Re–Os Pyrite Geochronological Evidence of Three Mineralization Styles within the Jinchang Gold Deposit, Yanji–Dongning Metallogenic Belt, Northeast China
Abstract
:1. Introduction
2. Geological Background
2.1. Geological Setting
2.2. Jinchang Gold Deposit
3. Mineralization
3.1. Breccia Pipe Mineralization
3.2. Veinlet Disseminated Mineralization
3.3. Fault-Controlled Vein Mineralization
4. Sample Selection and Analytical Methods
5. Results
6. Discussion
6.1. Timing of Metallogenesis
6.2. Re–Os Isotopic Compositions and Implications for the Ore Source
6.3. Genesis and Metallogenic Setting of the Jinchang Deposit
7. Conclusions
- Re–Os isotopic analyses of auriferous pyrites from the Jinchang Deposit yielded ages of 102.9–100.9 Ma, which are interpreted to reflect the age of gold mineralization.
- Re–Os isotopic compositions suggest that the ore-forming material was derived from lower crustal and mantle sources.
- Three types of mineralization were contemporaneous, but occurred at different structural locations. Granodiorite emplacement is considered the most likely cause of mineralization.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambert, D.D.; Foster, J.G.; Frick, L.R. Re-Os isotopic systematics of the Voisey’s Bay Ni-Cu-Co magmatic ore system, Labrador, Canada. Lithos 1999, 47, 69–88. [Google Scholar] [CrossRef]
- Mao, J.W.; Du, A.D. The 982 Ma Re-Os age of copper-cickel sulfide ores in the Baotan area, Guangxi, and its geological significance. Sci. China Ser. D 2001, 31, 992–998. (In Chinese) [Google Scholar]
- Stein, H.J.; Morgan, J.W.; Schersten, A. Re-Os dating of low-level highly radiogenic (LLHR) sulfides: The Harnas gold deposit, southwest Sweden, records continental-scale tectonic events. Econ. Geol. 2000, 95, 1657–1671. [Google Scholar] [CrossRef]
- Mathur, R.; Ruiz, J.; Titley, S.; Gibbins, S.; Margotomo, W. Different crustal sources for Au-rich and Au-poor ores of the grasberg Cu–Au porphyry deposit. Earth Planet. Sci. Lett. 2000, 183, 7–14. [Google Scholar] [CrossRef]
- Kirk, J.D.; Ruiz, J.; Kesler, S.E.; Simon, A.; Muntean, J.L. Re-Os age of the pueblo Viejo epithermal deposit, Dominican Republic. Econ. Geol. 2014, 109, 503–512. [Google Scholar] [CrossRef]
- Jia, G.Z.; Chen, J.R.; Yang, Z.G.; Bian, H.Y.; Wang, Y.Z.; Liang, H.J.; Jin, T.H.; Li, Z.H. Geology and genesis of the superlarge Jinchang gold deposit. Acta Geol. Sin. 2005, 79, 661–670. (In Chinese) [Google Scholar]
- Zhang, D.H.; Wang, Y.; Wang, D.; Xu, W.X.; Wang, Y.Z.; Zhang, W.Z. Geochemistry of ore forming fluids and genesis of gold ore bodies in the dome-shaped magmatic body-hosted Jinchang gold deposit, Heilongjiang province. Min. Depos. 2006, 25, 155–158. (In Chinese) [Google Scholar]
- Wang, Y.; Xi, B.B.; Zhang, D.H.; Zhang, W.H. Geochemical characteristics of fluid inclusions in Jinchang gold deposit, Heilongjiang Province. Min. Depos. 2007, 26, 184–194. (In Chinese) [Google Scholar]
- Zhao, Y.S.; Yang, L.Q.; Chen, Y.F.; Qing, M.; Yan, J.P.; Ge, L.S. Geochemisry and zircon U-Pb geochronology of the diorite porphyry associated with the Jinchang Cu-Au deposit, Heilongjiang Province. Acta Petrol. Sin. 2012, 28, 451–467. (In Chinese) [Google Scholar]
- Chen, J.R.; Jin, B.Y.; Wang, K.Q.; Wu, Y.H. Research Report on Metallogenic Regulation and Prognosis of Jinchang Gold Deposit, Dongning Country, Heilongjiang Province. 2007. Available online: http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=6314107 (accessed on 22 August 2007). (In Chinese).
- Qing, M.; Tang, M.G.; Xiao, L.; Zhao, Y.S.; Han, X.J. Automatic Laser Probe 40Ar/39Ar isochron ages of the quatrz and sphalerite from the Jinchang gold deposit, Dongning County, Heilongjiang Province, and their prospecting implications. Geol. Prospect. 2012, 48, 991–999. (In Chinese) [Google Scholar]
- Xiao, W.J.; Santosh, M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25, 1429–1444. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Zhang, Z.H.; Li, X.F.; Wang, Y.T.; Zhang, C.Q.; Li, Y.F. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrol. Sin. 2005, 21, 169–188. [Google Scholar]
- Xu, W.L.; Wang, F.; Meng, E.; Gao, F.H.; Pei, F.P.; Yu, J.J.; Tang, J. Paleozoic-Early Mesozoic Tectonic Evolution in the Eastern Heilongjiang Province NEChina: Evidence from Igneous Rock Association U-Pb Geochronlolgy of Detrital Zircons. J. Jilin Univ. (Earth Sci. Ed.) 2012, 5, 1378–1389. (In Chinese) [Google Scholar]
- Sun, J.G.; Chen, L.; Zhao, J.K.; Men, L.J.; Feng, W.; Chen, D.; Liang, S.N. SHRIMP U-Pb dating of zircons from Late Yanshanian granitic complex in Xiaoxinancha gold-rich copper orefield of Yanbian and its geological implications. Miner. Depos. 2008, 3, 319–328. (In Chinese) [Google Scholar]
- Ren, Y.S.; Chen, C.; Zou, X.T.; Zhao, H.L.; Hao, Y.J.; Hou, H.N.; Hu, Z.C.; Jiang, G.H. The age, geological setting, and types of gold deposits in the Yanbian and adjacent areas, NE China. Ore Geol. Rev. 2016, 73, 284–297. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.G.; Zhang, Y.; Xing, S.W.; Zhao, K.Q.; Zhang, Z.J.; Bai, L.A.; Ma, Y.B.; Liu, Y.S. Genetic types, ore-forming age and geodynamic setting of endogenic molybdenum deposits in the eastern edge of Xing-Meng orogenic belt. Acta Petrol. Sin. 2012, 28, 1317–1332. (In Chinese) [Google Scholar]
- Zhang, H.F.; Li, S.R.; Santosh, M.; Liu, J.J.; Diwu, C.R.; Zhang, H. Magmatism and metallogeny associated with mantle upwelling: Zircon U–Pb and Lu–Hf constraints from the gold-mineralized Jinchang granite, NE China. Ore Geol. Rev. 2013, 54, 138–156. [Google Scholar] [CrossRef]
- Han, S.J.; Yang, Y.C.; Ye, S.Q.; Khomich, V.G.; Boriskina, N.G.; Wang, X.Y. U–Pb zircon and geochemical constraints on age and genesis of granitoids from the Jinchang Au deposit in Heilongjiang, NE China. Geol. J. 2017. [Google Scholar] [CrossRef]
- Wang, Z.G. Mineralization and Metallogenic Prediction of Jinchang Cu-Au Deposit in Dongning, Heilongjiang Province. Ph.D. Thesis, Jilin University, Changchun, China, 2018. (In Chinese). [Google Scholar]
- Lu, Y.H.; Zhang, Y.; Lai, Y.; Wang, Y.Z. LA–ICP-MS zircon U–Pb dating of magmatism and mineralization in the Jinchang gold ore-field, Heilongjiang province. Acta Petrol. Sin. 2009, 25, 2902–2912. (In Chinese) [Google Scholar]
- Zhao, Y.S. Porphyry Gold System of the Jinchang Camp in the Yanbian-Dongning Metallogenic Belt, NE China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2013. (In Chinese). [Google Scholar]
- Qian, Y.; Sun, F.Y.; Li, B.L.; Chen, J.; Diwu, C.R. Geochemistry and U–Pb geochrony of zircon from granite porphyry of Jinchang gold deposit in Heilongjiang, China and its geological significance. J. Chengdu Univ. Technol. 2012, 39, 362–371. (In Chinese) [Google Scholar]
- Chen, J.R.; Li, H.G.; Jin, B.Y.; Wu, Y.H.; Wang, Y.Z.; Yu, W.Q. Geological features and the deep metallogenic forecast of the No. J-1 gold body in the Jinchang gold deposit, Heilongjiang. Gold Geol. 2002, 8, 8–12. (In Chinese) [Google Scholar]
- Shirey, S.B.; Walker, R.J. Carius tube digestion for low-blank rhenium-osmium analysis. Anal. Chem. 1995, 67, 2136–2141. [Google Scholar] [CrossRef]
- Cohen, A.S.; Waters, F.G. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionization mass spectrometry. Anal. Chim. Acta 1996, 332, 269–275. [Google Scholar] [CrossRef]
- Pearson, D.G.; Woodland, S.J. Solvent extraction/anion exchange separation and determination of PGE (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chem. Geol. 2000, 165, 57–107. [Google Scholar] [CrossRef]
- Roy-Barman, M. Mesure du Rapport 187Os/186Os dans les Basaltes et les Péridotites: Contribution à la Systématique 187Re-187Os dans le Manteau. Ph.D. Thesis, Université de Paris VII, Paris, France, 1993. [Google Scholar]
- Li, J.; Zhao, P.P.; Liu, J.G.; Wang, X.C.; Yang, Y.; Wang, G.Q.; Xu, J.F. Reassessment of Hydrofluoric Acid Desilicification in the Carius Tube Digestion Technique for Re-Os Isotopic Determination in Geological Samples. Geostand. Geoanal. Res. 2015, 39, 17–30. [Google Scholar] [CrossRef]
- Creaser, R.A.; Papanastassiou, D.A.; Wasserburg, G.J. Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochim. Cosmochim. Acta 1991, 55, 397–401. [Google Scholar] [CrossRef]
- Volkening, J.; Walczyk, T.; Heumann, K.G. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Int. J. Mass Spectrom. Ion Process. 1991, 105, 147–159. [Google Scholar] [CrossRef]
- Li, J.; Liang, X.R.; Xu, J.F.; Suzuki, K.; Dong, Y.H. Simplified technique for the measurements of Re-Os isotope by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochem. J. 2010, 44, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jiang, X.Y.; Xu, J.F.; Zhong, L.F.; Wang, X.C.; Wang, G.Q.; Zhao, P.P. Determination of Platinum-Group Elements and Re-Os Isotopes using ID-ICP-MS and N-TIMS from a Single Digestion after Two-Stage Column Separation. Geostand. Geoanal. Res. 2014, 38, 37–50. [Google Scholar] [CrossRef]
- Ishikawa, A.; Senda, R.; Suzuki, K.; Dale, C.W.; Meisel, T. Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials. Chem. Geol. 2014, 384, 27–46. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.C.; Xu, J.F.; Xu, Y.G.; Tang, G.J.; Wang, Q. Disequilibrium-induced initial Os isotopic heterogeneity in gram aliquots of single basaltic rock powders: Implications for dating and source tracing. Chem. Geol. 2015, 406, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, J.; Long, X.P.; Sun, S.L.; Yin, L.; Dai, M.N. Rhenium–osmium isotope measurements of geological reference material BIR–1a: Evaluation of homogeneity and implications for method validation and quality control. Geostand. Geoanal. Res. 2017. [Google Scholar] [CrossRef]
- Ludwig, K. Isoplot/Ex Version 2.0: A Geochronological Toolkit for Microsoft Excel; Special Publication 1a; Geochronology Center: Berkeley, CA, USA, 1999. [Google Scholar]
- Smoliar, M.L.; Walker, R.J.; Morgan, J.W. Re–Os ages of group IA, IIA, IVA and IVB iron meteorites. Science 1996, 271, 1099–1102. [Google Scholar] [CrossRef]
- Men, L.J. An Ore-forming Fluid Study on Late Mesozoic Epithermal Au–Cu Deposits in Yanbian–Dongning Area: Implication for the Metallogenic Mechanism. Ph.D. Thesis, Jilin University, Changchun, China, 2011. (In Chinese). [Google Scholar]
- Stein, H.J.; Sundblad, K.; Markey, R.J.; Morgan, J.W.; Motuza, G. Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: Testing the chronometer in a metamorphic and metasomatic setting. Min. Depos. 1998, 33, 329–345. [Google Scholar] [CrossRef]
- Brenan, J.M.; Cherniak, D.J.; Rose, L.A. Diffusion of osmium in pyrrhotite pyrite: Implications for closure of the Re-Os isotopic system. Earth Plant. Sci. Lett. 2000, 180, 399–413. [Google Scholar] [CrossRef]
- Nozaki, T.; Kato, Y.; Suzuki, K. Re-Os geochronology of the Iimori Besshi-type massive sulfide deposit in the Sanbagawa metamorphic belt, Japan. Geochim. Cosmochim. Acta 2010, 74, 4322–4331. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, X.W.; Cui, B.; Wang, B.C.; Yin, Y.F.; Wang, J.R. Re-Os isotopic and trace element compositions of pyrite and origin of the Cretaceous Jinchang porphyry Cu-Au deposit, Heilongjiang Province, NE China. J. Asian Earth Sci. 2016, 129, 67–80. [Google Scholar] [CrossRef]
- Huang, X.W.; Qi, L.; Wang, Y.C.; Liu, Y.Y. Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, Eastern Tianshan, NW China. Sci. China Ser. D 2014, 57, 267–277. [Google Scholar] [CrossRef]
- Wei, J.H.; Liu, C.Q.; Zhao, Y.X.; Li, Z.D. Time Span of the Major Ore-forming Stages of the Wulong Gold Deposit, Liaoning. Geol. Rev. 2001, 47, 433–437. (In Chinese) [Google Scholar]
- Esser, B.K.; Turekian, K.K. The osmium isotopic composition of the continental crust. Geochim. Cosmochim. Acta 1993, 57, 3093–3104. [Google Scholar] [CrossRef]
- Saal, A.E.; Rudnick, R.L.; Ravizza, G.E.; Hart, S.R. Re-Os isotope evidence for the composition, formation and age of the lower continental crust. Nature 1998, 393, 58–61. [Google Scholar] [CrossRef]
- Han, S.J.; Sun, J.G.; Bai, L.A.; Xing, S.W.; Chai, P.; Zhang, Y.; Yang, F.; Men, L.J.; Li, Y.X. Geology and ages of porphyry and medium- to high-sulphidation epithermal gold deposits of the continental margin of northeast China. Int. Geol. Rev. 2013, 55, 287–310. [Google Scholar] [CrossRef]
- Qi, J.P.; Chen, Y.J.; Franco, P. Geological characteristics and tectonic setting of the epithermal deposits in the Northeast China. J. Miner. Petrol. 2005, 25, 47–59. (In Chinese) [Google Scholar]
- Ge, W.C.; Lin, Q.; Sun, D.Y.; Wu, F.Y.; Won, C.K.; Lee, M.W.; Jin, M.S.; Yun, S.H. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling: Evidence of the mantle-crust interaction. Acta Petrol. Sin. 1999, 15, 397–407. (In Chinese) [Google Scholar]
- Zhang, W.H.; Qin, J.Y.; Zhang, D.H.; Tian, L.; Wang, L.L.; Wang, Y. Fluid inclusion indicators in prophyry Au deposits: Taking Jinchang gold deposit, Heilongjiang Province as an example. Acta Petrol. Sin. 2008, 24, 2011–2016. (In Chinese) [Google Scholar] [CrossRef]
- Xu, W.L.; Pei, F.P.; Wang, F.; Meng, E.; Ji, W.Q.; Yang, D.B.; Wang, W. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic systems. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Sun, J.G.; Wang, Q.H.; Men, L.J.; Li, Y.X.; Guo, J. 40Ar/39Ar laser probe dating and discussion on metallogenic epoch of epithermal Au-Cu deposit in Yanbian area of Jilin. Earth Sci. Front. 2010, 17, 156–169. (In Chinese) [Google Scholar]
- Li, Z.Z.; Li, S.R.; Zhang, H.F. Wall rock alteration and metallogenic chronology of Jinchang gold deposit in Dongning County, Heilongjiang Province. Min. Depos. 2009, 01, 83–92. (In Chinese) [Google Scholar]
- Ren, Y.S.; Ju, N.; Zhao, H.L.; Wang, H.; Hou, K.J.; Liu, S. Geochronology and geochemistry of metallogenetic porphyry bodies from the Nongping Au-Cu deposit in the eastern Yanbian area, NE China: Implications for metallogenic environment. Acta Geol. Sin. (Engl. Ed.) 2012, 86, 619–629. [Google Scholar]
- Mao, J.W.; Wang, Z.L. A preliminary study on time limits and geodynamic setting of large-scale metallogeny in East China. Min. Depos. 2000, 19, 289–296. (In Chinese) [Google Scholar]
Pyrite | Sample | Location | Re Conc (ppt) | 2SE | Os Conc (ppt) | 2SE | 187Os/188Os | 2σ | 187Re/188Os | 2SE | Initial 187Os/188Os |
---|---|---|---|---|---|---|---|---|---|---|---|
Py1 | J1-1 | ZKE01 at 84 m level | 9906 | 268.75 | 11.50 | 0.21 | 70.72 | 0.79 | 42,853 | 1408.28 | −2.80 |
J1-2 | ZKE01 at 64 m level | 9643 | 147.37 | 11.78 | 0.21 | 52.22 | 0.47 | 31,501 | 740.43 | −1.82 | |
J1-3 | 30 m level middle section | 10,475 | 159.15 | 14.61 | 0.36 | 16.48 | 0.40 | 10,855 | 314.64 | −2.14 | |
J1-4 | 30 m level middle section | 9908 | 104.95 | 11.82 | 0.37 | 68.68 | 0.93 | 41,376 | 1354.88 | −2.31 | |
J1-5 | 30 m level middle section | 9856 | 121.56 | 11.66 | 0.24 | 58.53 | 0.71 | 35,295 | 1024.55 | −2.02 | |
Py2 | J18-1 | ZK05 at 280 m level | 4194 | 76.99 | 5.09 | 0.09 | 50.28 | 0.38 | 31,074 | 804.77 | −2.57 |
J18-2 | ZK05 at 362 m level | 4087 | 61.62 | 6.12 | 0.05 | 19.04 | 0.16 | 11,203 | 196.09 | −0.01 | |
J18-3 | ZK11 at 235 m level | 4224 | 153.08 | 6.20 | 0.05 | 21.30 | 0.17 | 12,395 | 460.54 | 0.22 | |
J18-4 | ZK11 at 342 m level | 4541 | 96.97 | 5.95 | 0.05 | 36.70 | 0.23 | 21,496 | 498.65 | 0.14 | |
J18-5 | ZK14 at 166 m level | 4125 | 73.58 | 5.55 | 0.05 | 52.36 | 0.43 | 30,856 | 706.91 | −0.12 | |
Py3 | Jh-1 | 374 m level middle section | 1437 | 26.20 | 3.12 | 0.05 | 7.36 | 0.10 | 4054 | 96.79 | 0.54 |
Jh-2 | 374 m level middle section | 1255 | 36.95 | 2.94 | 0.02 | 7.19 | 0.08 | 3957 | 119.94 | 0.53 | |
Jh-3 | 374 m level middle section | 1346 | 20.85 | 3.57 | 0.02 | 6.47 | 0.05 | 3527 | 56.64 | 0.53 | |
Jh-4 | ZK4702 at 186 m level | 1735 | 13.05 | 3.21 | 0.03 | 11.39 | 0.13 | 6443 | 76.36 | 0.55 | |
Jh-5 | ZK4702 at 287 m level | 1185 | 20.46 | 3.02 | 0.02 | 11.21 | 0.06 | 6354 | 83.55 | 0.52 |
Test object | Method | Age | Reference |
---|---|---|---|
Diorite | U–Pb | 209 ± 1.4 Ma | [23] |
Granite | U–Pb | 203.62 ± 0.86 Ma | [20] |
Granite | U–Pb | 202.1 ± 3.0 Ma | [22] |
Granite | U–Pb | 201 ± 3 Ma | [19] |
Granite | U–Pb | 184.69 ± 0.98 Ma | [20] |
Dioritic porphyrite | U–Pb | 118.4 ± 1.6 Ma | [9] |
Dioritic porphyrite | U–Pb | 116 ± 2 Ma | [23] |
Dioritic porphyrite | U–Pb | 115.7 ± 2.0 Ma | [9] |
Dioritic porphyrite | U–Pb | 111.5 ± 1.2 | [22] |
Granite porphyry | U–Pb | 113.5 ± 3.6 Ma | [24] |
Granite porphyry | U–Pb | 112.62 ± 0.85 Ma | [23] |
Granite porphyry | U–Pb | 110 ± 3 Ma | [19] |
Granodiorite | U–Pb | 106.8 ± 2.0 Ma | [21] |
Quartz–pyrite veins in the J-1 orebody | 40Ar/39Ar | 122.53 ± 0.88 Ma | [10] |
Quartz–pyrite veins in the J-2 orebody | 40Ar/39Ar plateau | 122 Ma | [6] |
Quartz from quartz–pyrite veins of orebody XII | 40Ar/39Ar | 119 ± 5 Ma | [11] |
Sericite from altered granite | Rb–Sr | 107 ± 5 Ma | [19] |
Sericite and pyrite from altered granite | Rb–Sr | 104 ± 6 Ma | [19] |
Sphalerite from J-9 orebody | 40Ar/39Ar | 129 ± 0.8 Ma | [11] |
Pyrite from J1 orebody | Re–Os | 114 ± 22 Ma | [44] |
Py1 | Re–Os | 102.9 ± 2.7 Ma | This study |
Py2 | Re–Os | 102.0 ± 3.4 Ma | This study |
Py3 | Re–Os | 100.9 ± 3.1 Ma | This study |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.-D.; Wang, Z.-G.; Wang, K.-Y.; Cai, W.-Y.; Peng, D.-W.; Xiao, L.; Li, J. Re–Os Pyrite Geochronological Evidence of Three Mineralization Styles within the Jinchang Gold Deposit, Yanji–Dongning Metallogenic Belt, Northeast China. Minerals 2018, 8, 448. https://doi.org/10.3390/min8100448
Li S-D, Wang Z-G, Wang K-Y, Cai W-Y, Peng D-W, Xiao L, Li J. Re–Os Pyrite Geochronological Evidence of Three Mineralization Styles within the Jinchang Gold Deposit, Yanji–Dongning Metallogenic Belt, Northeast China. Minerals. 2018; 8(10):448. https://doi.org/10.3390/min8100448
Chicago/Turabian StyleLi, Shun-Da, Zhi-Gao Wang, Ke-Yong Wang, Wen-Yan Cai, Da-Wei Peng, Li Xiao, and Jie Li. 2018. "Re–Os Pyrite Geochronological Evidence of Three Mineralization Styles within the Jinchang Gold Deposit, Yanji–Dongning Metallogenic Belt, Northeast China" Minerals 8, no. 10: 448. https://doi.org/10.3390/min8100448
APA StyleLi, S. -D., Wang, Z. -G., Wang, K. -Y., Cai, W. -Y., Peng, D. -W., Xiao, L., & Li, J. (2018). Re–Os Pyrite Geochronological Evidence of Three Mineralization Styles within the Jinchang Gold Deposit, Yanji–Dongning Metallogenic Belt, Northeast China. Minerals, 8(10), 448. https://doi.org/10.3390/min8100448