Geochronology of Hydrothermal Processes Leading to the Formation of the Au–U Mineralization at the Rompas Prospect, Peräpohja Belt, Northern Finland: Application of Paired U–Pb Dating of Uraninite and Re–Os Dating of Molybdenite to the Identification of Multiple Hydrothermal Events in a Metamorphic Terrane
Abstract
:1. Introduction
2. Regional Geology and Tectonic Evolution of the Peräpohja Belt
3. Local Geology and Hydrothermal Mineralization at the Rompas and Palokas Prospects
4. Materials and Methods
4.1. Sampling
4.2. Mineralogical and Textural Observations
4.3. U–Pb Dating of Uraninite
4.4. Re–Os Dating of Molybdenite
5. Results
5.1. Uraninite at Rompas: Textural Types and U–Pb Ages
5.1.1. Type 1 Uraninite
5.1.2. Type 2 Uraninite
5.1.3. Type 3 Uraninite
5.2. Uraninite Chemical Ages at Rompas
5.3. Re–Os Ages for Molybdenite from Rompas and Palokas
6. Discussion
7. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kotzer, T.G.; Kyser, T.K. O, U, and Pb isotopic and chemical variations in uraninite: Implications for determining the temporal and fluid history of ancient terrains. Am. Mineral. 1993, 78, 1262–1274. [Google Scholar]
- Alexandre, P.; Kyser, T.K. Effects of cationic substitutions and alteration in uraninite and implications for the dating of uranium deposits. Can. Mineral. 2005, 43, 1005–1017. [Google Scholar] [CrossRef]
- Polito, P.A.; Kyser, K.; Marlatt, J.; Alexandre, P.; Bajwah, Z.; Drever, G. Significance of alteration assemblages for the origin and evolution of the Proterozoic Nabarlek unconformity-related Uranium Deposit, Northern Territory, Australia. Econ. Geol. 2004, 99, 113–139. [Google Scholar]
- Dieng, S.; Kyser, K.; Godin, L. Tectonic history of the North American shield recorded in uranium deposits in the Beaverlodge area, northern Saskatchewan, Canada. Precambrian Res. 2013, 224, 316–340. [Google Scholar] [CrossRef]
- Fuchs, S.; Williams-Jones, A.E.; Jackson, S.E.; Przybylowicz, W.J. Metal distribution in pyrobitumen in the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: Evidence for liquid hydrocarbon ore fluids. Chem. Geol. 2016, 426, 45–59. [Google Scholar] [CrossRef]
- Molnár, F.; Oduro, H.; Cook, N.D.J.; Pohjolainen, E.; Takács, Á.; O’Brien, H.; Pakkanen, L.; Johanson, B.; Wirth, R. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland. Mineral. Depos. 2016, 51, 681–702. [Google Scholar] [CrossRef]
- Stein, H.J.; Markey, R.J.; Morgan, J.W.; Du, A.; Sun, Y. Highly precise and accurate Re-Os ages for molybdenite from the east Qinling molybdenum belt, Shaanxi Province, China. Econ. Geol. 1997, 92, 827–835. [Google Scholar] [CrossRef]
- Stein, H.J.; Markey, R.J.; Morgan, J.W.; Hannah, J.L.; Scherstén, A. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova 2001, 13, 479–486. [Google Scholar] [CrossRef]
- Raith, J.G.; Stein, H.J. Re-Os dating and sulfur isotope composition of molybdenite from tungsten deposits in western Namaqualand, South Africa: Implications for ore genesis and the timing of metamorphism. Mineral. Depos. 2000, 35, 741–753. [Google Scholar]
- Bingen, B.; Stein, H. Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth Planet. Sci. Lett. 2003, 208, 181–195. [Google Scholar] [CrossRef]
- Ranta, J.-P.; Lauri, L.S.; Hanski, E.; Huhma, H.; Lahaye, Y.; Vanhanen, E. U–Pb and Sm–Nd isotopic constraints on the evolution of the Paleoproterozoic Peräpohja Belt, northern Finland. Precambrian Res. 2015, 266, 246–259. [Google Scholar] [CrossRef]
- Lahtinen, R.; Huhma, H.; Lahaye, Y.; Jonsson, E.; Manninen, T.; Lauri, L.; Bergman, S.; Hellström, F.; Niiranen, T.; Nironen, M. New geochronological and Sm–Nd constraints across the Pajala shear zone of northern Fennoscandia: Reactivation of a Paleoproterozoic suture. Precambrian Res. 2015, 256, 102–119. [Google Scholar] [CrossRef]
- Lahtinen, R.; Sayab, M.; Karell, F. Near-orthogonal deformation successions in the poly-deformed Paleoproterozoic Martimo belt: Implications for the tectonic evolution of Northern Fennoscandia. Precambrian Res. 2015, 270, 22–38. [Google Scholar] [CrossRef]
- Förster, H.-J.; Rhede, D.; Stein, H.J.; Romer, R.L.; Tischendorf, G. Paired uraninite and molybdenite dating of the Königshain granite: Implications for the onset of late-Variscan magmatism in the Lausitz Block. Int. J. Earth Sci. 2012, 101, 57–67. [Google Scholar] [CrossRef]
- Bowles, J.F. Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chem. Geol. 1990, 83, 47–53. [Google Scholar] [CrossRef]
- Kouvo, O.; Tilton, G. Mineral ages from the Finnish Precambrian. J. Geol. 1996, 74, 421–442. [Google Scholar] [CrossRef]
- Huhma, H.; Cliff, R.; Perttunen, V.; Sakko, M. Sm-Nd and Pb isotopic study of mafic rocks associated with early Proterozoic schist belt in northern Finland. Contrib. Mineral. Petrol. 1990, 104, 369–379. [Google Scholar] [CrossRef]
- Perttunen, V. On the Proterozoic stratigraphy and exogenic evolution of the Peräpohja area, Finland. Geol. Surv. Finl. Bull. 1985, 331, 131–141. [Google Scholar]
- Perttunen, V.; Hanski, E. Pre-Quaternary Rocks of the Koivu and Törmäsjärvi Map-Sheet Areas, Explanation to the Geological Map of Finland 1:100,000, Pre-Quaternary Rocks, Sheets 3631 and 2633; Geological Survey of Finland: Espoo, Finland, 2003; p. 88, (In Finnish with English Summary).
- Karhu, J.A. Paleoproterozoic Evolution of the Carbon Isotope Ratios of Sedimentary Carbonates in the Fennoscandian Shield; Geological Survey of Finland: Espoo, Finland, 1993; p. 87.
- Hanski, E. History of stratigraphic research in northern Finland. Geol. Surv. Finl. Spec. Pap. 2001, 33, 15–43. [Google Scholar]
- Perttunen, V.; Vaasjoki, M. U-Pb geochronology of the Peräpohja Schist Belt, northwestern Finland. Geol. Surv. Finl. Spec. Paper 2001, 33, 45–84. [Google Scholar]
- Bergman, S.; Billström, K.; Persson, P.-O.; Skiöld, T.; Evins, P. U–Pb age evidence for repeated Palaeoproterozoic metamorphism and deformation near the Pajala shear zone in the northern Fennoscandian shield. GFF 2006, 128, 7–20. [Google Scholar] [CrossRef]
- Niironen, M. Proterozoic orogenic granitoid rocks. In Precambrian Bedrock of Finland—Key to the Evolution of the Fennoscandian Shield, 1st ed.; Lehtinen, M., Nurmi, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 443–480. [Google Scholar]
- Ranta, J.P.; Hanski, E.; Cook, N.; Lahaye, Y. Source of boron in the Palokas gold deposit, northern Finland: Evidence from boron isotopes and major element composition of tourmaline. Mineral. Depos. 2017, 52, 733–746. [Google Scholar] [CrossRef]
- Perttunen, V.; Hanski, E.; Väänänen, J.; Eilu, P.; Lappalainen, M. Rovaniemin kartta-alueen Kallioperä. Geological Map of Finland 1:100,000. Explanation to the maps of Pre-Quaternary rocks, sheet 3612. Geol. Surv. Finl. 1996, 33, 1–42. [Google Scholar]
- Hudson, M. Progress Report on the Geology, Mineralization and Exploration Activities on the Rompas-Rajapalot Gold-Uranium Project, Peräpohja Schist Belt. 2013. Available online: http://mawsonresources.com/assets/docs/reports/2013-08_ni43-101-rompas.pdf (accessed on 18 September 2013).
- Vanhanen, E.; Cook, N.D.J.; Hudson, M.R.; Dahlenborg, L.; Ranta, J.P.; Havela, T.; Kinnunen, J.; Molnár, F.; Prave, A.R.; Oliver, N.H.S. Rompas prospect, Peräpohja Schist Belt, Northern Finland. In Mineral Deposits of Finland; Maier, W.D., O’Brien, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 467–484. [Google Scholar]
- Mawson Resources. Mawson to Drill 1000 Base of Till Holes at the Rajapalot Gold Project in Finland. 2016. Available online: http://mawsonresources.com/news/news-releases/2016/mawson-to-drill-1000-base-of-till-holes-at-the-rajapalot-gold-project-in-finland (accessed on 8 March 2017).
- Müller, W.; Shelley, M.; Miller, P.; Broude, S. Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J. Anal. At. Spectrom. 2009, 24, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Van Achterbergh, E.; Ryan, C.; Jackson, S.; Griffin, W. Data reduction software for LA-ICP-MS. In Laser-Ablation ICPMS in the Earth Sciences; Sylvester, P., Ed.; Principles and Applications, Mineralogical Association of Canada Short Course Series; Mineralogical Association of Canada: St. John, NL, Canada, 2001; pp. 239–243. [Google Scholar]
- Ludwig, K.R. User’s manual for Isoplot/Ex, Version 3.00. A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Center Spec. Publ. 2003, 4, 76. [Google Scholar]
- Stein, H.; Scherstén, A.; Hannah, J.; Markey, R. Sub-grain scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochim. Cosmochim. Acta 2003, 67, 3673–3686. [Google Scholar] [CrossRef]
- Bass, D.J. Elasticity of minerals, glasses, and melts. In Mineral Physics and Crystallography: A Handbook of Physical Constants; Ahrens, T.J., Ed.; American Geophysical Union: Washington, DC, USA, 1995; Volume 2, pp. 5–63. [Google Scholar]
- Selby, D.; Creaser, R.A. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochim. Cosmochim. Acta 2004, 68, 3897–3908. [Google Scholar] [CrossRef]
- Stein, H.J. Low-rhenium molybdenite by metamorphism in northern Sweden: Recognition, genesis, and global implications. Lithos 2006, 87, 300–327. [Google Scholar] [CrossRef]
- Selby, D.; Creaser, R.A. Re–Os geochronology of organic rich sediments: An evaluation of organic matter analysis methods. Chem. Geol. 2003, 200, 225–240. [Google Scholar] [CrossRef]
- McCandless, T.E.; Ruiz, J.; Campbell, A.R. Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry. Geochim. Cosmochim. Acta 1993, 97, 889–905. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Creaser, R.A.; Lowers, H.A.; Magee, C.W., Jr.; Grauch, R. Multiple age components in individual molybdenite grains. Chem. Geol. 2012, 300, 55–60. [Google Scholar] [CrossRef]
- Evins, L.Z.; Jensen, K.A.; Ewing, R.C. Uraninite recrystallization and Pb loss in the Oklo and Bangombé natural fission reactors, Gabon. Geochim. Cosmochim. Acta 2005, 69, 1589–1606. [Google Scholar] [CrossRef]
- Rastas, P.; Huhma, H.; Hanski, E.; Lehtonen, M.I.; Paakkola, J.; Mänttäri, I.; Härkönen, I. U-Pb isotopic studies on the Kittilä greenstone area, central Lapland, Finland. In Radiometric Age Determinations from Finnish Lapland and Their Bearing on the Timing of Precambrian Volcano-Sedimentary Sequences; Vaasjoki, M., Ed.; Geological Survey of Finland: Espoo, Finland, 2001; Volume 33, pp. 95–141. [Google Scholar]
- Räsänen, J.; Huhma, H. U-Pb dating in the Sodankylä schist area of the Central Lapland Greenstone Belt. In Radiometric Age Determinations from Finnish Lapland and Their Bearing on the Timing of Precambrian Volcano-Sedimentary Sequences; Vaasjoki, M., Ed.; Geological Survey of Finland: Espoo, Finland, 2001; Volume 33, pp. 153–188. [Google Scholar]
- Larson, S.Å.; Tullborg, E.L. Why Baltic Shield zircons yield late Paleozoic, lower-intercept ages on U–Pb Concordia. Geology 1998, 26, 919–922. [Google Scholar] [CrossRef]
- Alexandre, P.; Kyser, K.; Jiricka, D.; Witt, G. Formation and evolution of the centennial unconformity related uranium deposit in the South-Central Athabasca Basin, Canada. Econ. Geol. 2012, 107, 385–400. [Google Scholar] [CrossRef]
- Mercadier, J.; Annesley, I.R.; McKechnie, C.L.; Bogdan, T.S.; Creighton, S. Magmatic and metamorphic uraninite mineralization in the western margin of the Trans-Hudson orogen (Saskatchewan, Canada): A uranium source for unconformity-related uranium deposits? Econ. Geol. 2013, 108, 1037–1065. [Google Scholar] [CrossRef]
- Polito, P.A.; Kyser, K.; Thomas, D.; Marlatt, J.; Drever, G. Re-evaluation of the petrogenesis of the Proterozoic Jabiluka unconformity-related uranium deposit, Northern Territory, Australia. Mineral. Depos. 2005, 40, 257–288. [Google Scholar] [CrossRef]
- Chipley, D.; Polito, P.A.; Kyser, K. Measurement of U–Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS. Am. Mineral. 2007, 92, 1925–1935. [Google Scholar] [CrossRef]
- Skirrow, R.G.; Mercadier, J.; Armstrong, R.; Kuske, T.; Deloule, E. The Ranger uranium deposit, northern Australia: Timing constraints, regional and ore-related alteration, and genetic implications for unconformity-related mineralization. Ore Geol. Rev. 2016, 76, 463–503. [Google Scholar] [CrossRef]
Sample No., Locality, Characteristics | Textural Type of Uraninite | No. of Spots | 207Pb/206Pb | Lower Intercept Concordia Age ± 2σ Ma | Upper Intercept Concordia Age ± 2σ Ma | MSWD | Average 207Pb/206Pb Age ± 2σ Ma | MSWD |
---|---|---|---|---|---|---|---|---|
#104793 outcrop sample high grade gold | Type 1, zoned uraninite grains mottled-spongy cores | 8 | 0.1213–0.1286 | 204 ± 130 | 2022 ± 22 | 7.3 | 2028 ± 31 | 23 |
8 | 0.1113–0.1174 | 123 ± 110 | 1912 ± 24 | 1.8 | 1888 ± 10 | 2.1 | ||
Type 1, zoned uraninite grains, homogeneous/smooth rims | 12 | 0.1153–0.1199 | - | - | - | 1902 ± 10 | 3.2 | |
9 | 0.1125–0.1145 | - | - | - | 1853 ± 8 | 1.8 | ||
3 | 0.1090–0.1112 | - | - | - | ~1805 | - | ||
#24041365 ROM-0011 7.65–7.70 m high grade gold, no pyrobitumen | Type 2, breccia fragments | 10 | 0.1185–0.1210 | -10 ± 200 | 1951 ± 28 | 1.3 | 1952 ± 10 | 1.2 |
7 | 0.1148–0.1164 | 148 ± 240 | 1910 ± 43 | 0.4 | 1887 ± 9 | 0.5 | ||
#24041367 ROM-0011 12.30–12.57 m high grade gold, pyrobitumen | Type 2, breccia fragments | 5 | 0.1216–0.1238 | 433 ± 240 | 2079 ± 63 | 0.3 | 2006 ± 32 | 13 |
9 | 0.1187–0.1204 | 172 ± 190 | 1975 ± 29 | 1.7 | 1952 ± 7 | 1.7 | ||
18 | 0.1153–0.1182 | 61 ± 73 | 1916 ± 13 | 2.4 | 1907 ± 6 | 2.7 | ||
4 | 0.1094–01133 | - | - | - | 1827 ± 46 | 13 | ||
#24041374 ROM-0011 115.0–115.06 m high grade gold, pyrobitumen | Type 2, breccia fragments | 6 | 0.1224–0.1253 | 182 ± 310 | 2035 ± 52 | 2.3 | 2009 ± 19 | 2.1 |
7 | 0.1179–0.1212 | 364 ± 210 | 2007 ± 52 | 1.3 | 1940 ± 20 | 3.1 | ||
#23041346 ROM-0044 10.97–11.20 m no gold, pyrobitumen | Type 3, round grains | 9 | 0.1072–0.1114 | 222 ± 310 | 1819 ± 37 | 3.7 | 1800 ± 21 | 4.6 |
AIRIE Run # | Sample Core and Depth, Identification Number | Visual Estimate of Molybdenite in Separate | Re (ppm) | Re Error (ppm) | 187Os (ppb) | 187Os Error (ppb) | Age (Ma) | Error (Ma) | Sample Weight (mg) |
---|---|---|---|---|---|---|---|---|---|
Palokas | |||||||||
MD-1429 | PRAJ0009, 6.96 m, #239291 | 80% | 302.8 | 1.9 | 5722.0 | 4.6 | 1778 | 13 | 35.3 |
MD-1439 | PRAJ0009, 6.96 m, #239291, (b, same) | 80% | 320.83 | 0.37 | 6076.9 | 4.9 | 1782 | 6 | 14.4 |
Rompas | |||||||||
MD-1435 | ROM-0044, 10.97–11.20 m, #23041346 | 30% | 70.65 | 0.13 | 1537.6 | 1.2 | 2043 | 8 | 15.7 |
MD-1613 | ROM-0044, 10.97–11.20 m, #23041346 (b, new) | 60% | 109.60 | 0.17 | 2361.9 | 1.8 | 2023 | 7 | 16.9 |
MD-1434 | ROM-0044, 24.0–24.16 m, #23041351 | 3 crystals, <0.1 mm, guided by SEM photos | 1.581 | 0.005 | 33.803 | 0.027 | 2007 | 9 | 11.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnár, F.; O’Brien, H.; Stein, H.; Cook, N.D.J. Geochronology of Hydrothermal Processes Leading to the Formation of the Au–U Mineralization at the Rompas Prospect, Peräpohja Belt, Northern Finland: Application of Paired U–Pb Dating of Uraninite and Re–Os Dating of Molybdenite to the Identification of Multiple Hydrothermal Events in a Metamorphic Terrane. Minerals 2017, 7, 171. https://doi.org/10.3390/min7090171
Molnár F, O’Brien H, Stein H, Cook NDJ. Geochronology of Hydrothermal Processes Leading to the Formation of the Au–U Mineralization at the Rompas Prospect, Peräpohja Belt, Northern Finland: Application of Paired U–Pb Dating of Uraninite and Re–Os Dating of Molybdenite to the Identification of Multiple Hydrothermal Events in a Metamorphic Terrane. Minerals. 2017; 7(9):171. https://doi.org/10.3390/min7090171
Chicago/Turabian StyleMolnár, Ferenc, Hugh O’Brien, Holly Stein, and Nick D. J. Cook. 2017. "Geochronology of Hydrothermal Processes Leading to the Formation of the Au–U Mineralization at the Rompas Prospect, Peräpohja Belt, Northern Finland: Application of Paired U–Pb Dating of Uraninite and Re–Os Dating of Molybdenite to the Identification of Multiple Hydrothermal Events in a Metamorphic Terrane" Minerals 7, no. 9: 171. https://doi.org/10.3390/min7090171
APA StyleMolnár, F., O’Brien, H., Stein, H., & Cook, N. D. J. (2017). Geochronology of Hydrothermal Processes Leading to the Formation of the Au–U Mineralization at the Rompas Prospect, Peräpohja Belt, Northern Finland: Application of Paired U–Pb Dating of Uraninite and Re–Os Dating of Molybdenite to the Identification of Multiple Hydrothermal Events in a Metamorphic Terrane. Minerals, 7(9), 171. https://doi.org/10.3390/min7090171