Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece †
Abstract
:1. Introduction
2. Materials and Methods
3. Geological Setting
3.1. Regional Geology
3.2. Local Geology
4. Results and Discussion
4.1. Alteration and Mineralization
4.2. Mineralogy and Mineral Chemistry
4.2.1. Zunyite
4.2.2. Diaspore
4.2.3. Alunite Supergroup Minerals
4.2.4. Kaolinite–Pyrophyllite
4.3. Bulk Ore Geochemistry
4.4. Genetic Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halley, S.; Dilles, J.H.; Tosdal, R. Footprints: The Hydrothermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits; SEG News Letter No. 100; Society of Economic Geologists (SEG): Littleton, CO, USA, 2015. [Google Scholar]
- Heinrich, C. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner. Depos. 2005, 39, 864–889. [Google Scholar] [CrossRef]
- Gustafson, L.B.; Hunt, J.P. The porphyry copper deposit at El Salvador, Chile. Econ. Geol. 1975, 70, 857–912. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Gold deposits in Western Pacific island arc: The magmatic connection. In The Geology of Gold Deposits: The Perspective in 1988; Keays, R., Ramsay, R., Groves, D., Eds.; Economic Geology Monograph Series; GeoScienceWorld: McLean, VA, USA, 1989; Volume 6, pp. 251–298. [Google Scholar]
- Hedenquist, J.W.; Arribas, A.; Reynolds, T.J. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu–Au deposis, Philippines. Econ. Geol. 1998, 93, 373–404. [Google Scholar] [CrossRef]
- Muntean, J.L.; Einaudi, M.T. Porphyry-epithermal transition: Maricunga Belt, Northern Chile. Econ. Geol. 2001, 96, 743–772. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Taran, Y.A. Modeling the formation of advanced argillic lithocaps: Volcanic vapor condensation above porphyry intrusions. Econ. Geol. 2013, 108, 1523–1540. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Styles of high-sulphidation gold, silver and copper mineralization in the porphyry and epithermal environments. In Proceedings of the PACRIM’99 Congress, Bali, Indonesia, 10–13 October 1999; Weber, G., Ed.; Australasian Institute of Mining and Metallurgy: Parkville, VIC, Australia, 1999; pp. 29–44. [Google Scholar]
- Watanabe, Y.; Aoki, M.; Yamamoto, K. Geology, age and style of the advanced argillic alteration in the Kobui area, Southwesterm Hokkaido, Japan. Res. Geol. 1997, 47, 263–281. [Google Scholar]
- Meyer, C.; Hemley, J.J. Wall rock alteration. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Rinehart and Winston Holt: New York, NY, USA, 1967; pp. 166–235. [Google Scholar]
- Stoffregen, R.E.; Alpers, C.N. Woodhouseite and svanbergite in hydrothermal ore deposits: Products of apatite destruction during advanced argillic alteration. Can. Mineral. 1987, 25, 201–211. [Google Scholar]
- Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. In 100th Year Anniversary Issue; Hedenquist, J.W., Thompson, J.F.G., Goldfarb, R.J., Richards, J.P., Eds.; Economic Geology; GeoScienceWorld: McLean, VA, USA, 2005; Volume 100, pp. 251–298. [Google Scholar]
- Sillitoe, R.H. Porpyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Khashgerel, B.; Kavalieris, I.; Ken-Ichiro, H. Mineralogy, textures and whole-rock geochemistry of advanced argillic alteration: Hugo Dumett porphyry Cu–Au deposit, Oyu Tolgoi mineal district, Mongolia. Econ. Geol. 2008, 71, 849–863. [Google Scholar] [CrossRef]
- Heinrich, C.A.; Driesner, T.; Stefansson, A.; Seward, T.M. Magmatic vapor contraction and the transport of gold from porphyry to epithermal ore deposits. Geology 2004, 32, 761–764. [Google Scholar] [CrossRef]
- Shinohara, H.; Hedenquist, J. Constraints on magma degassing beneath the Far Southeast porphyry Cu–Au deposit, Philippines. J. Petrol. 1997, 38, 1741–1752. [Google Scholar] [CrossRef]
- Sillitoe, R. Erosion and collapse of volcanoes: Causes of telescoping in intrusion-centered ore deposits. Geology 1994, 22, 945–948. [Google Scholar] [CrossRef]
- Milu, V.; Milesi, J.-P.; Leroy, J.L. Rosia Poieni copper deposit, Apuseni Mountains, Romania-advanced argillic overprint of a porphyry system. Miner. Depos. 2004, 39, 173–188. [Google Scholar] [CrossRef]
- Voudouris, P.; Spry, P.G.; Melfos, V.; Alfieris, D.; Mavrogonatos, C.; Repstock, A.; Djiba, A.; Stergiou, C.; Periferakis, A.; Melfou, M. Porphyry and Epithermal Deposits in Greece: A Review and New Discoveries. In Proceedings of the 8th Geochemistry Symposium, Antalya, Turkey, 2–6 May 2018. [Google Scholar]
- Melfos, V.; Voudouris, P. Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geol. Rev. 2017, 59, 1030–1057. [Google Scholar] [CrossRef]
- Voudouris, P.; Tarkian, M.; Arikas, K. Mineralogy of telluride-bearing epithermal ores in Kassiteres-Sappes area, western Thrace, Greece. Mineral. Petrol. 2006, 87, 31–52. [Google Scholar] [CrossRef]
- Voudouris, P. Hydrothermal corundum, topaz, diaspore and alunite supergroup minerals in the advanced argillic alteration lithocap of the Kassiteres-Sapes porphyry-epithermal system, western Thrace, Greece. Neues Jahrbuch für Mineralogie 2014, 191, 117–136. [Google Scholar] [CrossRef]
- Bissig, T.; Monecke, T.; Holley, E.A.; Leroux, G.; Voudouris, P.; Miškovic, A. Geochemical and quartz mineralogical vectors to epithermal ore in lithocaps in the TV Tower district, Biga peninsula, Turkey and Kassiteres-Sapes district, Greece. In Proceedings of the SEG-MJD Conference, Cesme, Turkey, 25–28 September 2016. [Google Scholar]
- Kilias, S.P.; Naden, J.; Paktsevanoglou, M.; Giampouras, M.; Stavropoulou, A.; Apeiranthiti, D.; Mitsis, I.; Koutles, T.; Michael, K.; Christidis, C. Multistage alteration, mineralization and ore–forming fluid properties at the Viper (Sappes) Au–Cu–Ag–Te ore body, W. Thrace, Greece. Bull. Geol. Soc. Greece 2013, 47, 1635–1644. [Google Scholar] [CrossRef]
- Ortelli, M.; Moritz, R.; Voudouris, P.; Spangenberg, J. Tertiary porphyry and epithermal association of the Sapes-Kassiteres district, Eastern Rhodopes, Greece. In Proceedings of the 10th Biennial SGA Meeting, Townsville, Australia, 17–20 August 2009; pp. 536–538. [Google Scholar]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Bindi, L.; Moritz, R.; Ortelli, M.; Kartal, T. Extremely Re-rich molybdenite from porphyry Cu-Mo-Au prospects in northeastern Greece: Mode of occurrence, causes of enrichment, and implications for gold exploration. Minerals 2013, 3, 165–191. [Google Scholar] [CrossRef]
- Voudouris, P. Conditions of formation of the Mavrokoryfi high-sulfidation epithermal Cu–Ag–Au–Te deposit (Petrota Graben, NE Greece). Miner. Petrol. 2011, 101, 97–113. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V. Aluminum-phosphate-sulfate (APS) minerals in the sericitic-advanced argillic alteration zone of the Melitena porphyry-epithermal Mo–Cu ± Au ± Re prospect, western Thrace, Greece. Neues Jahrbuch für Mineralogie 2013, 190, 11–27. [Google Scholar] [CrossRef]
- Voudouris, P.; Alfieris, D. New porphyry-Cu ± Mo occurrences in northeastern Aegean/Greece: Ore mineralogy and transition to epithermal environment. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin, Germany, 2005; pp. 473–476. [Google Scholar]
- Fornadel, A.P.; Voudouris, P.; Spry, P.G.; Melfos, V. Mineralogical, stable isotope and fluid inclusion studies of spatially related porphyry Cu–Mo and epithermal Au–Te mineralization, Fakos Peninsula, Limnos Island, Greece. Miner. Petrol. 2012, 105, 85–111. [Google Scholar] [CrossRef]
- Periferakis, A.; Voudouris, P.; Melfos, V.; Mavrogonatos, C.; Alfieris, D. The Stypsi-Megala Therma porphyry-epithermal mineralization, Lesvos Island, Greece: New mineralogical and geochemical data. In Geophysical Research Abstracts, Proceedings of the EGU General Assembly, Vienna, Austria, 23–28 April 2017; EGU2017-12950; EGU: Vienna, Austria, 2017; Volume 19, p. 19. [Google Scholar]
- Kloprogge, J.T.; Frost, R.L. Raman and infrared microscopy study of zunyite, a natural Al13 silicate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 1505–1513. [Google Scholar] [CrossRef]
- Papoulis, D.; Tsolis-Katagas, P.; Katagas, C. New find of zunyite in advanced argillic alteration of rhyolites, Kos Island, South Aegean volcanic arc, Greece. Bull. Geol. Soc. Greece 2004, 36, 474–480. [Google Scholar] [CrossRef]
- Mavrogonatos, C.; Voudouris, P.; Spry, P.G.; Melfos, V.; Klemme, S.; Berndt, J.; Moritz, R.; Kanellopoulos, C. First zunyite-bearing lithocap in Greece: The case of Konos Hill Mo–Re–Cu–Au porphyry system. In Proceedings of the 1st International Electronic Conference on Mineral Science, Sciforum, 16–31 July 2018; MDPI AG: Basel, Switzerland, 2018; Volume 1. [Google Scholar] [CrossRef]
- Kydonakis, K.; Brunn, J.-P.; Sokoutis, D. North Aegean core complexes, the gravity spreading of a thrust wedge. J. Geophys. Res. Solid Earth 2015, 120, 595–616. [Google Scholar] [CrossRef] [Green Version]
- Kydonakis, K.; Moulas, E.; Chatzitheodoridis, E.; Brunn, J.-P.; Kostopoulos, D. First-report on Mesozoic eclogite-facies metamorphism preceding Barrovian overprint from the western Rhodope (Chalkidiki, northern Greece). Lithos 2015, 220–223, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Ricou, L.E.; Burg, J.P.; Godfriaux, I.; Ivanov, Z. Rhodope and Vardari the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodin. Acta 1998, 11, 285–309. [Google Scholar] [CrossRef]
- Brun, J.P.; Faccenna, C. Exhumation of high-pressure rocks driven by slab rollback. Earth Plan. Sci. Lett. 2008, 272, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wuthrich, E. Low Temperature Thermochronology of the North Aegean Rhodope Massif. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, 2009. [Google Scholar]
- Ring, U.; Glodny, J.; Will, T.; Thomson, S. The Hellenic subduction system: High pressure metamorphism, exhumation, normal faulting, and large-scale extension. Annu. Rev. Earth Planet. Sci. 2010, 38, 45–76. [Google Scholar] [CrossRef]
- Bonev, N.; Marchev, P.; Moritz, R.; Collings, D. Jurassic subduction zone tectonics of the Rhodope Massif in the Thrace region (NE Greece) as revealed by new U–Pb and 40Ar/39Ar geochronology of the Evros ophiolite and high-grade basement rocks. Gondwana Res. 2015, 27, 760–775. [Google Scholar] [CrossRef]
- Marchev, P.; Kaiser-Rohrmeier, B.; Heinrich, C.; Ovtcharova, M.; von Quadt, A.; Raicheva, R. Hydrothermal ore deposits related to post-orogenic extensional magmatism and core complex formation: The Rhodope Massif of Bulgaria and Greece. Ore Geol. Rev. 2005, 27, 53–89. [Google Scholar] [CrossRef]
- Jolivet, L.; Brunn, J.P. Cenozoic geodynamic evolution of the Aegean Region. Int. J. Earth. Sci. 2010, 99, 109–138. [Google Scholar] [CrossRef]
- Kilias, A.; Falalakis, G.; Sfeikos, A.; Papadimitriou, E.; Vamvaka, A.; Gkarlaouni, C. The Thrace basin in the Rhodope province of NE Greece—A Tertiary supra-detachment basin and its geodynamic implications. Tectonophysics 2013, 595–596, 90–105. [Google Scholar] [CrossRef]
- Ersoy, E.Y.; Palmer, M.R. Eocene-Quaternary magmatic activity in the Aegean: Implications for mantle metasomatism and magma genesis in an evolving orogeny. Lithos 2013, 180–181, 5–24. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W. The Igneous Rocks of Greece. The Anatomy of an Orogen; Beiträge der Regionalen Geologie der Erde: Berlin, Germany, 2002; p. 573. [Google Scholar]
- Moritz, R.; Márton, I.; Ortelli, M.; Marchev, P.; Voudouris, P.; Bonev, N.; Spikings, R.; Cosca, M. A review of age constraints of epithermal precious and base metal deposits of the Tertiary Eastern Rhodopes: Coincidence with Late Eocene-Early Oligocene tectonic plate reorganization along the Tethys. In Proceedings of the XIX Congress Carpathian-Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010; Christofides, G., Kantiranis, N., Kostopoulos, D.S., Chatzipetros, A., Eds.; Scientific Annals of the School of Geology, Aristotle University of Thessaloniki: Thessaloniki, Greece, 2010; Volume 100, pp. 351–358. [Google Scholar]
- Del Moro, A.; Innocenti, F.; Kyriakopoulos, C.; Manetti, P.; Papadopoulos, P. Tertiary granitoids from Thrace (Northern Greece): Sr isotopic and petrochemical data. Neues Jahrbuch für Mineralogie 1988, 159, 113–135. [Google Scholar]
- Ortelli, M.; Moritz, R.; Voudouris, P.; Cosca, M.; Spangenberg, J. Tertiary porphyry and epithermal association of the Sapes-Kassiteres district, Eastern Rhodopes, Greece. In Proceedings of the 8th Swiss Geiscience Meeting, Fribourg, Switzerland, 19–20 November 2010. [Google Scholar]
- Perkins, R.; Copper, F.J.; Condon, D.J.; Tattitsch, B.; Naden, J. Post-collisional Cenozoic extension in the northern Aegean: The high-K to shoshonitic intrusive rocks of the Maronia Magmatic Corridor, northeastern Greece. Lithosphere 2018, 10, 582–601. [Google Scholar] [CrossRef]
- Michael, C. Geology and Geochemistry of Epithermal Gold Deposit in Konos Area; Internal Report; IGME Xanthi: Madrid, Spain, 1993; Volume 75, p. 77. [Google Scholar]
- Voudouris, P. Mineralogical, Geochemical and Fluid Inclusion Studies on Epithermal Vein Type Gold/Silver Mineralizations at Kassiteres/Sapes, (NE-Greece). Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 1993. [Google Scholar]
- Mavrogonatos, C.; Voudouris, P.; Spry, P.G.; Melfos, V.; Klemme, S.; Berndt, J.; Periferakis, A. Biotite Chemistry from Porphyry-Style Mineralization in Western Thrace, Greece. In Proceedings of the 8th Geochemistry Symposium, Antalya, Turkey, 2–6 May 2018. [Google Scholar]
- Bridges, P.S.; Gordon, M.J.; Michael, C.; Ampatzioglou, M. Gold mineralization at Sappes, northern Greece. In Europe’s Major Gold Deposits; Harvey, S., Ed.; Irish Association for Economic Geology: Dublin, Ireland, 1997; pp. 95–107. [Google Scholar]
- Shawh, A.J.; Constantinides, D.C. The Sappes gold project. Bull. Geol. Soc. Greece 2001, 34, 1073–1080. [Google Scholar] [CrossRef]
- Michael, C. Epithermal systems and gold mineralization in Western Thrace, (North Greece). Bull. Geol. Soc. Greece 2004, 36, 416–423. [Google Scholar] [CrossRef]
- Jambor, J.L. Nomenclature of the alunite supergroup. Can. Mineral. 1999, 37, 1323–1341. [Google Scholar]
- Dill, H.G. The geology of aluminium phosphates and sulfates of the alunite group minerals: A review. Earth Sci. Rev. 2001, 53, 35–93. [Google Scholar] [CrossRef]
- Mills, S.J.; Harter, F.; Nickel, E.H.; Ferraris, G. The standardization of mineral group hierarchies: Application to recent nomenclature proposals. Eur. J. Mineral. 2009, 21, 1073–1080. [Google Scholar] [CrossRef]
- Bayliss, P.; Kolitsch, U.; Nickel, E.H.; Pring, A. Alunite supergroup: Recommended nomenclature. Mineral. Mag. 2010, 74, 919–927. [Google Scholar] [CrossRef]
- Scott, K.M. Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia. Am. Mineral. 1987, 72, 178–187. [Google Scholar]
- Monecke, T.; Monecke, J.; Reynolds, T.J.; Tsuruoka, S.; Bennett, M.M.; Skewes, W.B.; Palin, R.M. Quartz Solubility in the H2O-NaCl System: A Framework for Understanding Vein Formation in Porphyry Copper Deposits. Econ. Geol. 2018, 113, 1007–1046. [Google Scholar] [CrossRef]
- Hikov, A.; Lerouge, C.; Velinova, N. Geochemistry of alunite group minerals in advanced argillic altered rocks from the Asarel porphyry copper deposit, Central Srednogorie. Rev. Bulg. Geol. Soc. 2010, 71, 133–148. [Google Scholar]
- Reyes, A.G. Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. J. Volcanol. Geotherm. Res. 1990, 43, 279–309. [Google Scholar] [CrossRef]
- Reyes, A.G. Mineralogy, Distribution and Origin of Aid Alteration in Philippine Geothermal Systems; Geological Survey of Japan Report; Geological Survey of Japan: Tsukuba, Japan, 1991. [Google Scholar]
- Chang, Z.; Hedenquist, J.W.; White, N.C.; Cooke, D.R.; Roach, M.; Deyell, C.; Garcia, J., Jr.; Gemmell, J.B.; Mcknight, S.; Cuisone, A.L. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au District, Luzon, Philippines. Econ. Geol. 2011, 106, 1365–1398. [Google Scholar] [CrossRef]
- Holley, E.A.; Monecke, T.; Bissig, T.; Reynolds, T.J. Evolution of High-Level Magmatic-Hydrothermal Systems: New Insights from Ore Paragenesis of the Veladero High-Sulfidation Epithermal Au-Ag Deposit, El Indio-Pascua Belt, Argentina. Econ. Geol. 2017, 112, 1747–1771. [Google Scholar] [CrossRef]
wt % | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 25.14 | 22.96 | 23.66 | 24.35 | 22.70 | 24.58 | bd | bd | bd | bd |
TiO2 | bd | 0.11 | bd | 0.26 | bd | bd | 0.18 | bd | bd | bd |
Al2O3 | 55.03 | 54.97 | 55.25 | 54.76 | 55.81 | 55.32 | 83.05 | 82.58 | 82.42 | 82.57 |
FeO | bd | 0.05 | 0.04 | 0.16 | bd | 0.08 | bd | bd | bd | bd |
Na2O | 0.40 | 0.11 | 0.34 | 0.09 | 0.39 | 0.19 | 0.02 | bd | 0.02 | 0.01 |
BaO | 0.11 | bd | bd | bd | bd | 0.23 | 0.98 | bd | bd | bd |
La2O3 | bd | bd | bd | bd | bd | bd | bd | bd | bd | 0.34 |
Ce2O3 | bd | bd | bd | bd | bd | 0.34 | bd | 0.38 | 0.24 | bd |
Nd2O3 | bd | bd | 0.21 | bd | bd | bd | bd | 0.30 | 0.16 | 0.22 |
P2O5 | 0.05 | 0.51 | 0.27 | 0.25 | 0.70 | 0.11 | 0.05 | bd | 0.05 | bd |
F | 5.93 | 4.56 | 4.82 | 4.07 | 5.08 | 4.32 | bd | 0.11 | bd | bd |
Cl | 2.90 | 2.82 | 2.97 | 2.91 | 2.72 | 2.75 | bd | bd | 0.01 | bd |
Total | 89.63 | 86.16 | 87.60 | 86.92 | 87.47 | 88.04 | 84.42 | 83.37 | 82.90 | 83.23 |
apfu | 29.5 (O) | 1.5 (O) | ||||||||
Si | 5.013 | 4.679 | 4.787 | 4.895 | 4.596 | 4.920 | 0.000 | 0.000 | 0.000 | 0.000 |
Ti | 0.005 | 0.017 | 0.000 | 0.039 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
Al | 12.931 | 13.202 | 13.150 | 12.976 | 13.190 | 12.919 | 0.994 | 0.997 | 0.997 | 0.996 |
Fe | 0.000 | 0.009 | 0.007 | 0.027 | 0.000 | 0.013 | 0.000 | 0.000 | 0.000 | 0.000 |
Na | 0.016 | 0.043 | 0.134 | 0.033 | 0.154 | 0.072 | 0.000 | 0.000 | 0.000 | 0.000 |
Ba | 0.001 | 0.005 | 0.002 | 0.001 | 0.000 | 0.018 | 0.004 | 0.000 | 0.000 | 0.000 |
La | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.002 |
Ce | 0.000 | 0.011 | 0.002 | 0.003 | 0.000 | 0.027 | 0.000 | 0.000 | 0.001 | 0.001 |
Nd | 0.000 | 0.000 | 0.015 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 |
P | 0.008 | 0.089 | 0.046 | 0.043 | 0.120 | 0.019 | 0.000 | 0.000 | 0.001 | 0.000 |
F | 3.224 | 2.956 | 2.704 | 2.305 | 2.837 | 2.431 | 0.000 | 0.004 | 0.000 | 0.000 |
Cl | 0.844 | 0.860 | 0.891 | 0.884 | 0.817 | 0.830 | 0.000 | 0.000 | 0.000 | 0.000 |
wt % | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | 33.59 | 34.10 | 34.22 | 35.41 | 36.67 | 34.88 | 34.48 | 38.09 | 32.79 | 32.31 |
FeO | 0.09 | 0.06 | bd | bd | 0.10 | bd | bd | bd | bd | 0.07 |
CaO | 10.96 | 3.36 | 7.11 | 3.93 | 2.11 | 0.97 | 5.86 | 5.91 | 5.94 | 0.66 |
Na2O | 0.61 | 0.28 | 0.08 | 0.31 | 0.48 | 0.27 | 0.36 | 0.83 | 0.12 | bd |
K2O | 0.48 | 0.37 | 0.21 | 0.59 | 0.99 | 0.78 | 0.74 | 0.89 | 0.43 | 0.11 |
BaO | 1.47 | 1.52 | 0.87 | 1.61 | 2.10 | 3.60 | 1.09 | 1.06 | 0.97 | 3.92 |
La2O3 | 0.50 | 0.07 | bd | 0.19 | 0.43 | 0.91 | bd | bd | bd | 4.90 |
Ce2O3 | 1.42 | 0.32 | bd | 0.88 | 2.48 | 2.53 | 1.14 | bd | bd | 11.06 |
NdO3 | 0.10 | 0.34 | bd | 0.10 | 1.45 | 3.48 | 0.30 | bd | bd | 4.72 |
SrO | 0.83 | 9.54 | 7.63 | 8.41 | 7.45 | 6.33 | 5.37 | 4.54 | 7.82 | 3.30 |
PbO | bd | bd | bd | 0.05 | 0.05 | bd | bd | 0.22 | bd | bd |
SO3 | 15.33 | 14.35 | 11.81 | 15.95 | 14.98 | 14.32 | 13.63 | 20.31 | 3.19 | 3.63 |
P2O5 | 16.72 | 17.35 | 21.57 | 18.26 | 19.27 | 18.53 | 20.26 | 15.58 | 29.55 | 23.03 |
F | 0.49 | 0.97 | 0.51 | 0.25 | 0.98 | 0.17 | 0.67 | 0.83 | 0.56 | 0.41 |
Total | 82.59 | 82.63 | 84.10 | 85.94 | 89.54 | 86.83 | 83.92 | 88.35 | 81.41 | 88.12 |
apfu | 11 (O) | |||||||||
Al | 3.022 | 3.034 | 3.037 | 3.098 | 3.067 | 3.139 | 3.060 | 3.180 | 2.996 | 3.076 |
Fe | 0.007 | 0.004 | 0.000 | 0.000 | 0.006 | 0.000 | 0.001 | 0.000 | 0.000 | 0.005 |
Ca | 0.858 | 0.282 | 0.574 | 0.313 | 0.161 | 0.080 | 0.473 | 0.445 | 0.488 | 0.057 |
Na | 0.096 | 0.042 | 0.011 | 0.045 | 0.067 | 0.040 | 0.052 | 0.113 | 0.012 | 0.000 |
K | 0.053 | 0.036 | 0.019 | 0.056 | 0.090 | 0.076 | 0.071 | 0.081 | 0.04 | 0.011 |
Ba | 0.047 | 0.046 | 0.027 | 0.047 | 0.058 | 0.108 | 0.032 | 0.029 | 0.029 | 0.119 |
La | 0.015 | 0.002 | 0.000 | 0.005 | 0.011 | 0.025 | 0.000 | 0.002 | 0.000 | 0.146 |
Ce | 0.042 | 0.010 | 0.000 | 0.024 | 0.006 | 0.071 | 0.031 | 0.000 | 0.000 | 0.528 |
Nd | 0.003 | 0.010 | 0.000 | 0.003 | 0.037 | 0.095 | 0.008 | 0.000 | 0.000 | 0.136 |
Sr | 0.028 | 0.433 | 0.333 | 0.362 | 0.306 | 0.280 | 0.235 | 0.186 | 0.340 | 0.155 |
Pb | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.004 | 0.000 | 0.000 |
S | 0.934 | 0.841 | 0.678 | 0.888 | 0.904 | 0.821 | 0.770 | 1.080 | 0.199 | 0.221 |
P | 1.081 | 1.148 | 1.376 | 1.147 | 1.158 | 1.198 | 1.292 | 0.985 | 1.822 | 1.741 |
F | 0.121 | 0.239 | 0.120 | 0.058 | 0.216 | 0.042 | 0.156 | 0.113 | 0.129 | 0.106 |
wt % | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | 37.90 | 37.66 | 39.47 | 36.54 | 37.19 | 37.40 | 37.65 | 36.80 | 36.96 | 38.08 | 42,41 | 36.95 | 38.24 | 40.44 | 39.95 |
FeO | 0.46 | 0.30 | 0.23 | 0.12 | 0.28 | 0.17 | 0.02 | 0.10 | 0.07 | bd | 0.01 | bd | bd | bd | 0.12 |
CaO | 0.01 | 0.02 | 0.05 | 0.38 | 0.03 | 0.07 | 0.02 | bd | bd | 0.09 | 0.10 | 0.01 | 0.05 | 0.00 | 0.05 |
Na2O | 4.63 | 5.12 | 2.57 | 3.07 | 4.58 | 5.01 | 2.79 | 1.78 | 1.97 | 5.51 | 5.31 | 1.97 | 1.64 | 1.33 | 2.18 |
K2O | 3.52 | 3.59 | 3.02 | 4.91 | 3.90 | 3.41 | 5.75 | 7.10 | 6.86 | 2.6 | 1.95 | 7.02 | 4.71 | 4.44 | 3.69 |
BaO | 0.15 | 0.37 | 0.21 | 0.21 | 0.10 | 0.21 | 0.16 | bd | 0.12 | 0.11 | 0.17 | 0.46 | 0.75 | 0.30 | 0.38 |
SrO | bd | bd | 0.28 | 0.38 | 0.12 | bd | 0.19 | bd | bd | 0.15 | 0.22 | 0.05 | 0.24 | bd | 0.07 |
La2O3 | bd | bd | bd | bd | 0.37 | 0.25 | 0.26 | bd | bd | bd | 0.19 | 0.25 | bd | 0.42 | bd |
Ce2O3 | 0.11 | bd | 0.35 | bd | 0.13 | 0.11 | bd | bd | 0.19 | bd | bd | 0.36 | bd | bd | 0.15 |
Nd2O3 | bd | bd | bd | 0.28 | bd | bd | 0.33 | bd | bd | bd | bd | 0.27 | 0.25 | 0.11 | bd |
SO3 | 34.74 | 35.16 | 36.72 | 34.05 | 34.24 | 34.57 | 34.73 | 33.69 | 34.52 | 34.46 | 35.48 | 33.66 | 33.93 | 36.46 | 35.05 |
Total | 81.61 | 82.32 | 82.90 | 79.97 | 80.94 | 81.28 | 81.90 | 79.49 | 80.69 | 81.00 | 85.81 | 81.01 | 79.89 | 83.52 | 81.64 |
apfu | 11 (O) | ||||||||||||||
Al | 3.218 | 3.177 | 3.238 | 3.106 | 3.198 | 3.190 | 3.218 | 3.231 | 3.302 | 3.241 | 3.391 | 3.229 | 3.223 | 3.309 | 3.391 |
Fe | 0.028 | 0.018 | 0.014 | 0.01 | 0.017 | 0.01 | 0.000 | 0.006 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 |
Ca | 0.001 | 0.001 | 0.004 | 0.029 | 0.002 | 0.005 | 0.001 | 0.000 | 0.000 | 0.007 | 0.007 | 0.001 | 0.004 | 0.000 | 0.004 |
Na | 0.646 | 0.708 | 0.317 | 0.335 | 0.649 | 0.704 | 0.392 | 0.258 | 0.279 | 0.772 | 0.701 | 0.283 | 0.228 | 0.181 | 0.296 |
K | 0.324 | 0.332 | 0.298 | 0.447 | 0.363 | 0.315 | 0.532 | 0.675 | 0.644 | 0.240 | 0.169 | 0.664 | 0.430 | 0.400 | 0.331 |
Ba | 0.004 | 0.010 | 0.006 | 0.006 | 0.002 | 0.004 | 0.004 | 0.000 | 0.003 | 0.004 | 0.004 | 0.013 | 0.021 | 0.008 | 0.010 |
Sr | 0.000 | 0.000 | 0.011 | 0.006 | 0.006 | 0.000 | 0.008 | 0.000 | 0.000 | 0.005 | 0.009 | 0.002 | 0.010 | 0.000 | 0.003 |
La | 0.000 | 0.000 | 0.000 | 0.000 | 0.022 | 0.007 | 0.007 | 0.000 | 0.000 | 0.000 | 0.005 | 0.007 | 0.002 | 0.011 | 0.000 |
Ce | 0.003 | 0.000 | 0.012 | 0.000 | 0.010 | 0.003 | 0.000 | 0.000 | 0.005 | 0.000 | 0.001 | 0.010 | 0.000 | 0.001 | 0.004 |
Nd | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.007 | 0.003 | 0.000 |
S | 1.878 | 1.889 | 1.789 | 1.716 | 1.879 | 1.891 | 1.890 | 1.894 | 1.904 | 1.868 | 1.816 | 1.873 | 1.738 | 1.855 | 1.847 |
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
As | 15 | 18 | 34 | 18 | 4 | 6 | 67 | 66 |
Ag | 0.19 | 0.16 | 0.13 | 0.23 | 0.22 | 0.04 | 0.12 | 0.13 |
Au | 0.04 | 0.02 | 0.36 | 0.19 | 0.04 | 0.03 | bd | 0.05 |
Cu | 10 | 7 | 7 | 5 | 32 | 9 | 14 | 13 |
Bi | 2.03 | 2.97 | 2.42 | 2.08 | 6.79 | 1.79 | 13 | 9.22 |
Mo | 3.56 | 2.36 | 2.37 | 3.76 | 19 | 5.95 | 1.30 | 4.55 |
Se | 2.50 | 4.40 | 14 | 5.90 | 26 | 6.50 | 2.50 | 11 |
Te | 0.23 | 0.12 | 0.16 | 0.21 | 0.71 | 0.16 | 0.78 | 1.83 |
Pb | 110 | 116 | 122 | 93 | 169 | 59 | 93 | 87 |
Zn | 4.40 | 2.50 | 2 | 4.30 | 5.80 | 7.40 | 12 | 6.60 |
Sb | 5.07 | 1.88 | 1.93 | 5.34 | 4.89 | 0.56 | 4.91 | 7.35 |
Ga | 5.12 | 4.22 | 6.72 | 11 | 14 | 17 | 17 | 16 |
Sn | 3.70 | 2.10 | 2 | 1.60 | 4.60 | 18 | 1 | 2.50 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavrogonatos, C.; Voudouris, P.; Spry, P.G.; Melfos, V.; Klemme, S.; Berndt, J.; Baker, T.; Moritz, R.; Bissig, T.; Monecke, T.; et al. Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece. Minerals 2018, 8, 479. https://doi.org/10.3390/min8110479
Mavrogonatos C, Voudouris P, Spry PG, Melfos V, Klemme S, Berndt J, Baker T, Moritz R, Bissig T, Monecke T, et al. Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece. Minerals. 2018; 8(11):479. https://doi.org/10.3390/min8110479
Chicago/Turabian StyleMavrogonatos, Constantinos, Panagiotis Voudouris, Paul G. Spry, Vasilios Melfos, Stephan Klemme, Jasper Berndt, Tim Baker, Robert Moritz, Thomas Bissig, Thomas Monecke, and et al. 2018. "Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece" Minerals 8, no. 11: 479. https://doi.org/10.3390/min8110479
APA StyleMavrogonatos, C., Voudouris, P., Spry, P. G., Melfos, V., Klemme, S., Berndt, J., Baker, T., Moritz, R., Bissig, T., Monecke, T., & Zaccarini, F. (2018). Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece. Minerals, 8(11), 479. https://doi.org/10.3390/min8110479