magnesium calcites: Low-temperature occurrence, solubility and solid-solution behavior. Rev. Mineral. Geochem. 1983, 11, 97–144. [Google Scholar]
- Effenberger, H.; Mereiter, Κ.; Zemann, J. Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z. Krist-Cryst. Mater. 1981, 156, 233–244. [Google Scholar] [CrossRef]
- Markgraf, S.A.; Reeder, R.J. High-temperature structure refinements of calcite and magnesite. Am. Mineral. 1985, 70, 590–600. [Google Scholar]
- Falini, G.; Fermani, S.; Gazzano, M.; Ripamonti, A. Structure and morphology of synthetic magnesium calcite. J. Mater. Chem. 1998, 8, 1061–1065. [Google Scholar] [CrossRef]
- Reeder, R.J. Constraints on cation order in calcium-rich sedimentary dolomite. Aquat. Geochem. 2000, 6, 213–226. [Google Scholar] [CrossRef]
- Titschack, J.; Goetz-Neunhoeffer, F.; Neubauer, J. Magnesium quantification in calcites [(Ca, Mg)CO3] by Rietveld-based XRD analysis: Revisiting a well-established method. Am. Mineral. 2011, 96, 1028–1038. [Google Scholar] [CrossRef]
- Terra, G.J.S.; Spadini, A.R.; França, A.B.; Sombra, C.L.; Zambonato, E.E.; Juschaks, L.C.S.; Arienti, L.C.; Erthal, M.M.; Blauth, M.; Franco, M.P. Classificações clássicas de rochas carbonáticas. Bol. Geoci. Petrobras 2010, 18, 9–29. [Google Scholar]
- International Centre for Diffraction Data (ICDD). International Centre for Diffraction Data—PDF4+ Relational Powder Diffraction File. Available online: http://www.icdd.com/products/pdf4.htm (accessed on 8 September 2017).
- Cheary, R.W.; Coelho, A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109–121. [Google Scholar] [CrossRef]
- Berger, H. Study of the Kα emission spectrum of copper. X-ray Spectrom. 1986, 15, 241–243. [Google Scholar] [CrossRef]
- Hölzer, G.; Fritsch, M.; Deutsch, M.; Hartwig, J.; Forster, E. K alpha1,2 and K beta1,3 X-ray emission lines of the 3d transition metals. Phys. Rev. A. 1997, 56, 4554–4568. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, H.; Konishi, H.; Roden, E.E. A Relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series. Am. Mineral. 2010, 95, 1650–1656. [Google Scholar] [CrossRef]
- McCarty, D.K.; Drits, V.A.; Sakharov, B. Relationship between composition and lattice parameters of some sedimentary dolomite varieties. Eur. J. Mineral. 2006, 18, 611–627. [Google Scholar] [CrossRef]
- Reeder, R.J.; Sheppard, C.E. Variation of lattice parameters in some sedimentary dolomites. Am. Mineral. 1984, 69, 520–527. [Google Scholar]
- Földvári, M. Handbook of the thermogravimetric system of minerals and its use in geological practice. In Occasional Papers of the Geological Institute of Hungary; Gyula, M., Ed.; Geological Institute of Hungary: Budapest, Hungary, 2011; Volume 213, p. 180. ISBN 978-963-671-288-4. [Google Scholar]
- Paquette, J.; Reeder, R.J. Single-cristal X-ray structure refinements of two biogenic magnesian calcite crytals. Am. Mineral. 1990, 75, 1151–1158. [Google Scholar]
MgCO3 Molar Fraction | a (Å) | c (Å) |
---|---|---|
0.000 | 4.9900 | 17.061 |
0.100 | 4.9494 | 16.876 |
0.163 | 4.9297 | 16.754 |
0.287 | 4.8950 | 16.528 |
Phases | Parameters | Minimum | Maximum |
---|---|---|---|
Dolomite I (LCD)—low Ca-excess | a (Å) | 4.8070 | 4.8187 |
c (Å) | 16.0032 | 16.0895 | |
ΔnCa | 0.00 | 0.10 | |
Dolomite II (HCD)—high Ca-excess | a (Å) | 4.8187 | 4.8362 |
c (Å) | 16.0895 | 16.2190 | |
ΔnCa | 0.10 | 0.25 |
Mineral | EC01 | PS01 | 04 | 05 | 07 | 10 | Lithot | LV07 | LS | C12 | C14 | PA2B | PA5C | PA13 | PA17 | AC 0370 | AC 0371 | AC 0372 | AC 3623 | Am1c | Am2a | 2B | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dolomite | 12.3 | 3.3 | 0.9 | ||||||||||||||||||||
Dolomite I | 55.9 | 23.4 | 21.7 | 43.2 | 5.2 | 19.6 | 7.8 | ||||||||||||||||
Dolomite II | 10.7 | 2.3 | 43.0 | 7.8 | 10.4 | 6.5 | 3.1 | ||||||||||||||||
Calcite | 5.9 | 6.0 | 11.3 | 43.4 | 28.4 | 3.8 | 3.1 | 22.6 | 28.0 | 5.2 | 6.3 | 19.8 | 4.1 | 4.8 | 2.7 | 3.4 | 4.8 | 36.8 | |||||
Calcite-Mg | 93.5 | 23.1 | 85.0 | 55.0 | 68.5 | 46.0 | 61.6 | 78.5 | 13.6 | 42.0 | 47.2 | 62.9 | 4.4 | 42.5 | 76.9 | 86.3 | 72.4 | 26.7 | 31.4 | 35.9 | 23.6 | ||
Aragonite | 32.7 | 17.8 | 76.4 | 13.8 | 8.7 | 14.8 | 61.8 | 62.1 | 54.1 | 36.5 | |||||||||||||
Quartz | 0.6 | 0.7 | 3.7 | 1.5 | 0.3 | 5.9 | 0.7 | 1.5 | 5.0 | 8.2 | 4.2 | 12.7 | 10.4 | 58.4 | 12.0 | 5.3 | 5.0 | 7.9 | 6.9 | 1.8 | 0.9 | 3.0 | |
Gypsum | 1.2 | 0.4 | |||||||||||||||||||||
Fluorapatite | 1.3 | 0.6 | 0.3 | ||||||||||||||||||||
Microcline | 0.2 | 8.6 | 0.7 | 1.9 | 4.1 | 2.7 | 3.6 | 4.1 | 4.2 | ||||||||||||||
Pyrite | 0.4 | 0.6 | |||||||||||||||||||||
Chlorite | 0.7 | ||||||||||||||||||||||
Actinolite | 1.3 | ||||||||||||||||||||||
Muscovite | 0.4 | 0.4 | 0.5 | ||||||||||||||||||||
Illite | 2.0 | 0.6 | 6.9 | 3.1 | 3.8 | 6.2 | |||||||||||||||||
Montmorillonite | 0.4 | ||||||||||||||||||||||
Kaolinite | 0.3 | 1.6 | 0.9 | ||||||||||||||||||||
Palygorskite | 1.4 | 1.1 | |||||||||||||||||||||
Glauconite | 4.0 | ||||||||||||||||||||||
Talc | 0.2 | ||||||||||||||||||||||
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
Lattice parameters | |||||||||||||||||||||||
Calcite-Mg | a (Å) | 4.981 | 4.966 | 4.984 | 4.986 | 4.983 | 4.985 | 4.933 | 4.919 | 4.940 | 4.983 | 4.984 | 4.982 | 4.981 | 4.981 | 4.929 | 4.934 | 4.932 | 4.932 | 4.930 | 4.931 | 4.957 | |
c (Å) | 17.021 | 16.960 | 17.041 | 17.047 | 17.027 | 17.045 | 16.808 | 16.747 | 16.859 | 17.035 | 17.036 | 17.027 | 16.995 | 17.023 | 16.786 | 16.806 | 16.800 | 16.813 | 16.792 | 16.801 | 16.929 | ||
d104 (Å) | 3.03 | 3.02 | 3.03 | 3.03 | 3.03 | 3.03 | 3.00 | 2.99 | 3.00 | 3.03 | 3.03 | 3.03 | 3.03 | 3.03 | 2.99 | 3.00 | 2.99 | 3.00 | 2.99 | 2.99 | 3.01 | ||
cell volume | 365.7 | 362.3 | 366.6 | 367.0 | 366.1 | 366.7 | 354.2 | 351.0 | 356.3 | 366.3 | 366.5 | 367.0 | 365.2 | 365.8 | 353.2 | 354.3 | 354.0 | 354.2 | 353.4 | 353.8 | 360.3 | ||
Molar fraction MgCO3 | 0.02 | 0.05 | 0.01 | 0.01 | 0.02 | 0.01 | 0.14 | 0.17 | 0.11 | 0.01 | 0.01 | 0.02 | 0.04 | 0.02 | 0.15 | 0.14 | 0.14 | 0.13 | 0.14 | 0.14 | 0.07 | ||
Dolomite I | a (Å) | 4.813 | 4.809 | 4.812 | 4.819 | 4.815 | 4.819 | ||||||||||||||||
c (Å) | 16.039 | 16.009 | 16.033 | 16.086 | 16.062 | 16.071 | |||||||||||||||||
d104 (Å) | 2.89 | 2.89 | 2.89 | 2.90 | 2.89 | 2.89 | |||||||||||||||||
cell volume | 321.8 | 320.7 | 321.5 | 323.5 | 322.5 | 322.2 | |||||||||||||||||
Molar fraction CaCO3 (excess) | 0.04 | 0.01 | 0.03 | 0.10 | 0.07 | 0.08 | |||||||||||||||||
Dolomite II | a (Å) | 4.819 | 4.836 | 4.827 | 4.820 | 4.834 | 4.831 | 4.827 | |||||||||||||||
c (Å) | 16.090 | 16.219 | 16.139 | 16.109 | 16.169 | 16.156 | 16.145 | 16.219 | |||||||||||||||
d104 (Å) | 2.90 | 2.91 | 2.90 | 2.90 | 2.91 | 2.91 | 2.90 | 2.91 | |||||||||||||||
cell volume | 323.5 | 328.5 | 325.6 | 324.1 | 327.2 | 326.5 | 325.8 | 328.5 | |||||||||||||||
Molar fraction CaCO3 (excess) | 0.10 | 0.25 | 0.16 | 0.12 | 0.19 | 0.18 | 0.16 | 0.25 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dos Santos, H.N.; Neumann, R.; Ávila, C.A. Mineral Quantification with Simultaneous Refinement of Ca-Mg Carbonates Non-Stoichiometry by X-ray Diffraction, Rietveld Method. Minerals 2017, 7, 164. https://doi.org/10.3390/min7090164
Dos Santos HN, Neumann R, Ávila CA. Mineral Quantification with Simultaneous Refinement of Ca-Mg Carbonates Non-Stoichiometry by X-ray Diffraction, Rietveld Method. Minerals. 2017; 7(9):164. https://doi.org/10.3390/min7090164
Chicago/Turabian StyleDos Santos, Hélisson Nascimento, Reiner Neumann, and Ciro Alexandre Ávila. 2017. "Mineral Quantification with Simultaneous Refinement of Ca-Mg Carbonates Non-Stoichiometry by X-ray Diffraction, Rietveld Method" Minerals 7, no. 9: 164. https://doi.org/10.3390/min7090164
APA StyleDos Santos, H. N., Neumann, R., & Ávila, C. A. (2017). Mineral Quantification with Simultaneous Refinement of Ca-Mg Carbonates Non-Stoichiometry by X-ray Diffraction, Rietveld Method. Minerals, 7(9), 164. https://doi.org/10.3390/min7090164