Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon
Abstract
:1. Introduction
2. Geological and Mineralogical Occurrences
- (1)
- Predominantly associated with alkaline environments;
- (2)
- Exhibit complementary High Field Strength Element (HFSE) enrichment;
- (3)
- Contain phosphate and/or fluoride REE-bearing ore minerals (see Table 1);
- (4)
- REE enrichment is associated with magmatic crystallization processes (see Section 3);
- (5)
- Enhancement of REE deposits has been promoted through redistribution of REEs by hydrothermal agents;
- (6)
- Fenitization (metasomatism of the surrounding country rock by alkali-dominated fluids).
3. REEs on the Earth’s Moon: The KREEP Reservoir
4. Lunar Granites, REE-Bearing Minerals, and the “Granite Problem”
5. Evaluating Earth’s Moon as a Potential Future Resource
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bottrell, S.H.; Yardley, B.W.D. The composition of a primary granite-derived ore fluid from S. W. England, determined by fluid inclusion analysis. Geochem. Cosmochim. Acta 1998, 52, 585–588. [Google Scholar] [CrossRef]
- Heinrich, C.A. The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ. Geol. 1990, 85, 457–481. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal Mineral Deposits; Springer: Berlin/Heidelberg, Germany, 1992; 709p. [Google Scholar]
- Braun, J.-J.; Pagel, M.; Herbilln, A.; Rosin, C. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study. Geochem. Cosmochim. Acta 1993, 57, 4419–4434. [Google Scholar] [CrossRef]
- Candela, P.A. A Review of Shallow, Ore-related Granites: Textures, Volatiles, and Ore Metals. J. Petrol. 1997, 38, 1619–1633. [Google Scholar] [CrossRef] [Green Version]
- Haapala, I. Magmatic and Postmagmatic Processes in the Tin-mineralized Granites: Topaz-bearing Leucogranite in the Eurajoki Rapakivi Granite Stock, Finland. J. Petrol. 1997, 38, 1645–1659. [Google Scholar] [CrossRef]
- Zaitsev, A.N.; Wall, F.; Le Bas, M.J. REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: Their mineralogy, paragenesis and evolution. Miner. Mag. 1998, 62, 225–250. [Google Scholar] [CrossRef]
- Mitchell, R.H. Carbonatites and carbonatites and carbonatites. Can. Miner. 2005, 43, 2049–2068. [Google Scholar] [CrossRef]
- Sial, A.N.; Bettencourt, J.S.; De Campos, C.P.; Ferreira, V.P. Granite-related ore deposits: An introduction. J. Geol. Soc. Spec. Publ. 2011, 350, 1–5. [Google Scholar] [CrossRef]
- Feng, C.; Zhao, Z.; Qu, W.; Zeng, Z. Temporal consistency between granite evolution and tungsten mineralization in the Huamei’ao, southern Jiangxi Province, China: Evidence from precise zircon U-Pb, molybdenite Re-Os, and muscovite 40Ar-39Ar isotope geochronology. Ore Geol. Rev. 2015, 65, 1005–1020. [Google Scholar] [CrossRef]
- Dostal, J. Rare Earth Element Deposits of Alkaline Igneous Rocks. Resources 2017, 6, 34. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Hawkesworth, C.J.; Robb, L.J.; Whitehouse, M.J.; Roberts, N.M.W.; Kirkland, C.L.; Evans, N.J. Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmarr. Nat. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Simons, B.; Andersen, J.C.Ø.; Shail, R.K.; Jenner, F.E. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralization. Lithos 2017, 278–281, 491–512. [Google Scholar] [CrossRef]
- Xiao, B.; Li, Q.; He, S.; Chen, X.; Liu, S.; Wang, Z.; Xu, X.; Chen, J. Contrasting geochemical signatures between Upper Triassic Mo-hosting and barren granitoids in the central segment of South Qinling orogenic belt, central China: Implications for Mo exploration. Ore. Geol. Rev. 2017, 81, 518–534. [Google Scholar] [CrossRef]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Wall, F.; Merriman, D. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat. Resour. Res. 2017, 27, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Golev, A.; Scott, M.; Erskine, P.D.; Ali, S.H.; Ballantyne, G.R. Rare earth element supply chains: Current status, constraints and opportunities. Resour. Policy 2014, 41, 52–59. [Google Scholar] [CrossRef]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef]
- McLeod, C.L.; Krekeler, M.P.S. Sources of Extraterrestrial Rare Earth Elements: To the Moon and Beyond. Resources 2017, 6, 40. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Z.; Chen, C. Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies. Minerals 2017, 7, 203. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Mineral Commodity Summaries 2017. 2018. Available online: https://minerals.usgs.gov/minerals/pubs/mcs/2018/mcs2018.pdf (accessed on 5 May 2018).
- Chen, W.; Honghui, H.; Bai, T.; Jiang, S. Geochemistry of Monazite within Carbonatite Related REE Deposits. Resources 2017, 6, 51. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Paikowsky, D.; Tzezana, R. The politics of space mining—An account of a simulation game. Acta Astronaut. 2018, 142, 10–17. [Google Scholar] [CrossRef]
- Verplanck, P.L.; Van Gosen, B.S. Carbonatite and Alkaline Intrusion-Related Rare Earth Element Deposits—A Deposit Model. USGS Open-File Report 2011-1256. Available online: https://pubs.usgs.gov/of/2011/1256/report/OF11-1256.pdf (accessed on 7 May 2018).
- Fitton, J.G.; Upton, B.G.J. Alkaline Igneous Rocks; Geological Society Special Publication; Blackwell Scientific: Hoboken, NJ, USA, 1987; Book 30; 568p. [Google Scholar]
- Sørensen, H. The Alkaline Rocks; Wiley: Hoboken, NJ, USA, 1974; 622p. [Google Scholar]
- United States Geological Survey (USGS). Rare Earth Element Mines, Deposits, and Occurrences. 2002. Available online: https://mrdata.usgs.gov/ree/ (accessed on 5 May 2018).
- Kretz, R. Symbols for rock-forming minerals. Am. Mineral. 1983, 68, 277–279. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Hudson Institute of Mineralogy—Mindat. Available online: https://www.mindat.org/ (accessed on 2 October 2018).
- Mineralogy Database. Available online: www.webmineral.com (accessed on 2 October 2018).
- Friis, H.; Balić-Žunić, T.; Williams, C.T.; Garcia-Sanchez, R. Incorporation of REE into leucophanite: A compositional and structural study. Mineral. Mag. 2007, 71, 625–640. [Google Scholar] [CrossRef]
- Macdonald, R.; Saunders, M. Chemical variation in minerals of the astrophyllite group. Mineral. Mag. 1973, 39, 97–111. [Google Scholar] [CrossRef]
- Bühn, B.; Rankin, A.H.; Radtke, M.; Haller, M.; Knöchel, A. Burbankite, a (Sr,REE,Na,Ca)-carbonate in fluid inclusions from carbonatite-derived fluids: Identification and characterization using Laser Raman spectroscopy, SEM-EDX, and synchrotron micro-XRF analysis. Am. Mineral. 1999, 84, 1117–1125. [Google Scholar] [CrossRef]
- Mariano, A.N.; Roeder, P.L. Wöhlerite: Chemical Composition, Cathodoluminescence and Environment of Crystallization. Can. Mineral. 1989, 27, 709–720. [Google Scholar]
- Rubatto, D.; Hermann, J.; Buick, I. Temperature and Bulk Composition Control on the Growth of Monazite and Zircon During Low-pressure Anatexis (Mount Stafford, Central Australia). J. Petrol. 2006, 47, 1973–1996. [Google Scholar] [CrossRef] [Green Version]
- Castor, S.B. Rare Earth Deposits of North America. Resour. Geol. 2008, 58, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, K.; Krumrei, M.A.W.; Marks, T.; Wenzel, T.; Rudolf, T.; Markl, G. Chemical and physical evolution of the “lower layered sequence” from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implication for the origin of magmatic layering in peralkline felsic liquids. Lithos 2008, 106, 280–296. [Google Scholar] [CrossRef]
- Graupner, T.; Mühlbach, C.; Schwarz-Schampera, U.; Henjes-Kunst, F.; Melcher, F.; Terblanche, H. Mineralogy of high-field strength elements (Y, Nb, REE) in the world-class Vergenoeg fluorite deposit, South Africa. Ore. Geol. Rev. 2015, 64, 583–601. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, Y.; Xu, L.; Sun, H.; Huang, J.; Hou, Z. Origin of allanite in gneiss and granite in the Dabie orogenic belt, Central East China. J. Asian Earth. Sci. 2017, 135, 243–256. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Pub. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Sokolova, E.; Hawthorne, F.C.; Della Ventura, G.; Kartashov, P.M. Chevkinite-(Ce): Crystal structure and the effect of moderate radiation-induced damage on the site-occupancy refinement. Can. Mineral. 2004, 42, 1013–1025. [Google Scholar] [CrossRef]
- Konopleva, N.G.; Yu, G.; Ivanyuk, Y.A.; Pakhomovsky, V.N.; Yakovenchuk, Y.; Mikhailova, A. Loparite-(De) from the Khibiny Alkaline Pluton, Kola Peninsula, Russia. Geol. Ore Depos. 2017, 59, 729–737. [Google Scholar] [CrossRef]
- Förster, H.-J. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime. Am. Mineral. 1998, 83, 1302–1315. [Google Scholar] [CrossRef]
- Sokolova, E.; Hawthorne, F.C. From structure topology to chemical composition, XIV. Titanium silicates: Refinement of the crystal structure and revision of the chemical formula of mosandrite, a Group-1 mineral from the Saga mine, Morje, Porsgrunn, Norway. Mineral. Mag. 2013, 227, 594–603. [Google Scholar]
- Yang, Z.; Smith, M.; Henderson, P.; Lebas, M.J.; Tao, K.; Zhang, P. Compositional variation of aeschynite-group minerals in the Bayan Obo Nb-REE-Fe ore deposit, Inner Mongolia, China. Eur. J. Mineral. 2001, 13, 1207–1214. [Google Scholar] [CrossRef]
- Škoda, R.; Plasil, J.; Jonsson, E.; Čopjakova, R.; Langhof, J.; Galiova, M.V. Redefinition of thalenite-(Y) and discreditation of fluorthalenite-(Y): A re-investigation of type material from the Österby pegmatite, Dalarna, Sweden, and from additional localities. Mineral. Mag. 2015, 79, 965–983. [Google Scholar] [CrossRef]
- Jordens, A.; Cheng, Y.P.; Waters, K. A Review of the Benefication of Rare Earth Element Bearing Minerals. Mineral. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Long, K.R.; Van Gosen, B.S.; Foley, N.K.; Cordier, D. The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective; U.S.G.S. Scientific Investigations Report; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2010; 96p.
- BGS (British Geological Survey). Rare Earth Elements. 2011. Available online: https://www.bgs.ac.uk/downloads/start.cfm?id=1638 (accessed on 8 June 2018).
- Chehreh, C.S.; Rudolph, M.; Leistner, T.; Gutzmer, J.; Peujer, U.A. A review of rare earth minerals flotation: Monazite and Xenotime. Int. J. Min. Sci. Technol. 2015, 35, 877–883. [Google Scholar]
- Geological Survey of Queensland (GSQ). Heavy Rare Earth elements (HREE) Opportunities in Queensland 2014. Available online: https://www.dnrm.qld.gov.au/__data/assets/pdf_file/0018/238104/hree.pdf (accessed on 8 June 2018).
- Remeur, C. Rare Earth Elements and Recycling Possibilities. Library of the European Parliament. 2 May 2013. Available online: http://www.europarl.europa.eu/RegData/bibliotheque/briefing/2013/130514/LDM_BRI(2013)130514_REV1_EN.pdf (accessed on 21 June 2018).
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Gerven, T.V.; Yang, Y.; Walton, A.; Bucherts, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Crawford, I.A.; Anand, M.; Cockell, C.S.; Falcke, H.; Green, D.A.; Jaumann, R.; Wieczorek, M.A. Back to the Moon: The scientific rationale for resuming lunar surface exclamation. Planet. Space Sci. 2012, 74, 3–14. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Jolliff, B.A.; Khan, A.; Pritchard, M.E.; Weiss, B.P.; Williams, J.G.; Hood, L.L.; Righter, K.; Neal, C.R.; Shearer, C.K.; et al. The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 2006, 60, 221–264. [Google Scholar] [CrossRef]
- Touboul, M.; Kleibe, T.; Bourdon, B.; Palme, H.; Wieler, R. Later formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 2007, 450, 1206–1209. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.A.; Morbidelli, A.; Rayond, S.N.; O’Brien, D.P.; Walsh, K.J.; Rubie, D.C. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 2014, 508, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottke, W.F.; Vokrouhlicky, S.; Marchi, S.; Swindle, T.; Scott, E.R.D.; Weirich, J.R.; Levison, H. Dating the Moon-forming giant impact with asteroidal meteorites. Science 2014, 348, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Barboni, M.; Boehnke, P.; Keller, B.; Kohl, I.E.; Schoene, B.; Young, E.D.; McKeegan, K.D. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 2017, 3, e1602365. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R. Chemical evidence for lunar melting and differentiation. Nature 1973, 245, 203–205. [Google Scholar] [CrossRef]
- Taylor, S.R.; Jakes, P. The geochemical evolution of the moon. In Proceedings of the 5th Lunar Science Conference, Houston, TX, USA, 18–22 March 1974; pp. 1287–1305. [Google Scholar]
- McLeod, C.L.; Brandon, A.D.; Fernandes, V.A.; Peslier, A.H.; Fritz, J.; Lapen, T.; Shafer, J.T.; Butcher, A.R.; Irving, A.J. Constraints on formation and evolution of the lunar crust from feldspathic granulitic breccias NWA 3163 and 4881. Geochemi. Cosmochim. Acta 2016, 187, 350–374. [Google Scholar] [CrossRef]
- Prado, M. The Apollo and Luna Samples. 2002. Available online: http://www.permanent.com/l-apollo.htm (accessed on 28 May 2018).
- Jolliff, B.L.; Gillis, J.J.; Haskin, L.A.; Korotev, R.L.; Wieczorek, M.A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. Planets 2002, 105, 4197–4216. [Google Scholar] [CrossRef]
- Taylor, G.J. Ancient lunar crust: Origin, composition, and implications. Elements 2009, 5, 17–22. [Google Scholar] [CrossRef]
- Warren, P.H.; Wasson, J.T. The Origin of KREEP. Rev. Geophys. 1978, 17, 73–88. [Google Scholar] [CrossRef]
- Shearer, C.K.; Elardo, S.M.; Petro, N.E.; McCubbin, F.M. Origin of the lunar highlands Mg-suite: An integrated petrology and geochemistry, chronology, and remote sensing perspective. Am. Mineral. 2015, 100, 294–325. [Google Scholar] [CrossRef]
- Snyder, G.A.; Taylor, A.L.; Halliday, A.N. Chronology and petrogenesis of the lunar highlands alkali suite: Cumulates from KREEP basalt crystallization. Geochim. Cosmochim. Acta 1995, 59, 1185–1203. [Google Scholar] [CrossRef]
- Seddio, S.M.; Korotev, R.L.; Jolliff, B.L.; Wang, A. Silica polymorphs in lunar granite: Implications for granite petrogenesis on the Moon. Am. Mineral. 2015, 100, 1533–1543. [Google Scholar] [CrossRef]
- Neal, C.R.; Taylor, L.A. Definition of Pristine, Unadulterated urKREEP Composition Using the “K-FRAC/REEP-FRAC” Hypothesis. In Proceedings of the 19th Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 1989; pp. 772–773. [Google Scholar]
- Neal, C.L.; Taylor, L.A. Metasomatic products of the lunar magma ocean: The role of KREEP dissemination. Geochem. Cosmochim. Acta 1989, 53, 529–541. [Google Scholar] [CrossRef]
- Korotev, R.L.; Jolliff, B.L.; Zeigler, R.A.; Gillis, J.J.; Haskin, L.A. Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochem. Cosmochim. Acta 2003, 67, 4895–4923. [Google Scholar] [CrossRef]
- Korotev, R.L. Lunar geochemistry as told by lunar meteorites. Chem. Erde Geochem. 2005, 65, 297–346. [Google Scholar] [CrossRef]
- Rutherford, M.J.; Hess, P.C.; Ryerson, F.J.; Campbell, H.W.; Dick, P.A. The chemistry, origin, and petrogenetic implications of lunar granite and monzonite. In Proceedings of the 7th Lunar Science Conference, Houston, TX, USA, 15–19 March 1976; pp. 1723–1740. [Google Scholar]
- Head, J.W.; McCord, T.B. Imbrian-age highland volcanism on the Moon; the Gruithuisen and Mairan domes. Science 1978, 199, 1433–1436. [Google Scholar] [CrossRef] [PubMed]
- Hawke, B.R.; Lawrence, D.J.; Blewett, D.T.; Lucey, P.G.; Smith, G.A.; Spudis, P.D.; Taylor, G.J. Hansteen Alpha: A volcanic construct in the lunar highlands. J. Geophys. Res. 2003, 108, 5069. [Google Scholar] [CrossRef]
- Ivanov, M.A.; Head, J.W.; Bystrov, A. The lunar Gruithuisen silicic extrusive domes: Topographic configuration, morphology, ages, and internal structure. Icarus 2016, 273, 262–283. [Google Scholar] [CrossRef]
- Warren, P.H.; Taylor, G.J.; Keil, K.; Shirley, D.N.; Wasson, J.T. Petrology and chemistry of two large granite clasts from the Moon. Earth. Planet. Sci. Lett. 1983, 64, 175–185. [Google Scholar] [CrossRef]
- Shih, C.-Y.; Nyquist, L.E.; Bogard, D.D.; Wooden, J.L.; Bansal, B.M.; Wiesmann, H. Chronology and petrogenesis of a 1.8 g lunar granite clast: 14321,1062. Geochem. Cosmochim. Acta 1985, 49, 411–426. [Google Scholar] [CrossRef]
- Shih, C.-Y.; Nyquist, L.E.; Wiesmann, H. K-Ca chronology of lunar granites. Geochem. Cosmochim. Acta 1993, 57, 4827–4841. [Google Scholar] [CrossRef]
- Korotev, R.L.; Jolliff, B.L.; Zeigler, R.A.; Seddio, S.M.; Haskin, L.A. Apollo 12 revisited. Geochem. Cosmochim. Acta 2011, 75, 1540–1573. [Google Scholar] [CrossRef]
- Seddio, S.M.; Jolliff, B.L.; Korotev, R.L.; Zeigler, R.A. Petrology and geochemistry of lunar granite 12032,366-319 and implications for lunar granite petrogenesis. Am. Mineral. 2013, 98, 1697–1713. [Google Scholar] [CrossRef]
- Ryder, G. Lunar sample 15405: Remnant of a KREEP basalt-granite differentiated pluton. Earth. Planet. Sci. Lett. 1976, 29, 255–268. [Google Scholar] [CrossRef]
- McGee, P.E.; Warner, J.L.; Simonds, C.E.; Phinney, W.C. Introduction to the Apollo Collections. Part II: Lunar Breccias; Lyndon B. Johnson Space Center: Houston, TX, USA, 1979. [Google Scholar]
- Jolliff, B.L.; Hughes, J.M.; Freeman, J.J.; Zeigler, R.A. Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. Am. Mineral. 2006, 91, 1583–1595. [Google Scholar] [CrossRef]
- Muhling, J.R.; Suvorova, A.A.; Rasmussen, B. The occurrence and composition of chevkinite-(Ce) and perrierite-(Ce) in tholeiitic intrusive rocks and lunar mare basalt. Am. Mineral. 2014, 99, 1911–1921. [Google Scholar] [CrossRef]
- Wopenka, B.; Jolliff, B.L.; Zinner, E.; Kremser, D.T. Trace element zoning and incipient metamictization in a lunar zircon: Application of three microprobe techniques. Am. Mineral. 1996, 81, 902–912. [Google Scholar] [CrossRef]
- Kartashov, P.M.; Bogatikov, O.A.; Mokhov, A.V.; Gorshkov, A.I.; Ashikhmina, N.A.; Magazina, L.O.; Koporulina, E.V. Lunar Monazites. Dokl. Earth Sci. 2006, 407A, 498–502. [Google Scholar] [CrossRef]
- Meyer, C.; Yang, S.V. Tungsten-bearing yttrobetafite in lunar granophyre. Am. Mineral. 1988, 73, 1420–1425. [Google Scholar]
- Heiken, G.H.; Vaniman, D.T.; French, B.M. Lunar Sourebook a User’s Guide to the Moon; The Lunar Planetary Institute, Cambridge University Press: Cambridge, UK, 1991; 736p. [Google Scholar]
- Lovering, J.F.; Wark, D.A.; Reid, A.F.; Ware, N.G.; Keil, K.; Prinz, M.; Bunch, T.E.; El Goresy, A.; Ramdohr, P.; Brown, G.M.; et al. Tranquillityite: A new silicate mineral from Apollo 11 and Apollo 12 basaltic rocks: Proceedings of the 2nd Lunar Science Conference. Geochem. Cosmochim. Acta 1971, 1 (Suppl. 2), 39–45. [Google Scholar]
- Rasmussen, B.; Fletcher, I.R.; Gregory, C.J.; Muhling, J.R.; Suvorova, A.A. Tranquillityite: The last lunar mineral comes down to Earth. Geology 2012, 40, 83–86. [Google Scholar] [CrossRef]
- Rasmussen, B.; Fletcher, I.R.; Muhling, J.R. Pb/Pb geochronology, petrography and chemistry of Zr-rich accessory minerals (zirconolite, tranquillityite and baddeleyite) in mare basalt 10047. Geochem. Cosmochim. Acta 2008, 72, 5799–5818. [Google Scholar] [CrossRef]
- Badescu, V. Moon: Prospective Energy and Material Resources; Springer: New York, NY, USA, 2012; 771p. [Google Scholar]
- Ramdohr, R.; Goresey, A.E. Opaque minerals of the lunar rocks and dust from mare tranquillitatis. Science 1970, 167, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.M.; Emeleus, C.H.; Holland, J.G.; Peckett, A.; Phillips, R. Mineral-chemical variations in Apollo 14 and Apollo 15 basalts and granitic fractions. Proc. Lunar Sci. Conf. 1972, 3, 141–157. [Google Scholar]
- Busche, F.D.; Prinz, M.; Keil, K.; Bunch, T.E. Spinels and the petrogenesis of some Apollo 12 igneous rocks. Am. Mineral. 1972, 57, 1729–1747. [Google Scholar]
- Brown, G.M.; Emeleus, C.H.; Holland, J.G.; Peckett, A.; Phillips, R. Picrite basalts, ferrobasalts, feldspathic norites and rhyolites in a strongly fractionated lunar crust. Proc. Lunar Sci. Conf. 1971, 2, 583–600. [Google Scholar]
- Salpas, P.A.; Shervais, J.W.; Knapp, S.A.; Taylor, L.A. Petrogenesis of Lunar Granites: The Result of Apatite Fractionation (abstract). Lunar Planet. Sci. 1985, XVI, 726–727. [Google Scholar]
- Seddio, S.M.; Korotev, R.L.; Jolliff, B.L.; Zeigler, R.A. Comparing the bulk composition of lunar granites, with Petrologic Implications. In Proceedings of the 41st Lunar and Planetary Science Conference, Woodlands, TX, USA, 1–5 March 2010; p. 2688. [Google Scholar]
- Gullikson, A.L.; Hagerty, J.J.; Reid, M.R.; Rapp, J.F.; Draper, D.S. Silicic lunar volcanism: Testing the crustal melting model. Am. Mineral. 2016, 101, 2312–2321. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Bonin, B. Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis. Lithos 2012, 153, 3–24. [Google Scholar] [CrossRef]
- Glotch, T.D.; Lucey, P.G.; Bandfield, J.L.; Greenhagen, B.T.; Thomas, I.R.; Elphic, R.C.; Neil, B.; Wyatt, M.B.; Allen, C.C.; Donaldson Hanna, K.; et al. Highly Silicic Compositions on the Moon. Science 2010, 329, 1510–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, J. Ore Deposit Geology; Cambridge University Press: Cambridge, UK, 2013; 398p. [Google Scholar]
- Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Elphic, R.C.; Maurice, S.; Binder, A.B.; Miller, M.C.; Prettyman, T.H. High resolution measurements of absolute thorium abundances on the lunar surface from the Lunar Prospector gamma-ray spectrometer. Geophys. Res. Lett. 2000, 26, 2681–2684. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, L.; Ouyang, Z. KREEP Rocks. Chin. J. Geochem. 2004, 23, 65–70. [Google Scholar]
- Schrunk, D.; Sharp, B.; Cooper, B.; Thangavelu, M. The Moon: Resources, Future Development, and Settlement; Springer-Praxis: Chichester, UK, 2007. [Google Scholar]
- Chamberlain, P.G.; Taylor, L.A.; Podnieks, E.R.; Miller, R.J. A review of possible mining applications in space. In Resources of Near-Earth Space; Lewis, J.S., Matthews, M.S., Guerrieri, M.L., Eds.; University of Arizona Press: Tucson, AZ, USA, 1992; pp. 51–68. [Google Scholar]
- Vanzani, V.; Marzari, F.; Dotto, E. Micrometeoroid Impacts on the Lunar Surface. In Proceedings of the 28th Lunar and Planetary Science Conference, Houston, TX, USA, 17–21 March 1997; p. 1095. [Google Scholar]
- Mimoun, D.; Wieczorek, M.; Alkalai, L.; Banerdt, W.B.; Baratoux, D.; Bougeret, J.-L.; Bouley, S.; Cacconi, B.; Falcke, H.; Flohrer, J.; et al. Farside Explorer: Unique science from a mission to the farside of the Moon. Exp. Astron. 2012, 33, 529–585. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Crawford, I.A.; Gowen, R.A.; Ambrosi, R.; Anand, M.; Banerdt, B.; Bannister, S.M.; Bowles, N.; Braithwaite, C.; Brown, P.; et al. Lunar Net—A proposal in response to an ESA M3 call in 2010 for a medium sized mission. Exp. Astron. 2012, 33, 587–644. [Google Scholar] [CrossRef]
- Newman, C.J. Seeking tranquility: Embedding sustainability in lunar exploration policy. Space Policy 2015, 33, 29–37. [Google Scholar] [CrossRef]
- Du, X.; Graedel, T.E. Global In-Use Stocks of Rare Earth Elements: A First Estimate. Environ. Sci. Technol. 2011, 45, 4096–4101. [Google Scholar] [CrossRef] [PubMed]
Mineral (Group) | Abv. | Formula | Mineral (Group) | Abv. | Formula |
---|---|---|---|---|---|
Aeschynite | Aes | AD2O6 (A = Y, REE, Ca, I, and Th; D = Ti, Nb, Ta) | Joaquinite | Joa | NaBa2Ce2FeTi2[Si4O12]2O2(OH,F)·H2O |
Allanite | Aln * | {A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH) | Karnasurtite | Kar | (Ce,La,Th)(Ti,Nb)(Al,Fe)(Si2O7)(OH)4·3H2O |
Ancylite | Anc | Sr(La,Ce)(CO3)2(OH)·(H2O) | Kainosite | Kai | Ca2(Y,Ce)2Si4O12(CO3)(H2O) |
Apatite | Ap * | (Ca, REE)5(PO4)3(OH,F,Cl) | Leucophanite [33] | Leu | Na(Ca,REE)BeSi2O6F+ |
Astrophyllite [34] | Ast | (K,Na,REE)3(Fe,Mn)7Ti2(Si4O12)2(O,OH,F)7 | Loparite | Lop | (Ce,Na,Ca)2(Ti,Nb)2O6 |
Bastnäsite | Bas | (REE)(CO3)F | Miserite | Mis | K1.5x(Ca,Y,REE)5(Si6O15)(Si2O7)(OH,F)2·yH2O |
Britholite | Bri | (Ce,Ca,Th,La,Nd)5(SiO4,PO4)3(OH,F) | Monazite | Mnz * | (La,Ce,Sm,Nd)PO4 |
Brockite | Bro | (Ca,Th,Ce)(PO4)·(H2O) | Mosandrite | Mos | Na(Na,Ca)2(Ca,Ce,Y)4(Ti, Nb,Zr)(Si2O7)2(O,F)2F3 |
Burbankite [35] | Bur | (Na,Ca)3(Sr,REE,Ba)3(CO3)5 | Parisite | Par | Ca(Ce,La)2(CO3)3F2 |
Carbocernaite | Car | (Ca,Na)(Sr,Ce,Ba)(CO3)2 | Perovskite | Prv * | (Ca,REE)TiO3 |
Cerianite | Cer | (Ce4+,Th)O2 | Polycrase | Pol | (Y,Ca,Ce,U,Th)(Ti,Nb,Ta)2O6 |
Cerite | Crt | (La,Ce,Ca)9(Mg,Fe3+)(SiO4)6[SiO3(OH)](OH)3 | Pyrochlore | Pcl * | (Na,Ca,REE)2Nb2O6(OH,F) |
Chevkinite | Che | (Ce,La,Ca,Th)4(Fe2+,Mg)2(Ti,Fe3+)3Si4O22 | Rhabdophane | Rha | (Ce,La)PO4·(H2O) |
Cordylite | Cor | Ba(Ce,La)2(CO3)3F2 | Rinkite | Rin | Na(Na,Ca)2(Ca,Ce)4(Ti, Nb)(Si2O7)2(O,F)2 |
Davidite | Dav | (La,Ce,Ca)(Y,U)(Ti,Fe3+)20O38 | Rosenbuschite | Ros | (Ca,Na,REE)3(Zr,Ti)Si2O8F |
Eudialyte | Eud * | Na4(Ca,Ce)2(Fe2+Mn,Y)ZrSi8O22(OH,Cl)2 | Samarskite | Sam | (Yb,Y,REE,U,Th,Ca,Fe2+) (Nb,Ta,Ti)O4 |
Euxenite | Eux * | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 | Steenstrupine | Ste | Na14Ce6Mn2+Mn3+Fe2+2ZrTh(Si6O18)2(PO4)7·3(H2O) |
Fergusonite | Fer | (Y,Ce,Nd)NbO4 | Synchysite | Syn | Ca(Ce,Nd,Y)(CO3)2F |
Fersmite | Fes | (Ca,Ce,Na)(Nb,Ta,Ti)2(O,OH,F)6 | Tengerite | Ten | Y2(CO3)3·2–3H2O |
Gadolinite | Gad | (Ce,La,Nd,Y)2Fe2+Be2Si2O10 | Thalenite | Tha | Y3Si3O10(OH) |
Gagarinite | Gag | Na(REExCa1−x)(REEyCa1−y)F6 or NaCaYF6 (the Y-variety) | Titanite | Ttn | CaREETiSiO5 |
Hellandite | Hel | (Ca,REE)4Ce2Al[]2(B4Si4O22)(OH)2 | Wöhlerite [36] | Woh | NaCa2(Zr,Nb)Si2O7(O,OH,F)2 |
Hingannite | Hig | Y2([REE])Be2Si2O8(OH)2 | Xenotime | Xnm * | YPO4 |
Huangoite-(Ce) | Hua | BaCe(CO3)2F | Y-rich fluorite | Y-f | (Ca1−xYx)F2+x where 0.05 < x < 0.3 |
Iimoriite | Iim | Y2(SiO4)(CO3) | Zirkelite | Zir | (Ti,Ca,Zr)O2−x |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McLeod, C.L.; Shaulis, B.J. Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon. Minerals 2018, 8, 455. https://doi.org/10.3390/min8100455
McLeod CL, Shaulis BJ. Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon. Minerals. 2018; 8(10):455. https://doi.org/10.3390/min8100455
Chicago/Turabian StyleMcLeod, Claire L., and Barry J. Shaulis. 2018. "Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon" Minerals 8, no. 10: 455. https://doi.org/10.3390/min8100455
APA StyleMcLeod, C. L., & Shaulis, B. J. (2018). Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon. Minerals, 8(10), 455. https://doi.org/10.3390/min8100455