Effect of Lime on Stability of Chromium in Stainless Steel Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Phase Transformation
3.2. Distribution and Stability of Chromium
3.3. Product Layer Structure of Unmelted Lime
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pillay, K.; Von, B.H.; Petersen, J. Ageing of chromium(III)-bearing slag and its relation to the atmospheric oxidation of solid chromium(III)-oxide in the presence of calcium oxide. Chemosphere 2003, 52, 1771–1779. [Google Scholar] [CrossRef]
- Rai, D.; Sass, B.M.; Moore, D.A. Chromium-(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 1987, 26, 345–349. [Google Scholar] [CrossRef]
- Samada, Y.; Miki, T.; Hino, M. Prevention of chromium elution from stainless steel slag into seawater. ISIJ Int. 2011, 51, 728–732. [Google Scholar] [CrossRef]
- Kan, C.C.; Ibe, A.H.; Rivera, K.K.P.; Arazo, R.O.; Luna, M.D.G.D. Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustain. Environ. Res. 2017, 27, 163–171. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C.J.; Li, B.K.; Jiang, M.F. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. Int. J. Min. Met. Mater. 2017, 24, 1361–1369. [Google Scholar] [CrossRef]
- Real, H.C.; Serrano, A.; Zeifert, B.H.; Ramirez, A.H.; Lopez, M.H.; Ramirez, A. Effect of MgO and CaO/SiO2 on the immobilization of chromium in synthetic slags. J. Mater. Cycles Waste 2012, 14, 317–324. [Google Scholar] [CrossRef]
- Torres, V.A.; Romero, A.; Zeifert, B.H.; Rivera, J.C.; Sánchez, P.F.; Cruz, A. Stabilization of MgCr2O4 spinel in slags of the SiO2-CaO-MgO-Cr2O3 system. Rev. Metal. Madr. 2006, 42, 417–424. [Google Scholar] [CrossRef]
- Drissen, P.; Andreas, E.; Michael, K.; Dirk, M. Recent development in slag treatment and dust recycling. Steel Res. Int. 2009, 80, 737–745. [Google Scholar] [CrossRef]
- García-Ramos, E.; Romero-Serrano, A.; Zeifert, B.; Flores-Sánchez, P.; Hallen-López, M.; Palacios, E.G. Immobilization of chromium in slags using MgO and Al2O3. Steel Res. Int. 2008, 79, 332–339. [Google Scholar] [CrossRef]
- Suito, H.; Inoue, R. Behavior of phosphorous transfer from CaO-FetO-P2O5-(SiO2) slag to CaO particles. ISIJ Int. 2006, 46, 180–187. [Google Scholar] [CrossRef]
- Johnston, M.D.; Barati, M. Effect of slag basicity and oxygen potential on the distribution of boron and phosphorus between slag and silicon. J. Non-Cryst. Solids 2011, 357, 970–975. [Google Scholar] [CrossRef]
- Johnston, M.D.; Jahanshahi, S.; Zhang, L.; Lincoln, F.J. Effect of slag basicity on phase equilibria and selenium and tellurium distribution in magnesia-saturated calcium iron silicate slags. Metall. Mater. Trans. B 2010, 41, 625–635. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, S.; Guo, Y.F.; Chen, F.; Zheng, F.Q. Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process. Metals 2016, 6, 107. [Google Scholar] [CrossRef]
- Mostafaee, S.; Jönsson, P. Influence of slag properties on the amount of solid precipitates in high-chromium EAF steelmaking. Steel Grips J. Steel Relat. Mater. 2011, 9, 355–359. [Google Scholar]
- Engström, F.; Adolfsson, D.; Yang, Q.; Samuelsson, C.; Björkman, B. Crystallization behaviour of some steelmaking slags. Steel Res. Int. 2010, 81, 362–371. [Google Scholar] [CrossRef]
- Albertsson, G.J.; Teng, L.; Björkman, B. Effect of basicity on chromium partition in CaO-MgO-SiO2-Cr2O3 synthetic slag at 1873 K. Miner. Process. Extr. Metall. Rev. 2014, 123, 116–122. [Google Scholar] [CrossRef]
- Morita, K.; Tsukiashi, K.; Kimura, M.; Sano, N. Activity of chromium oxide in CaO-SiO2 based slags at 1873 K. Steel Res. Int. 2005, 76, 279–283. [Google Scholar] [CrossRef]
- Wu, X.R.; Dong, X.M.; Wang, R.T.; Lv, H.H.; Cao, F.B.; Shen, X.M. Crystallization behaviour of chromium in stainless steel slag: Effect of FeO and basicity. J. Residuals Sci. Technol. 2016, 13, S57–S62. [Google Scholar] [CrossRef]
- Wang, L.J.; Seetharaman, S. Experimental studies on the oxidation states of chromium oxides in slag systems. Metall. Mater. Trans. B 2010, 41, 946–954. [Google Scholar] [CrossRef]
- Yang, X.; Matsuura, H.; Tsukihashi, S. Condensation of P2O5 at the interface between 2CaO·SiO2 and CaO-SiO2-FeOx-P2O5 slag. ISIJ Int. 2009, 49, 1298–1307. [Google Scholar] [CrossRef]
- Hamano, T.; Fukagai, S.; Tsukihashi, F. Reaction mechanism between Solid CaO and FeOx-CaO-SiO2-P2O5 slag at 1573 K. ISIJ Int. 2006, 46, 490–495. [Google Scholar] [CrossRef]
- Deng, T.; Gran, J.; Du, S.C. Dissolution of lime in synthetic ‘FeO’-SiO2 and CaO-‘FeO’-SiO2 slags. Steel Res. Int. 2010, 81, 347–355. [Google Scholar] [CrossRef]
- Li, Z.; Whitwood, M.; Millman, S.; Boggelen, J. Dissolution of lime in BOS slag: From laboratory experiment to industrial converter. Ironmak. Steelmak. 2014, 41, 112–120. [Google Scholar] [CrossRef]
- Pretorius, E.B.; Muan, A. Oxidation state of chromium in CaO-Al2O3-CrOx-SiO2 melts under strongly reducing conditions at 1500 °C. J. Am. Ceram. Soc. 1992, 75, 1364–1377. [Google Scholar] [CrossRef]
- Pretorius, E.B.; Muan, A. Activity-composition relations of chromium oxide in silicate melts at 1500 °C under strongly reducing conditions. J. Am. Ceram. Soc. 1992, 75, 1364–1377. [Google Scholar] [CrossRef]
- Alper, A.M.; Mcnally, R.N.; Doman, R.C.; Keihn, F.G. Phase equilibria in the system MgO-MgCr2O4. J. Am. Ceram. Soc. 1964, 47, 30–33. [Google Scholar] [CrossRef]
- Burja, J.; Tehovnik, F.; Medved, J.; Godec, M.; Knap, M. Chromite spinel formation in steelmaking slags. Mater. Tehnol. 2014, 48, 753–756. [Google Scholar]
No. | CaO | SiO2 | MgO | Al2O3 | FeO | Cr2O3 | CaF2 | B |
---|---|---|---|---|---|---|---|---|
S1 | 38.0 | 38.0 | 9.0 | 4.0 | 3.0 | 5.0 | 3.0 | 1.0 |
S2 | 45.6 | 30.4 | 9.0 | 4.0 | 3.0 | 5.0 | 3.0 | 1.5 |
S3 | 50.6 | 25.4 | 9.0 | 4.0 | 3.0 | 5.0 | 3.0 | 2.0 |
S4 | 48.6 | 32.4 | 9.0 | 4.0 | 3.0 | 0 | 3.0 | 1.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Liu, C.; Cao, L.; Zheng, X.; Jiang, M. Effect of Lime on Stability of Chromium in Stainless Steel Slag. Minerals 2018, 8, 424. https://doi.org/10.3390/min8100424
Zhao Q, Liu C, Cao L, Zheng X, Jiang M. Effect of Lime on Stability of Chromium in Stainless Steel Slag. Minerals. 2018; 8(10):424. https://doi.org/10.3390/min8100424
Chicago/Turabian StyleZhao, Qing, Chengjun Liu, Longhu Cao, Xiang Zheng, and Maofa Jiang. 2018. "Effect of Lime on Stability of Chromium in Stainless Steel Slag" Minerals 8, no. 10: 424. https://doi.org/10.3390/min8100424
APA StyleZhao, Q., Liu, C., Cao, L., Zheng, X., & Jiang, M. (2018). Effect of Lime on Stability of Chromium in Stainless Steel Slag. Minerals, 8(10), 424. https://doi.org/10.3390/min8100424