A Study on the Flocculation and Sedimentation of Iron Tailings Slurry Based on the Regulating Behavior of Fe3+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Flocculation and Sedimentation Tests
2.2.2. Flocs’ Size Study
2.2.3. Zeta Potential Analysis
2.2.4. Fourier Transform Infrared Spectroscopic (FTIR) Study
2.2.5. Scanning Electron Microscope (SEM) Imaging
3. Results and Discussion
3.1. Flocculation and Sedimentation Tests
3.2. Flocs’ Size Analysis
3.3. Zeta Potential and Solution Chemistry Studies
3.4. FTIR Spectra of Hematite-APAM Treated with Fe3+
3.5. Surface Characterization (SEM imaging) and Proposed Model of APAM in the Presence of Fe3+
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, J.; Fu, K.; Jiang, L.; Ding, L.; Guan, Q.; Zhang, S.; Zhang, H.; Shi, J.; Fu, X. Flocculation performance of cationic polyacrylamide with high cationic degree in humic acid synthetic water treatment and effect of kaolin particles. Sep. Purif. Technol. 2017, 181, 201–212. [Google Scholar] [CrossRef]
- Ariffin, A.; Razali, M.A.A.; Ahmad, Z. PolyDADMAC and polyacrylamide as a hybrid flocculation system in the treatment of pulp and paper mills waste water. Chem. Eng. J. 2012, 179, 107–111. [Google Scholar] [CrossRef]
- Kutsevol, N.; Naumenko, A.; Chumachenko, V.; Balega, A.; Bulavin, L. Flocculative ability of uncharged and hydrolyzed graft and linear polyacrylamides. J. Mol. Liq. 2017, 227, 26–30. [Google Scholar] [CrossRef]
- Wu, X.; Yue, T.; Dai, L. Magnetic seeding sedimentation (MSS) of coal slimes. IOP Conf. Ser Earth Environ. Sci. 2017, 52, 012003. [Google Scholar] [CrossRef] [Green Version]
- Ng, W.S.; Sonsie, R.; Forbes, E.; Franks, G.V. Flocculation/Flotation of hematite fines with anionic temperature-responsive polymer acting as a selective flocculant and collector. Miner. Eng. 2015, 77, 64–71. [Google Scholar] [CrossRef]
- Dwari, R.K.; Angadi, S.I.; Tripathy, S.K. Studies on flocculation characteristics of chromite’s ore process tailing: Effect of flocculants ionicity and molecular mass. Colloids Surf. A. Physicochem. Eng. Asp. 2018, 537, 467–477. [Google Scholar] [CrossRef]
- Yue, T.; Wu, X.; Dai, L. Effect of magnetic seeding agglomeration on flotation of fine minerals. J. Cent. South Univ. 2018, in press. [Google Scholar]
- Wu, X.; Yue, T.; Dai, L. Magnetic seeding flotation of fine minerals. In Proceedings of the 28th International Conference of Mineral Processing (IMPC), Quebec, QC, Canada, 11–15 September 2016. [Google Scholar]
- Zhang, X.; Ji, W.; Kang, Z.; Wang., J.; Yu, J.; Hou, B.; Han, H. Research progress in degradation of polyacrylamide. J. Environ. Prot. Oil Gas Fields 2008, 18, 41–45. (In Chinese) [Google Scholar]
- Levitt, D.B.; Pope, G.A.; Jouenne, S. Chemical degradation of polyacrylamide polymers under alkaline conditions. SPE Reserv. Eval. Eng. 2011, 14, 281–286. [Google Scholar]
- Castro, S.; Laskowski, J.S. Depressing effect of flocculants on molybdenite flotation. Miner. Eng. 2015, 74, 13–19. [Google Scholar] [CrossRef]
- Chang, Z.; Feng, Q.; Ou, L. Study on the impact of flocculants in backwater on bauxite flotation. Nonferrous Met. Miner. Process. Sect. 2014, 6, 88–91. (In Chinese) [Google Scholar]
- Pradip; Kulkarni, R.A.; Gundiah, S.; Moudgil, B.M. Selective flocculation of kaolinite from mixtures with tribasic calcium phosphate using hydrolyzed polyacrylamides. Int. J. Miner. Process. 1991, 32, 259–270. [Google Scholar] [CrossRef]
- Yen, H.Y.; Yang, M.H. The ultrasonic degradation of polyacrylamide solution. Polym. Test. 2013, 22, 129–131. [Google Scholar] [CrossRef]
- Kay-Shoemake, J.L.; Watwood, M.E.; Lentz, R.D.; Sojka, R.E. Polyacrylamide as an organic nitrogen source for soil microorganisms with potential effects on inorganic soil nitrogen in agricultural soil. Soil Biol. Biochem. 1998, 30, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Vilcu, R.; Olteanu, M.; Mândru, I. Thermal behaviour of some mixture of collagen hydrolysates with vinylic polymers. Eur. Polym. J. 1985, 21, 81–83. [Google Scholar] [CrossRef]
- Seright, R.S.; Campbell, A.; Mozley, P.; Han, P. Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. SPE J. 2010, 15, 341–348. [Google Scholar] [CrossRef]
- Caulfield, M.J.; Hao, X.; Qiao, G.G.; Solomon, D.H. Degradation on polyacrylamides Part I: Linear polyacrylamide. Polymer 2003, 44, 1331–1337. [Google Scholar] [CrossRef]
- Caulfield, M.J.; Hao, X.; Qiao, G.G.; Solomon, D.H. Degradation on polyacrylamides Part II: Polyacrylamide gels. Polymer 2003, 44, 3817–3826. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.P.; Madras, G. Photocatalytic degradation of poly (ethylene oxide) and polyacrylamide. J. Appl. Polym. Sci. 2010, 100, 3997–4003. [Google Scholar] [CrossRef]
- Ramsden, D.K.; Mckay, K. Degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part I—Fenton’s reagent. Polym. Degrad. Stab. 1986, 14, 217–229. [Google Scholar] [CrossRef]
- Ramsden, D.K.; Mckay, K. Degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part II—Autoxidation of Fe2+. Polym. Degrad. Stab. 1986, 15, 15–31. [Google Scholar] [CrossRef]
- Zhu, L.; Chang, Z.; Li, M.; Wang, E. Oxidative degradation of partially hydrolyzed polyacrylamide in aqueous solution i: Influence of temperature. Polym. Mater. Sci. Eng. 2000, 16, 113–116. (In Chinese) [Google Scholar]
- Kłos, J.; Pakula, T. Monte Carlo simulations of a polyelectrolyte chain with added salt: Effect of temperature and salt valence. J. Chem. Phys. 2005, 123, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kłos, J.; Pakula, T. Lattice Monte Carlo simulations of a charged polymer chain: Effect of valence and concentration of the added salt. J. Chem. Phys. 2005, 122, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.M.Y.; Dobrtnin, A.V. Polyelectrolytes in salt solutions: Molecular dynamics simulations. Macromolecules 2011, 44, 5798–5816. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, F.L. Crosslinking mechanism of multivalent metal ions with polyacrylamide. J. China Univ. Pet. 1992, 16, 32–39. (In Chinese) [Google Scholar]
- Li, M.R.; Liu, Z.; Song, X.W.; Ma, B.D.; Zhang, W. Effect of metal ions on the viscosity of polyacrylamide solution and the mechanism of viscosity degradation. J. Fuel Chem. Technol. 2012, 40, 43–47. (In Chinese) [Google Scholar] [CrossRef]
- Jin, Y.X.; Wang, L.S.; Wang, T.; Zhang, X.; Yan, Y.G.; Liu, B. Experimental and theoretical study of the inorganic salts influence on the viscosity of partially hydrolyzed polyacrylamide in aqueous solution. J. China Univ. Pet. 2016, 40, 165–170. (In Chinese) [Google Scholar]
- Liu, T.Y. Study on the Clarification of Ore Tailings Water by Magnetic Seeding Flocculation and Recycle of Magnetic Seeds. Master’s Thesis, Central South University, Changsha, China, 2018. [Google Scholar]
- Wills, B.A.; Napier-Munn, T.J. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery; Elsevier: Amsterdam, The Netherlands, 2006; pp. 378–379. [Google Scholar]
- Peng, H.; Luo, W.; Wu, D.; Bie, X.; Shao, H.; Jiao, W.; Liu, Y. Study on the effect of Fe3+ on zircon flotation separation from cassiterite using sodium oleate as collector. Minerals 2017, 7, 108. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R.Q.; Groppo, J.G. Flotation of monazite in the presence of calcite part I: Calcium ion effects on the adsorption of hydroxamic acid. Miner. Eng. 2017, 100, 40–48. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R.Q. Flotation of monazite in the presence of calcite part II: Enhanced separation performance using sodium silicate and EDTA. Miner. Eng. 2018, 127, 318–328. [Google Scholar] [CrossRef]
Sample | Fe2O3 (%) | SiO2 (%) | Al2O3 (%) | CaO (%) | MgO (%) | LOI (%) |
---|---|---|---|---|---|---|
Hematite ore slimes | 44.86 | 38.66 | 6.17 | 2.75 | 3.15 | 2.45 |
Pure hematite | 98.13 | 0.68 | 0.48 | 0.06 | 0.05 | 0.47 |
Iron Tailings Slurry | d (0.1) (µm) | d (0.5) (µm) | d (0.9) (µm) | Average Size (µm) | Specific Area (m2/g) |
---|---|---|---|---|---|
Tailings slurry | 4.672 | 15.324 | 32.083 | 17.114 | 0.172 |
Slurry with 2 mg/L PAM | 9.618 | 28.266 | 69.768 | 41.277 | 0.087 |
2 mg/L PAM and 20 mg/L Fe3+ | 6.456 | 22.064 | 60.086 | 32.491 | 0.117 |
2 mg/L PAM and 40 mg/L Fe3+ | 5.574 | 18.437 | 50.085 | 28.023 | 0.136 |
2 mg/L PAM and 56 mg/L Fe3+ | 5.298 | 17.901 | 48.675 | 25.077 | 0.141 |
2 mg/L PAM and 90 mg/L Fe3+ | 5.557 | 18.341 | 49.487 | 27.620 | 0.139 |
2 mg/L PAM and 120 mg/L Fe3+ | 5.784 | 20.405 | 55.080 | 29.288 | 0.125 |
2 mg/L PAM and 150 mg/L Fe3+ | 7.596 | 23.305 | 58.971 | 33.044 | 0.104 |
2 mg/L PAM, 56 mg/L Fe3+, t = 0.5 min | 7.147 | 23.854 | 80.920 | 39.170 | 0.107 |
2 mg/L PAM, 56 mg/L Fe3+, t = 1.0 min | 6.649 | 22.272 | 75.358 | 37.291 | 0.114 |
2 mg/L PAM, 56 mg/L Fe3+, t = 2.0 min | 5.971 | 20.262 | 60.075 | 31.813 | 0.126 |
2 mg/L PAM, 56 mg/L Fe3+, t = 3.0 min | 5.722 | 18.725 | 56.098 | 29.847 | 0.132 |
2 mg/L PAM, 56 mg/L Fe3+, t = 4.0 min | 5.347 | 17.915 | 51.215 | 26.404 | 0.140 |
2 mg/L PAM,56 mg/L Fe3+, t = 5.0 min | 5.298 | 17.901 | 48.675 | 25.077 | 0.141 |
2 mg/L PAM, 56 mg/L Fe3+, pH 6.5 | 5.298 | 17.901 | 48.675 | 25.077 | 0.141 |
2 mg/L PAM,56 mg/L Fe3+, pH 8.8 | 6.211 | 20.330 | 51.681 | 27.414 | 0.124 |
2 mg/L PAM, 56 mg/L Fe3+, pH 9.8 | 6.960 | 22.421 | 55.813 | 31.361 | 0.112 |
2 mg/L PAM, 56 mg/L Fe3+, pH 10.5 | 7.689 | 24.194 | 61.992 | 33.665 | 0.104 |
2 mg/L PAM, 56 mg/L Fe3+, pH 11.2 | 7.905 | 24.455 | 62.396 | 34.066 | 0.102 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, T.; Wu, X.; Chen, X.; Liu, T. A Study on the Flocculation and Sedimentation of Iron Tailings Slurry Based on the Regulating Behavior of Fe3+. Minerals 2018, 8, 421. https://doi.org/10.3390/min8100421
Yue T, Wu X, Chen X, Liu T. A Study on the Flocculation and Sedimentation of Iron Tailings Slurry Based on the Regulating Behavior of Fe3+. Minerals. 2018; 8(10):421. https://doi.org/10.3390/min8100421
Chicago/Turabian StyleYue, Tao, Xiqing Wu, Xiao Chen, and Tianyu Liu. 2018. "A Study on the Flocculation and Sedimentation of Iron Tailings Slurry Based on the Regulating Behavior of Fe3+" Minerals 8, no. 10: 421. https://doi.org/10.3390/min8100421
APA StyleYue, T., Wu, X., Chen, X., & Liu, T. (2018). A Study on the Flocculation and Sedimentation of Iron Tailings Slurry Based on the Regulating Behavior of Fe3+. Minerals, 8(10), 421. https://doi.org/10.3390/min8100421