Petrogenesis and Metallogenic Implications of Neoproterozoic Granodiorite in the Super-Large Shimensi Tungsten-Copper Deposit in Northern Jiangxi, South China
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analytical Methods
3.1. Whole-Rock Geochemical Analyses
3.2. SHRIMP Zircon U–Pb Dating
3.3. SHRIMP Analysis of Zircon Oxygen Isotopes
3.4. LA-MC-ICP-MS Analysis of Zircon Hf Isotopes
3.5. LA-ICP-MS Analysis of Zircon Trace Element Geochemistry
4. Results
4.1. Whole-Rock Geochemistry
4.2. Zircon U–Pb Ages
4.3. Zircon Hf–O Isotopes
4.4. Zircon Trace Element Compositions
5. Discussion
5.1. Age and Geochemistry of the Shimensi Granodiorite
5.2. Petrogenesis and Metallogenic Implications of the Shimensi Granodiorite
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mao, J.W.; Xiong, B.K.; Liu, J.; Pirajno, F.; Cheng, Y.B.; Ye, H.S.; Song, S.W.; Dai, P. Molybdenite Re/Os dating, zircon U–Pb age and geochemistry of granitoids in the Yangchuling porphyry W–Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting. Lithos 2017, 286–287, 35–52. [Google Scholar] [CrossRef]
- Dai, P.; Mao, J.W.; Wu, S.H.; Xie, G.Q.; Luo, X.H. Multiple dating and tectonic setting of the Early Cretaceous Xianglushan W deposit, Jiangxi Province, South China. Ore Geol. Rev. 2018, 95, 1161–1178. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.F.; Ma, D.S.; Pan, J.Y. The role of hydrothermal alteration in tungsten mineralization at the Dahutang tungsten deposit, South China. Ore Geol. Rev. 2018, 95, 1008–1027. [Google Scholar] [CrossRef]
- Song, W.L.; Yao, J.M.; Chen, H.Y.; Sun, W.D.; Lai, C.K.; Xiang, X.K.; Luo, X.H.; Jourdan, F. A 20 my long-lived successive mineralization in the giant Dahutang W–Cu–Mo deposit, South China. Ore Geol. Rev. 2018, 95, 401–407. [Google Scholar] [CrossRef]
- Song, W.L.; Yao, J.M.; Chen, H.Y.; Sun, W.D.; Ding, J.Y.; Xiang, X.K.; Zuo, Q.S.; Lai, C.K. Mineral paragenesis, fluid inclusions, H–O isotopes and ore-forming processes of the giant Dahutang W–Cu–Mo deposit, South China. Ore Geol. Rev. 2018, 99, 115–150. [Google Scholar] [CrossRef]
- Wei, W.F.; Shen, N.P.; Yan, B.; Lai, C.K.; Yang, J.H.; Gao, W.; Liang, F. Petrogenesis of ore-forming granites with implications for W-mineralization in the super-large Shimensi tungsten-dominated polymetallic deposit in northern Jiangxi Province, South China. Ore Geol. Rev. 2018, 95, 1123–1139. [Google Scholar] [CrossRef]
- Pan, X.F.; Hou, Z.Q.; Zhao, M.; Chen, G.H.; Rao, J.F.; Li, Y.; Wei, J.; Ouyang, Y.P. Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: Implication for petrogenesis, geodynamical setting and mineralization. Lithos 2018, 304–307, 155–179. [Google Scholar] [CrossRef]
- Xiang, X.K.; Wang, P.; Sun, D.M.; Zhong, B. Isotopic geochemical characteristics of the Shimensi tungsten-polymetallic deposit in northern Jiangxi province. Acta Geosci. Sin. 2013, 34, 263–271. (In Chinese) [Google Scholar]
- Yuan, S.D.; Williams-Jones, A.E.; Mao, J.W.; Zhao, P.L.; Chen, Y.; Zhang, D.L. The origin of the Zhangjialong tungsten deposit, South China: Implications for W–Sn mineralization in large granite batholiths. Ecol. Geol. 2018, 113, 1193–1208. [Google Scholar] [CrossRef]
- Mao, Z.H.; Liu, J.J.; Mao, J.W.; Deng, J.; Zhang, F.; Meng, X.Y.; Xiong, B.K.; Xiang, X.K.; Luo, X.H. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Res. 2015, 28, 816–836. [Google Scholar] [CrossRef]
- Wei, W.F.; Yan, B.; Shen, N.P.; Liu, L.; Zhang, Y.; Xiang, X.K. Muscovite 40Ar/39Ar Age and H-O-S Isotopes of the Shimensi Tungsten Deposit (Northern Jiangxi Province, South China) and Their Metallogenic Implications. Minerals 2017, 7, 162. [Google Scholar] [CrossRef]
- Hu, R.Z.; Zhou, M.F. Multiple Mesozoic mineralization events in South China—An introduction to the thematic issue. Miner. Depos. 2012, 47, 579–588. [Google Scholar] [CrossRef]
- Hu, R.Z.; Bi, X.W.; Jiang, G.H.; Chen, H.W.; Peng, J.T.; Qi, Y.Q.; Wu, L.Y.; Wei, W.F. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, Southeastern China. Miner. Depos. 2012, 47, 623–632. [Google Scholar] [CrossRef]
- Hu, R.Z.; Fu, S.L.; Huang, Y.; Zhou, M.F.; Fu, S.H.; Zhao, C.H.; Wang, Y.J.; Bi, X.W.; Xiao, J.F. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Zhou, M.F.; Gao, J.F.; Zhao, Z.; Zhao, W.W. Introduction to the special issue of Mesozoic W-Sn deposits in South China. Ore Geol. Rev. 2018, 10, 432–436. [Google Scholar] [CrossRef]
- Xie, G.Q.; Mao, J.W.; Bagas, L.; Fu, B.; Zhang, Z.Y. Mineralogy and titanite geochronology of the Caojiaba W deposit, Xiangzhong metallogenic province, southern China: implications for a distal reduced skarn W formation. Miner. Depos. 2018, 1–14. [Google Scholar] [CrossRef]
- Xie, G.Q.; Mao, J.W.; Li, W.; Fu, B.; Zhang, Z.Y. Granite-related Yangjiashan tungsten deposit, southern China. Miner. Depos. 2018, 1–14. [Google Scholar] [CrossRef]
- Hu, R.Z.; Chen, W.T.; Xu, D.R.; Zhou, M.F. Reviews and new metallogenic models of mineral deposits in South China: An introduction. J. Asian Earth Sci. 2017, 137, 1–8. [Google Scholar] [CrossRef]
- Chen, B.; Gu, H.O.; Chen, Y.J.; Sun, K.K.; Chen, W. Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization. Chem. Geol. 2018, 483, 372–384. [Google Scholar] [CrossRef]
- Gong, X.D.; Yan, G.S.; Ye, T.Z.; Zhu, X.Y.; Li, Y.S.; Zhang, Z.H.; Jia, W.B.; Yao, X.F. A study of ore-forming fluids in the Shimensi tungsten deposit, Dahutang tungsten polymetallic ore field, Jiangxi Province, China. Acta Geol. Sin. (Engl. Ed.) 2015, 89, 822–835. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, R.Q.; Gao, J.F.; Lu, J.J.; Wu, J.W. In-situ LA-ICP-MS trace element analyses of scheelite and wolframite: Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China. Ore Geol. Rev. 2018, 99, 166–179. [Google Scholar] [CrossRef]
- Zuo, Q.S. Analysis on the geological conditions and the assessment of the further ore-finding foreground from Dahutang to Liyangdou metallogenic region in the western part of Jiulingshan, Jiangxi Province. Resour. Environ. Eng. 2006, 20, 348–353. (In Chinese) [Google Scholar]
- Hans Wedepohl, K. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F.; Zheng, J.P. Constraints from zircon U–Pb ages, O and Hf isotopic compositions on the origin of Neoproterozoic peraluminous granitoids from the Jiangnan Fold Belt, South China. Contrib. Mineral. Petrol. 2013, 166, 1505–1519. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Ge, W.; Zhou, H.; Li, W.; Liu, Y.; Wingate, M.T.D. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res. 2003, 12, 45–83. [Google Scholar] [CrossRef]
- Sun, K.K.; Chen, B. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. Am. Mineral. 2017, 102, 1114–1128. [Google Scholar] [CrossRef]
- Liang, Q.; Grégoire, D.C. Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry. Geostand. Newsl. J. Geostand. Geoanal. 2000, 24, 51–63. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Claoué-Long, J.C.; Compston, W.; Roberts, J.; Fanning, C.M. Two Carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analyses. In Geochronology, Time Scales and Global Stratigraphic Correlation; Special Publication, 54; Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J., Eds.; SEPM (Society for Sedimentary Geology): Broken Arrow, OK, USA, 1995; pp. 3–21. [Google Scholar]
- Williams, I.S. U-Th-Pb geochronology by ion microprobe. Rev. Econ. Geol. 1998, 7, 1–35. [Google Scholar]
- Cumming, G.L.; Richards, J.R. Ore lead isotope ratios in a continuously changing earth. Earth Planet. Sci. Lett. 1975, 28, 155–171. [Google Scholar] [CrossRef]
- Ludwig, K.R. Users Manual for Isoplot/Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2001; pp. 1–55. [Google Scholar]
- Ickert, R.B.; Hiess, J.; Williams, I.S.; Holden, P.; Ireland, T.R.; Lanc, P.; Schram, N.; Foster, J.J.; Clement, S.W. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem. Geol. 2008, 257, 114–128. [Google Scholar] [CrossRef]
- Chu, N.C.; Taylor, R.N.; Chavagnac, V.; Nesbitt, R.W.; Boella, R.M.; Milton, J.A.; German, C.R.; Bayon, G.; Burton, K. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 2002, 17, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Woodhead, J.; Hergt, J.; Shelley, M.; Eggins, S.; Kemp, R. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol. 2004, 209, 121–135. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. In Laser Ablation-ICP-MS in the Earth Sciences; Mineralogical Association of Canada Short Course Series; Sylvester, P., Ed.; Mineralogical Association of Canada: Quebec City, QC, Canada, 2008; Volume 40, pp. 204–207. [Google Scholar]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–346. [Google Scholar] [CrossRef]
- Hoskin, P.; Black, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.C.; Wan, Y.S.; Kitajima, K.; Wang, D.; Bonamici, C.; Qiu, J.S.; Sun, T. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth Planet. Sci. Lett. 2013, 366, 71–82. [Google Scholar] [CrossRef]
- Whitehouse, M.J.; Platt, J.P. Dating high-grade metamorphism—Constraints from rare-earth elements in zircon and garnet. Contrib. Mineral. Petrol. 2003, 145, 61–74. [Google Scholar] [CrossRef]
- Dilles, J.H.; Kent, A.J.R.; Wooden, J.L.; Tosdal, R.M.; Koleszar, A.; Lee, R.G; Farmer, L.P. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Econ. Geol. 2015, 110, 241–251. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, M.J.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Trail, D.; Bruce Watson, E.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Zhao, G.C. Jiangnan Orogen in South China: Developing from divergent double subduction. Gondwana Res. 2015, 27, 1173–1180. [Google Scholar] [CrossRef]
- Wang, G.G.; Ni, P.; Zhu, A.D.; Wang, X.L.; Li, L.; Hu, J.S.; Liu, W.H.; Huang, B. 1.01–0.98Ga mafic intra-plate magmatism and related Cu-Au mineralization in the eastern Jiangnan orogen: Evidence from Liujia and Tieshajie basalts. Precambrian Res. 2018, 309, 6–21. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Zhang, H.; Ling, M.X.; Liu, Y.L.; Tu, X.L.; Wang, F.Y.; Li, C.Y.; Liang, H.Y.; Yang, X.Y.; Arndt, N.T.; Sun, W.D. High oxygen fugacity and slab melting linked to Cu mineralization: Evidence from Dexing porphyry copper deposits, Southeastern China. J. Geol. 2013, 121, 289–305. [Google Scholar] [CrossRef]
- Deng, J.H.; Yang, X.Y.; Li, S.; Gu, H.L.; Mastoi, A.S.; Sun, W.D. Partial melting of subducted paleo-Pacific plate during the early Cretaceous: Constraint from adakitic rocks in the Shaxi porphyry Cu–Au deposit, Lower Yangtze River Belt. Lithos 2016, 262, 651–667. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Pirajno, F.; Gong, H.J.; Mao, S.-D.; Ni, Z.Y. LA-ICP-MS zircon U–Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China: Implications for Mesozoic tectono-magmatic evolution. Lithos 2012, 142–143, 34–47. [Google Scholar] [CrossRef]
Sample | SiO2 | TiO2 | Al2O3 | Fe2O3T | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | Total | A/CNK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMS-1 | 66.7 | 0.67 | 15.60 | 5.40 | 0.09 | 1.92 | 1.02 | 1.61 | 4.55 | 0.15 | 2.01 | 100.05 | 1.7 |
SMS-2 | 69.4 | 0.60 | 14.50 | 5.14 | 0.08 | 1.81 | 0.66 | 1.82 | 3.03 | 0.18 | 2.60 | 100.00 | 1.9 |
SMS-20 | 66.4 | 0.63 | 16.20 | 4.90 | 0.09 | 1.74 | 1.96 | 2.58 | 3.67 | 0.15 | 1.33 | 99.80 | 1.4 |
SMS-22 | 68.6 | 0.53 | 15.15 | 4.14 | 0.08 | 1.48 | 1.57 | 2.60 | 3.97 | 0.14 | 1.48 | 99.93 | 1.3 |
SMS-12 | 68.7 | 0.52 | 14.75 | 4.14 | 0.08 | 1.40 | 1.54 | 2.34 | 3.90 | 0.14 | 2.09 | 99.92 | 1.4 |
SMS-14 | 68.5 | 0.58 | 14.70 | 4.83 | 0.08 | 1.70 | 1.28 | 1.88 | 3.71 | 0.16 | 2.50 | 100.05 | 1.6 |
SMS-15 | 67.9 | 0.63 | 14.85 | 4.91 | 0.09 | 1.69 | 1.36 | 1.80 | 3.87 | 0.14 | 2.72 | 100.10 | 1.5 |
SMS-23 | 66.4 | 0.63 | 15.45 | 4.91 | 0.09 | 1.74 | 1.76 | 2.05 | 3.72 | 0.14 | 2.30 | 99.58 | 1.5 |
SMS-25 | 69.4 | 0.62 | 13.70 | 5.05 | 0.09 | 1.74 | 1.36 | 1.96 | 3.68 | 0.16 | 1.46 | 99.37 | 1.4 |
SMS-26 | 68.9 | 0.52 | 14.35 | 4.14 | 0.08 | 1.40 | 0.74 | 1.76 | 5.20 | 0.13 | 1.91 | 99.29 | 1.5 |
Sample | SMS-1 | SMS-2 | SMS-20 | SMS-22 | SMS-12 | SMS-14 | SMS-15 | SMS-23 | SMS-25 | SMS-26 |
---|---|---|---|---|---|---|---|---|---|---|
Rb | 430 | 274 | 230 | 429 | 357 | 309 | 313 | 303 | 304 | 457 |
Sr | 95.5 | 92.9 | 143.0 | 173.0 | 139.5 | 139.0 | 126.0 | 147.0 | 92.2 | 103.5 |
Zr | 210 | 209 | 204 | 180 | 183 | 197 | 224 | 215 | 217 | 162 |
Nb | 11.5 | 10.7 | 10.6 | 9.7 | 11.0 | 9.8 | 10.6 | 10.9 | 10.9 | 8.6 |
Ba | 458.0 | 315.0 | 428.0 | 392.0 | 323.0 | 394.0 | 389.0 | 389.0 | 318.0 | 382.0 |
La | 32.2 | 26.7 | 33.0 | 31.9 | 30.5 | 30.6 | 34.4 | 32.7 | 30.8 | 27.0 |
Ce | 65.5 | 52.5 | 65.9 | 62.7 | 60.4 | 60.1 | 68.6 | 65.6 | 62.3 | 54.2 |
Pr | 7.71 | 6.15 | 7.95 | 7.38 | 7.18 | 7.22 | 8.26 | 8.02 | 7.55 | 6.50 |
Nd | 28.1 | 21.5 | 28.9 | 25.9 | 25.9 | 26.4 | 29.4 | 29.2 | 27.2 | 23.1 |
Sm | 6.12 | 4.74 | 6.53 | 5.67 | 5.58 | 5.82 | 6.55 | 6.35 | 6.23 | 5.19 |
Eu | 0.99 | 0.71 | 1.37 | 1.21 | 0.96 | 1.14 | 1.21 | 1.09 | 0.94 | 0.97 |
Gd | 6.03 | 4.58 | 6.19 | 5.26 | 5.23 | 5.47 | 6.55 | 6.14 | 6.03 | 4.92 |
Tb | 0.93 | 0.73 | 0.98 | 0.79 | 0.80 | 0.82 | 1.04 | 0.96 | 0.96 | 0.79 |
Dy | 5.66 | 4.51 | 5.68 | 4.52 | 4.97 | 4.67 | 6.16 | 5.68 | 5.93 | 4.59 |
Ho | 1.18 | 0.93 | 1.16 | 0.88 | 0.97 | 0.85 | 1.26 | 1.14 | 1.24 | 0.94 |
Er | 3.21 | 2.64 | 3.23 | 2.49 | 2.51 | 2.26 | 3.56 | 3.06 | 3.43 | 2.64 |
Tm | 0.46 | 0.40 | 0.49 | 0.36 | 0.38 | 0.35 | 0.52 | 0.43 | 0.54 | 0.42 |
Yb | 2.86 | 2.71 | 3.14 | 2.34 | 2.27 | 2.27 | 3.18 | 2.79 | 3.30 | 2.49 |
Lu | 0.44 | 0.41 | 0.48 | 0.35 | 0.37 | 0.34 | 0.49 | 0.41 | 0.52 | 0.40 |
Y | 30.60 | 25.10 | 30.90 | 23.90 | 25.20 | 22.40 | 34.20 | 29.50 | 32.40 | 25.20 |
Hf | 5.6 | 5.7 | 5.4 | 4.8 | 5.0 | 5.6 | 5.8 | 5.9 | 5.9 | 4.3 |
Ta | 1.1 | 1.1 | 1.0 | 1.0 | 1.3 | 0.9 | 0.9 | 1.0 | 1.0 | 0.7 |
W | 43 | 100 | 12 | 18 | 31 | 7 | 9 | 797 | 21 | 31 |
Th | 14.2 | 13.3 | 13.5 | 14.7 | 15.5 | 12.1 | 14.7 | 14.5 | 13.9 | 12.0 |
U | 3.0 | 4.1 | 3.1 | 3.5 | 4.8 | 3.8 | 4.7 | 2.8 | 4.2 | 2.2 |
ΣREE | 161.39 | 129.21 | 165.00 | 151.75 | 148.02 | 148.31 | 171.18 | 163.57 | 156.97 | 134.15 |
LaN/YbN | 7.6 | 6.6 | 7.1 | 9.2 | 9.1 | 9.1 | 7.3 | 7.9 | 6.3 | 7.3 |
Eu/Eu* | 0.50 | 0.47 | 0.66 | 0.68 | 0.54 | 0.62 | 0.56 | 0.53 | 0.47 | 0.59 |
Spot | 206Pbc (%) | U (ppm) | Th (ppm) | 232Th/238U | 206Pb* (ppm) | 207Pb*/206Pb* | 1σ (%) | 207Pb*/235U | 1σ (%) | 206Pb*/238U | 1σ (%) | 206Pb/238U Age (Ma) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SMS-2, mean = 830 ± 13 Ma, MSWD = 1.6, n = 9 | ||||||||||||
1 | 0.08 | 341 | 95 | 0.29 | 41.3 | 0.0659 | 1.3 | 1.279 | 2.2 | 0.1408 | 1.7 | 849 ± 14 |
2 | 0.11 | 245 | 25 | 0.11 | 28.8 | 0.0646 | 1.9 | 1.220 | 2.6 | 0.1369 | 1.8 | 827 ± 14 |
3 | 0.39 | 157 | 66 | 0.43 | 18.7 | 0.0636 | 3.0 | 1.213 | 3.6 | 0.1384 | 2.0 | 835 ± 16 |
4 | 0.12 | 293 | 44 | 0.15 | 35.7 | 0.0692 | 1.9 | 1.349 | 2.6 | 0.1414 | 1.8 | 852 ± 14 |
5 | 0.00 | 650 | 339 | 0.54 | 78.9 | 0.0668 | 1.0 | 1.301 | 1.9 | 0.1412 | 1.7 | 851 ± 13 |
6 | 0.01 | 286 | 41 | 0.15 | 33.3 | 0.0665 | 1.9 | 1.241 | 2.6 | 0.1354 | 1.7 | 819 ± 13 |
7 | 0.00 | 332 | 46 | 0.14 | 38.2 | 0.0668 | 1.4 | 1.234 | 2.3 | 0.1340 | 1.9 | 811 ± 14 |
8 | -- | 404 | 229 | 0.59 | 47.0 | 0.0666 | 1.3 | 1.245 | 2.2 | 0.1356 | 1.7 | 820 ± 13 |
9 | 0.16 | 292 | 37 | 0.13 | 33.7 | 0.0643 | 1.8 | 1.188 | 2.5 | 0.1340 | 1.7 | 811 ± 13 |
SMS-12, mean = 827 ± 10 Ma, MSWD = 1.1, n = 7 | ||||||||||||
1 | 0.02 | 337 | 45 | 0.14 | 38.7 | 0.0660 | 1.4 | 1.216 | 2.1 | 0.1336 | 1.6 | 808 ± 12 |
2 | 0.21 | 221 | 75 | 0.35 | 26.0 | 0.0658 | 2.1 | 1.239 | 2.7 | 0.1365 | 1.7 | 825 ± 13 |
3 | 0.00 | 665 | 68 | 0.11 | 77.2 | 0.0660 | 0.9 | 1.230 | 1.8 | 0.1352 | 1.6 | 817 ± 12 |
4 | 0.02 | 193 | 136 | 0.73 | 22.9 | 0.0679 | 2.1 | 1.296 | 2.7 | 0.1385 | 1.7 | 836 ± 13 |
5 | -- | 306 | 39 | 0.13 | 35.7 | 0.0667 | 1.5 | 1.252 | 2.2 | 0.1361 | 1.6 | 823 ± 12 |
6 | 0.23 | 567 | 87 | 0.16 | 68.0 | 0.0655 | 1.3 | 1.258 | 2 | 0.1393 | 1.5 | 840 ± 12 |
7 | -- | 225 | 29 | 0.13 | 26.7 | 0.0682 | 2.9 | 1.301 | 3.3 | 0.1383 | 1.6 | 835 ± 13 |
SMS-23, mean = 828 ± 14 Ma, MSWD = 1.03, n = 4 | ||||||||||||
1 | 0.01 | 292 | 39 | 0.14 | 34.7 | 0.0688 | 1.5 | 1.316 | 2.3 | 0.1387 | 1.7 | 837 ± 14 |
2 | -- | 124 | 53 | 0.44 | 14.8 | 0.0666 | 2.3 | 1.281 | 3 | 0.1394 | 1.9 | 841 ± 15 |
3 | 0.3 | 163 | 88 | 0.56 | 18.8 | 0.0584 | 4.2 | 1.077 | 4.6 | 0.1337 | 1.9 | 809 ± 15 |
4 | -- | 328 | 16 | 0.05 | 38.4 | 0.0669 | 1.3 | 1.255 | 2.2 | 0.1362 | 1.7 | 823 ± 13 |
Spot | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | t (Ma) | εHf(t) | fLu/Hf | TDM1 (Ma) | TDM2 (Ma) | δ18O (‰) | ±‰ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMS-2 | |||||||||||||
1 | 0.091007 | 0.0018005 | 0.0019188 | 0.0000235 | 0.2824591 | 0.0000194 | 849 | 6.60 | −0.94 | 1150 | 1318 | 6.1 | 0.2 |
2 | 0.040921 | 0.0002453 | 0.0008791 | 0.0000037 | 0.2823405 | 0.0000181 | 827 | 2.51 | −0.97 | 1284 | 1558 | 5.9 | 0.2 |
3 | 0.082770 | 0.0004998 | 0.0018237 | 0.0000159 | 0.2823742 | 0.0000202 | 835 | 3.35 | −0.95 | 1269 | 1512 | 6.2 | 0.2 |
4 | 0.077641 | 0.0018125 | 0.0016481 | 0.0000423 | 0.2823591 | 0.0000196 | 852 | 3.28 | −0.95 | 1284 | 1529 | 7.7 | 0.3 |
6 | 0.082227 | 0.0001336 | 0.0016951 | 0.0000073 | 0.2823409 | 0.0000205 | 819 | 1.91 | −0.95 | 1312 | 1590 | 5.8 | 0.2 |
7 | 0.058475 | 0.0005013 | 0.0011958 | 0.0000071 | 0.2822939 | 0.0000223 | 811 | 0.34 | −0.96 | 1361 | 1682 | 6.8 | 0.2 |
8 | 0.052659 | 0.0038467 | 0.0010774 | 0.0000726 | 0.2823535 | 0.0000203 | 820 | 2.71 | −0.97 | 1273 | 1540 | 7.7 | 0.2 |
SMS-12 | |||||||||||||
1 | 0.100158 | 0.0006790 | 0.0021757 | 0.0000104 | 0.2824024 | 0.0000184 | 808 | 3.59 | −0.93 | 1240 | 1476 | 7.7 | 0.2 |
3 | 0.060693 | 0.0016232 | 0.0012169 | 0.0000264 | 0.2823903 | 0.0000202 | 817 | 3.87 | −0.96 | 1226 | 1465 | 7.0 | 0.2 |
5 | 0.072390 | 0.0005023 | 0.0015484 | 0.0000135 | 0.2823876 | 0.0000183 | 823 | 3.73 | −0.95 | 1240 | 1479 | 7.7 | 0.1 |
6 | 0.087255 | 0.0009749 | 0.0018199 | 0.0000227 | 0.2822507 | 0.0000203 | 840 | −0.87 | −0.95 | 1445 | 1782 | 7.4 | 0.2 |
7 | 0.055225 | 0.0009956 | 0.0011990 | 0.0000351 | 0.2823362 | 0.0000193 | 835 | 2.33 | −0.96 | 1301 | 1575 | 7.6 | 0.2 |
SMS-23 | |||||||||||||
1 | 0.069315 | 0.0001253 | 0.0014777 | 0.0000064 | 0.2823042 | 0.0000175 | 837 | 1.11 | −0.96 | 1356 | 1654 | 5.9 | 0.2 |
2 | 0.075810 | 0.0006502 | 0.0017100 | 0.0000095 | 0.2824312 | 0.0000201 | 841 | 5.56 | −0.95 | 1184 | 1377 | 6.4 | 0.3 |
4 | 0.067762 | 0.0013936 | 0.0015192 | 0.0000307 | 0.2824150 | 0.0000210 | 823 | 4.71 | −0.95 | 1200 | 1417 | 6.6 | 0.1 |
Spot | Th | U | W | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Eu/Eu* | Ce4+/Ce3+ | Ce/Ce* |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMS-2 | ||||||||||||||||||||
1 | 63 | 169 | 0 | 0.0023 | 2.5 | 0.06 | 0.84 | 3.13 | 0.38 | 28.63 | 11.21 | 148 | 60.98 | 294 | 65.78 | 631 | 118 | 0.12 | 31.37 | 51.22 |
2 | 39 | 233 | 0.2 | 0.1015 | 0.95 | 0.18 | 1.82 | 3.87 | 0.07 | 27.69 | 11.74 | 158 | 61.66 | 297 | 65.97 | 607 | 110 | 0.02 | 4.49 | 1.69 |
3 | 57 | 223 | 212 | 0.0894 | 2.17 | 0.07 | 1.49 | 3.45 | 0.27 | 29.53 | 12.58 | 173 | 70.28 | 355 | 81.63 | 781 | 149 | 0.08 | 17.96 | 6.60 |
4 | 41 | 278 | 3509 | 0.9973 | 3.03 | 0.44 | 2.45 | 3.14 | 0.22 | 28.46 | 13.12 | 187 | 75.84 | 369 | 83.40 | 809 | 143 | 0.07 | 17.10 | 1.10 |
6 | 39 | 263 | 3.78 | 0.0405 | 0.45 | 0.01 | 0.57 | 2.35 | 0.05 | 23.85 | 10.96 | 160 | 63.08 | 311 | 69.26 | 634 | 130 | 0.02 | 9.42 | 5.38 |
7 | 173 | 320 | 8.65 | 11.9543 | 36.3 | 3.49 | 18.20 | 8.35 | 0.41 | 39.57 | 13.64 | 160 | 59.82 | 279 | 59.67 | 544 | 115 | 0.07 | 15.10 | 1.35 |
8 | 118 | 219 | 0.11 | 2.9547 | 8.68 | 1.60 | 11.30 | 12.30 | 0.20 | 62.53 | 20.39 | 243 | 88.03 | 407 | 82.44 | 733 | 149 | 0.02 | 4.05 | 0.96 |
SMS-12 | ||||||||||||||||||||
1 | 45 | 210 | 556 | 0.0537 | 0.56 | 0.05 | 1.11 | 3.42 | 0.04 | 29.45 | 12.21 | 158 | 63.72 | 303 | 66.41 | 622 | 117 | 0.01 | 5.81 | 2.60 |
3 | 1928 | 1019 | 14294 | 5.3120 | 18.70 | 2.15 | 10.90 | 5.18 | 0.45 | 20.58 | 8.97 | 133 | 56.12 | 280 | 64.85 | 613 | 110 | 0.13 | 27.29 | 1.33 |
5 | 35 | 462 | 498 | 0.3031 | 4.18 | 0.30 | 1.64 | 2.08 | 0.23 | 23.10 | 10.71 | 152 | 60.92 | 301 | 68.90 | 618 | 132 | 0.10 | 52.31 | 3.34 |
6 | 49 | 411 | 10164 | 3.5358 | 8.10 | 0.89 | 4.91 | 4.54 | 0.37 | 32.60 | 14.15 | 184 | 69.19 | 335 | 73.85 | 697 | 137 | 0.09 | 23.53 | 1.10 |
7 | 31 | 295 | 2788 | 1.2250 | 4.27 | 0.66 | 3.19 | 3.61 | 0.29 | 27.02 | 11.4 | 139 | 51.79 | 250 | 53.60 | 488 | 102 | 0.09 | 16.80 | 1.14 |
SMS-23 | ||||||||||||||||||||
1 | 36 | 244 | 14.4 | 0.1874 | 0.77 | 0.07 | 0.74 | 2.64 | 0.04 | 25.52 | 11.94 | 154 | 60.77 | 285 | 63.06 | 592 | 109 | 0.02 | 128.64 | 1.62 |
2 | 50 | 108 | 0.06 | 0.0099 | 1.31 | 0.05 | 1.37 | 3.71 | 0.24 | 29.36 | 10.56 | 134 | 54.27 | 266 | 59.59 | 568 | 111 | 0.07 | 101.73 | 14.17 |
4 | 142 | 911 | 8723 | 1.1677 | 4.62 | 0.70 | 4.64 | 4.02 | 0.26 | 27.42 | 11.51 | 155 | 60.41 | 290 | 65.35 | 634 | 111 | 0.08 | 127.04 | 1.23 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Lai, C.; Yan, B.; Zhu, X.; Song, S.; Liu, L. Petrogenesis and Metallogenic Implications of Neoproterozoic Granodiorite in the Super-Large Shimensi Tungsten-Copper Deposit in Northern Jiangxi, South China. Minerals 2018, 8, 429. https://doi.org/10.3390/min8100429
Wei W, Lai C, Yan B, Zhu X, Song S, Liu L. Petrogenesis and Metallogenic Implications of Neoproterozoic Granodiorite in the Super-Large Shimensi Tungsten-Copper Deposit in Northern Jiangxi, South China. Minerals. 2018; 8(10):429. https://doi.org/10.3390/min8100429
Chicago/Turabian StyleWei, Wenfeng, Chunkit Lai, Bing Yan, Xiaoxi Zhu, Shengqiong Song, and Lei Liu. 2018. "Petrogenesis and Metallogenic Implications of Neoproterozoic Granodiorite in the Super-Large Shimensi Tungsten-Copper Deposit in Northern Jiangxi, South China" Minerals 8, no. 10: 429. https://doi.org/10.3390/min8100429
APA StyleWei, W., Lai, C., Yan, B., Zhu, X., Song, S., & Liu, L. (2018). Petrogenesis and Metallogenic Implications of Neoproterozoic Granodiorite in the Super-Large Shimensi Tungsten-Copper Deposit in Northern Jiangxi, South China. Minerals, 8(10), 429. https://doi.org/10.3390/min8100429