The Discovery of the Romero VMS Deposit and Its Bearing on the Metallogenic Evolution of Hispaniola during the Cretaceous
Abstract
:1. Introduction
2. Geologic Setting
2.1. Geodynamic Setting
2.2. The Tireo Formation
3. Materials and Methods
4. Results
4.1. Petrography of the Hosting Rocks
4.2. U–Pb Geochronology
4.3. Petrography of the Ore
4.4. Ore Mineral Geochemistry
4.5. Sulfur and O Isotopes
5. Discussion
5.1. Classification of the Romero Deposit
5.2. The Romero VMS Deposit within the Metallogenic Evolution of the Tireo Formation
5.3. The Romero Deposit in the Metallogenic Evolution of the Greater Antilles
6. Conclusions
- The newly discovered Romero deposit is hosted by volcanic and volcaniclastic rocks of the lower sequence of the Tireo formation, and a hosting andesite has been dated at 116 ± 10 Ma.
- The hypogene mineralization can be subdivided into: (a) an upper mineralization domain, in the form of stacked massive sulfide lenses and sulfides in the matrix of stratigraphic levels hosting massive anhydrite-gypsum nodules, and (b) a lower, high-grade stockwork domain.
- Ore mineralogy in both domains comprises an early crystallization of pyrite, followed by a stage rich in sphalerite and a further stage rich in Cu (chalcopyrite ± tennantite) and Au–Ag (electrum ±Au–Ag tellurides).
- Sulphur and oxygen isotopes ratios on sulfide and sulfate minerals suggest that these elements were sourced by coeval seawater sulfate and that sulfate reduction was dominated by inorganic processes along with a variable contribution of biogenically reduced sulfur; nevertheless, a magmatic source cannot be ruled out.
- The Romero VMS mineralizing system operated in an axial arc position during steady-state subduction, connected to IAT magmatism and local extensional tectonics (caldera collapse). This geologic setting contrasts with the forearc position of most broadly synchronous VMS deposits in the Greater Antilles, which formed in a forearc position linked to a subduction-initiation regime.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Micklethwaite, K. Haiti and Dominican Republic: Gold Fever. Available online: http://www.mining-journal.com/focus/special-reports/haiti-and-dominican-republic-gold-fever (accessed on 9 September 2018).
- Redwood, S.D. La industria minera de la República Dominicana en 2017. Geonoticias 2017, 15, 24–31. [Google Scholar]
- Nelson, C.E.; Proenza, J.A.; Lewis, J.F.; López-Kramer, J. The metalogenic evolution of the Greater Antilles. Geol. Acta 2011, 9, 229–264. [Google Scholar]
- Nelson, C.E.; Stein, H.J.; Dominguez, H.; Carrasco, C.; Barrie, T.; Torró, L.; Proenza, J. Re-Os dating of molybdenite from the Pueblo Viejo (Au–Ag–Cu–Zn) and Douvray Cu–Au districts. Econ. Geol. 2015, 110, 1101–1110. [Google Scholar] [CrossRef]
- Nelson, C.; Iturralde-Vinent, M.; Proenza, J.; Draper, G.; Escuder-Viruete, J.; Garcia-Casco, A. Metallogenic Map of the Greater Antilles, Scale 1:1,000,000. 2015 Recursos del Caribe, S.A. Available online: www.cbmap.net (accessed on 9 September 2018).
- Torró, L.; Proenza, J.A.; Melgarejo, J.C.; Alfonso, P.; Farré de Pablo, J.; Colomer, J.M.; García-Casco, A.; Gubern, A.; Gallardo, E.; Cazañas, X.; et al. Mineralogy, geochemistry and sulfur isotope characterization of the Cerro de Maimón (Dominican Republic), San Fernando and Antonio (Cuba): Lower Cretaceous VMS deposits associated to the subduction initiation of the Proto-Caribbean lithosphere within a fore-arc. Ore Geol. Rev. 2016, 72, 794–817. [Google Scholar]
- Torró, L.; Camprubí, A.; Proenza, J.A.; León, P.; Stein, H.J.; Lewis, J.F.; Nelson, C.E.; Chavez, C.; Melgarejo, J.C. Re–Os and U–Pb geochronology of the Doña Amanda and Cerro Kiosko deposits, Bayaguana district, Dominican Republic: Looking down for the porphyry Cu-Mo roots of the Pueblo Viejo-type mineralization in the island-arc tholeiitic series of the Caribbean. Econ. Geol. 2017, 112, 829–853. [Google Scholar] [CrossRef]
- Torró, L.; Proenza, J.A.; Camprubí, A.; Nelson, C.E.; Domínguez, H.; Carrasco, C.; Melgarejo, J.C. Towards a unified genetic model for the Au–Ag–Cu Pueblo Viejo district, central Dominican Republic. Ore Geol. Rev. 2017, 89, 463–494. [Google Scholar] [CrossRef]
- Exportaciones Totales República Dominicana por Sectores 2010–2017, Banco Central de la República Dominicana. Available online: https://gdc.bancentral.gov.do/Common/public/estadisticas/sector-externo/documents/Exportaciones_Anuales_6.xls (accessed on 9 September 2018).
- Macdonald, G.; Gopinathan, I.; McLeod, K.; Makarenko, M.; Pineau, M.; Hennesy, T.; San Martin, A.; Stone, D.; Castro, L.; Bocking, K.; et al. NI 43-101 Pre-Feasibility Study Technical Report for the Romero Gold Prospect, Dominican Republic; JDS Eneergy & Mining, Inc.: Toronto, ON, Canada, 2016; Available online: https://www.goldquestcorp.com/images/projects/romero/technical-reports/technicalreport-nov2016-goldquestmining.pdf (accessed on 9 September 2018).
- Boschman, L.M.; van Hinsbergen, D.J.J.; Torsvik, T.H.; Spakman, W.; Pindell, J.L. Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth-Sci. Rev. 2014, 138, 102–136. [Google Scholar] [CrossRef]
- Pindell, J.L.; Maresch, W.V.; Martens, U.; Stanek, K.P. The Greater Antillean Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: Implications for models of Caribbean evolution. Int. Geol. Rev. 2012, 54, 131–143. [Google Scholar] [CrossRef]
- Cárdenas-Párraga, J.; Garcia-Casco, A.; Proenza, J.A.; Harlow, G.E.; Blanco-Quintero, I.F.; Lázaro, C.; Villanova-de-Benavent, C.; Núnez-Cambra, K. Trace-element geochemistry of transform-fault serpentinite in high-pressure subduction mélanges (eastern Cuba): Implications for subduction initiation. Int. Geol. Rev. 2017, 59, 2041–2064. [Google Scholar] [CrossRef]
- Garcia-Casco, A.; Iturralde-Vinent, M.A.; Pindell, J. Latest Cretaceous collision-accretion between the Caribbean Plate and Caribeana: Origin of metamorphic terranes in the Greater Antilles. Int. Geol. Rev. 2008, 50, 781–809. [Google Scholar] [CrossRef]
- Lewis, J.F.; Draper, G.; Proenza, J.A.; Espaillat, J.; Jiménez, J. Ophiolite-Related Ultramafic Rocks (Serpentinites) in the Caribbean Region: A Review of the Occurrence, Composition, Origin, Emplacement and Ni-Laterite Soil Formation. Geol. Acta 2006, 4, 237–263. [Google Scholar]
- Solari, L.A.; Garcia-Casco, A.; Martens, U.; Lee, J.K.W.; Ortega-Rivera, A. Late Cretaceous subduction of the continental basement of the Maya block (Rabinal Granite, central Guatemala): Tectonic implications for the geodynamic evolution of Central America. Geol. Soc. Am. Bull. 2013, 125, 625–639. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, T.W.; Beets, D.; Carr, M.J.; Jackson, T.; Klaver, G.; Lewis, J.; Maury, R.; Schellenkens, H.; Smith, A.L.; Wadge, G.; et al. History and tectonic setting of Caribbean magmatism. In The Caribbean Region. The Geology of North America; Dengo, G., Case, J.E., Eds.; Geological Society of America: Boulder, CO, USA, 1990; Volume H, pp. 339–374. ISBN 9780813754567. [Google Scholar]
- Mann, P.; Draper, G.; Lewis, J.F. An overview of the geologic and tectonic development of Española. In Geologic and Tectonic Development of the North-America-Caribbean Plate Boundary in Española; Mann, P., Draper, G., Lewis, J.F., Eds.; Geological Society of America: Boulder, CO, USA, 1991. [Google Scholar]
- Vila, J.M.; Boisson, D.; Butterlin, J.; Feinburg, H.; Pubellier, M. Le complexe chaotique fini-éocène de Chouchou (Massif du Nord d’Haïti); un enregistrement du début des décrochements senestres nord-Caraibes. C.R. Acad. Sci. 1987, 304, 39–42. [Google Scholar]
- Mann, P.; Calais, E.; Ruegg, J.C.; DeMets, C.; Jansma, P.E.; Mattioli, G.S. Oblique collision in the northeastern Caribbean from GPS measurements and geological observations. Tectonics 2002, 21, 1057. [Google Scholar] [CrossRef]
- Lewis, J.F.; Draper, G. Geology and tectonic evolution of the Northern Caribbean margin. In The Caribbean Region; Dengo, G., Case, J.E., Eds.; Geological Society of America: Boulder, CO, USA, 1991; pp. 77–140. [Google Scholar]
- Lewis, J.F.; Escuder-Viruete, J.; Hernaiz Huerta, P.P.; Gutiérrez, G.; Draper, G.; Pérez-Estaún, A. Geochemical subdivision of the Circum-Caribbean Island Arc, Dominican Cordillera Central: Implications for crustal formation, accretion and growth within an intra-oceanic setting. Acta Geol. Hisp. 2002, 37, 81–122. [Google Scholar]
- Escuder-Viruete, J.; Joubert, M.; Urien, P.; Friedman, R.; Weis, D.; Ullrich, T.; Pérez-Estaún, A. Caribbean island-arc rifting and back-arc basin development in the Late Cretaceous: Geochemical, isotopic and geochronological evidence from Central Hispaniola. Lithos 2008, 104, 378–404. [Google Scholar] [CrossRef]
- Proenza, J.A.; Zaccarini, F.; Lewis, J.F.; Longo, F.; Garuti, G. Chromian spinel composition and the platinum-group minerals of the PGE-rich Loma Peguera Chromitites, Loma Caribe peridotite, Dominican Republic. Can. Mineral. 2007, 45, 631–648. [Google Scholar] [CrossRef]
- Marchesi, C.; Garrido, C.J.; Proenza, J.A.; Hidas, K.; Varas-Reus, M.I.; Butjosa, L.; Lewis, J.F. Geochemical record of subduction initiation in the sub-arc mantle: Insights from the Loma Caribe peridotite (Dominican Republic). Lithos 2016, 252–253, 1–15. [Google Scholar] [CrossRef]
- Escuder-Viruete, J.; Pérez-Estaún, A.; Weis, D. Geochemical constraints on the origin of the late Jurassic proto-Caribbean oceanic crust in Hispaniola. Int. J. Earth Sci. 2009, 98, 407–425. [Google Scholar] [CrossRef]
- Draper, G.; Lewis, J.F. Petrology and structural development of the Duarte complex, central Dominican Republic: A preliminary account and some tectonic implications. In Proceedings of the 10th Caribbean Geological Conference, Cartagena, Colombia, 15–19 August 1983; pp. 103–112. [Google Scholar]
- Draper, G.; Lewis, J.F. Metamorphic belts in central Hispaniola. In Geologic and Tectonic Development of the North American—Caribbean Plate Boundary in Hispaniola; Mann, P., Draper, G., Lewis, J.F., Eds.; Geological Society of America: Boulder, CO, USA, 1991; pp. 29–46. [Google Scholar]
- Kerr, A.C.; White, R.V.; Thompson, P.M.E.; Tarney, J.; Saunders, A.D. No oceanic plateau-No Caribbean Plate? The seminal role of an oceanic plateau in Caribbean Plate evolution. In The Circum-Gulf of Mexico and Caribbean Region: Hydrocarbon Habitats, Basin Formation and Plate Tectonics; Bartolini, C., Buffler, R.T., Blickwede, J.F., Eds.; American Association of Petroleum Geologists Memoir: Tulsa, OK, USA, 2003; pp. 126–168. [Google Scholar]
- Escuder-Viruete, J.; Perez-Estaun, A.; Contreras, F.; Joubert, M.; Weis, D.; Ullrich, T.; Spades, P. Plume mantle source heterogeneity through time: Insights from the Duarte complex, Hispaniola, northeastern Caribbean. J. Geophys. Res. 2007, 112, B04203. [Google Scholar] [CrossRef]
- Escuder-Viruete, J.; Perez-Estaún, A.; Joubert, M.; Weis, D. The Pelona–Pico Duarte basalts formation, central Hispaniola: An on-land section of Late Cretaceous volcanism related to the Caribbean large igneous province. Geol. Acta 2011, 9, 307–328. [Google Scholar]
- Sandoval, M.I.; Baumgartner, P.O.; Escuder Viruete, J.; Gabites, J.; Mercier de Lepinay, B. Late Cretaceous radiolarian biochronology of the Pedro Brand section, Tireo Group, eastern Central Cordillera, Dominican Republic: A contribution to the stratigraphy of the Caribbean Large Igneous Province. Revue de Micropaléontologie 2015, 58, 85–106. [Google Scholar] [CrossRef]
- Lidiak, E.G.; Anderson, T.H. Evolution of the Caribbean plate and origin of the Gulf of Mexico in light of plate motions accommodated by strike-slip faulting. In Late Jurassic Margin of Laurasia—A Record of Faulting Accommodating Plate Rotation; Anderson, T.H., Didenko, A.N., Johnson, C.L., Khanchuk, A.I., MacDonald, J.H., Jr., Eds.; Geological Society of America: Boulder, CO, USA, 2015. [Google Scholar]
- Nagle, F. Blueschist, eclogite, paired metamorphic belts, and the early tectonic history of Hispaniola. Geol. Soc. Am. Bull. 1974, 85, 1461–1466. [Google Scholar] [CrossRef]
- Draper, G.; Gutiérrez, G.; Lewis, J. Thrust emplacement of the Hispaniola peridotite belt: Orogenic expression of the mid-Cretaceous Caribbean arc polarity reversal? Geology 1996, 24, 1143–1146. [Google Scholar] [CrossRef]
- Escuder-Viruete, J.; Hernaiz-Huerta, P.P.; Draper, G.; Gutiérrez, G.; Lewis, J.F.; Pérez-Estaún, A. Metamorfismo y estructura de la Formación Maimón y los Complejos Duarte y Río Verde, Cordillera Central Dominicana: Implicaciones en la estructura y evolución del primitivo Arco-Isla Caribeño. Acta Geol. Hispan. 2002, 37, 123–162. [Google Scholar]
- Escuder-Viruete, J.; Contreras, F.; Joubert, M.; Urien, P.; Stein, G.; Weis, D.; Pérez-Estaún, A. Tectónica y geoquímica de la Formación Amina: Registro del arco isla Caribeño primitivo en la Cordillera Central, República Dominicana. Boletín Geológico y Minero 2007, 118, 221–242. [Google Scholar]
- Torró, L.; Garcia-Casco, A.; Proenza, J.A.; Blanco-Quintero, I.F.; Gutiérrez-Alonso, G.; Lewis, J.F. High-pressure greenschist to blueschist facies transition in the Maimón Formation (Dominican Republic) suggests mid-Cretaceous subduction of the Early Cretaceous Caribbean Arc. Lithos 2016, 266–267, 309–331. [Google Scholar] [CrossRef]
- Lewis, J.F.; Astacio, V.A.; Espaillat, J.; Jiménez, J. The occurrence of volcanogenic massive sulfide deposits in the Maimón Formation, Dominican Republic: The Cerro de Maimón, Loma Pesada and Loma Barbuito deposits. In VMS Deposits of Latin America; Sherlock, R., Barsch, R., Logan, A., Eds.; Geological Society of Canada: Newfoundland, NL, Canada, 2000; Volume 2, pp. 213–239. [Google Scholar]
- Torró, L.; Proenza, J.A.; Marchesi, C.; García-Casco, A.; Lewis, J.F. Petrogenesis of meta-volcanic rocks from the Maimón Formation (Dominican Republic): Geochemical record of the nascent Greater Antilles paleo-arc. Lithos 2017, 278–281, 255–273. [Google Scholar] [CrossRef]
- Torró, L.; Proenza, J.A.; Garcia-Casco, A.; Farré de Pablo, J.; del Carpio, R.; León, P.; Chávez, C.; Domínguez, H.; Brower, S.; Espaillat, J.; et al. La Geoquímica de la Formación Maimón (Cordillera Central, República Dominicana) revisada. Boletín Geológico y Minero 2017, 128, 517–539. (In Spanish) [Google Scholar] [CrossRef]
- Torró, L.; Proenza, J.A.; Rojas-Agramonte, Y.; Garcia-Casco, A.; Yang, J.-H.; Yang, Y.-H. Recycling in the subduction Factory: Archaean to Permian zircons in the oceanic Cretaceous Caribbean island-arc (Hispaniola). Gondwana Res. 2018, 54, 23–37. [Google Scholar] [CrossRef]
- Kesler, S.; Russell, E.N.; Reyes, C.; Santos, L.; Rodriguez, A.; Fondeur, L. Geology of the Maimon Formation, Dominican Republic. In Geologic and Tectonic Development of the North American: Caribbean Plate Boundary in Hispaniola; Mann, P., Draper, G., Lewis, J.F., Eds.; Geological Society of America: Boulder, CO, USA, 1991; pp. 173–185. [Google Scholar]
- Horan, S.L. The Geochemistry and Tectonic Significance of the Maimón-Amina Schists, Cordillera Central, Dominican Republic. Master’s. Thesis, University of Florida, Gainesville, FL, USA, 1995. [Google Scholar]
- Kesler, S.E.; Russell, N.; Polanco, J.; McCurdy, K.; Cumming, G.L. Geology and geochemistry of the early Cretaceous Los Ranchos Formation, central Dominican Republic. In Geologic and Tectonic Development of the North American: Caribbean Plate Boundary in Hispaniola; Mann, P., Draper, G., Lewis, J.F., Eds.; Geological Society of America: Boulder, CO, USA, 1991; pp. 187–201. [Google Scholar]
- Escuder-Viruete, J.; Díaz de Neira, A.; Hernáiz Huerta, P.P.; Monthel, J.; García Senz, J.; Joubert, M.; Lopera, E.; Ullrich, T.; Friedman, R.; Mortensen, J.; et al. Magmatic relationships and ages of Caribbean island-arc tholeiites, boninites and related felsic rocks, Dominican Republic. Lithos 2006, 90, 161–186. [Google Scholar] [CrossRef]
- Escuder-Viruete, J.; Contreras, F.; Stein, G.; Urien, P.; Joubert, M.; Pérez-Estaún, A.; Friedman, R.; Ullrich, T. Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hispaniola: Record of a major Change in the Caribbean island arc magma sources. Lithos 2007, 99, 151–177. [Google Scholar] [CrossRef]
- Kesler, S.E.; Campbell, I.H.; Allen, C.M. Age of the Los Ranchos Formation, Dominican Republic: Timing and tectonic setting of primitive island arc volcanism in the Caribbean region. Geol. Soc. Am. Bull. 2005, 117, 987–995. [Google Scholar] [CrossRef]
- Kesler, S.E.; Campbell, I.H.; Smith, C.N.; Hall, C.M.; Allen, C.M. Age of the Pueblo Viejo gold-silver deposit and its significance to models for high-sulfidation epithermal mineralizations. Econ. Geol. 2005, 100, 253–272. [Google Scholar] [CrossRef]
- Martín, M.; Draper, G. Mapa Geológico de la Hoja 6172-I (Hatillo), Scale 1:50,000 (SYSMIN, Proyecto C). Consorcio ITGE-PROINTEC-INYPSA; Dirección General de Minería: Santo Domingo, Dominican Republic, 1999. [Google Scholar]
- Escuder-Viruete, J.; Pérez-Estaún, A.; Weis, D.; Friedman, R. Geochemical characteristics of the Río Verde Complex, Central Hispaniola: Implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc. Lithos 2010, 114, 168–185. [Google Scholar] [CrossRef]
- Bowin, C.O. Geology of the central Dominican Republic. Geol. Soc. Am. Mem. 1966, 98, 11–84. [Google Scholar]
- Lewis, J.F.; Amarante, A.; Bloise, G.; Jiménez, J.G.; Domínguez, H. Lithology and stratigraphy of the upper Cretaceous volcanic and volcaniclastic rocks of the Tireo Group, Dominican Republic, and correlations with the Massif du Nord in Haiti. In Geologic and Tectonic Development of the North-America-Caribbean Plate Boundary in Española; Mann, P., Draper, G., Lewis, J.F., Eds.; Geological Society of America: Boulder, CO, USA, 1991; pp. 143–163. [Google Scholar]
- Bowin, C. The geology of Espańola. In The Ocean Basins and Margins: The Gulf of Mexico and the Caribbean; Naim, A., Stehli, F., Eds.; Plenum Press: New York, NY, USA, 1975; Volume 3, pp. 501–552. [Google Scholar]
- Montgomery, H.; Pessagno, E.A. Cretaceous microfaunas of the Blue mountains, Jamaica, and of the Northern and Central Basement Complexes of Hispaniola. Caribbean. Caribbean Basins. In Sedimentary Basins of the Word; Mann, P., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1999; Volume 4, pp. 237–246. [Google Scholar]
- McPhie, J.; Doyle, M.; Allen, R. Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks; Centre for Ore Deposit and Exploration Studies, University of Tasmania: Hobart, Australia, 1993. [Google Scholar]
- Pearce, J.A. Immobile elements fingerprinting of ophiolites. Elements 2014, 10, 101–108. [Google Scholar] [CrossRef]
- Rojas-Agramonte, Y.; Garcia-Casco, A.; Kemp, A.; Króner, A.; Proenza, J.A.; Lázaro, C.; Liu, D. Recycling and transport of continental material through the mantle wedge above subduction zones: A Caribbean example. Earth Planet. Sci. Lett. 2016, 436, 93–107. [Google Scholar] [CrossRef]
- Proenza, J.A.; González-Jiménez, J.M.; Garcia-Casco, A.; Belousova, E.; Griffin, W.L.; Talavera, C.; Rojas-Agramonte, Y.; Aiglsperger, T.; Navarro-Ciurana, D.; Pujol-Solà, N.; et al. Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites. Geosci. Front. 2018, in press. [Google Scholar] [CrossRef]
- Tesfaye Firdu, F.; Taskinen, P. Sulfide Mineralogy-Literature Review; Aalto University Publications in Material Science and Engineering: Helsinki, Finland, 2010. [Google Scholar]
- Keith, M.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R.; Petersen, S.; Bach, W. Effect of temperature, sulfur and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology 2014, 42, 699–702. [Google Scholar] [CrossRef]
- Herzig, P.M. A Mineralogical, Geochemical and Thermal Profile Trough the Agrokipia “B” Hydrothermal Sulfide Deposit, Troodos Ophiolite Complex, Cyprus. In Base Metal Sulfide Deposits; Friedrich, G.H., Herzig, P.M., Eds.; Springer: Berlin, Germany, 1988; pp. 182–215. [Google Scholar]
- Román-Alday, M.C.; Torró, L.; Proenza, J.A.; Melgarejo, J.C.; Romero, J.; Amarante, A.; Espaillat, J.; Nelson, C.E. The Romero Cu–Au–Zn Deposits, Cordillera Central, Dominican Republic: Preliminary data on the mineralogy and geochemistry of mineralization. In Proceedings of the 13th SGA Biennial Meeting, Nancy, France, 24–27 August 2015; Volume 5, pp. 2087–2090. [Google Scholar]
- Sillitoe, R.H. Comments on Geology and Exploration of the Romero Gold-Copper Prospect and Environs, Las Tres Palmas Project, Dominican Republic. 2013. Available online: https://www.goldquestcorp.com/images/pdf/RichardSillitoeReport-Jan2013.pdf (accessed on 7 September 2018).
- Tireo Gold Trend. Available online: https://www.precipitategold.com/projects/dominican-republic/tireo-gold (accessed on 7 September 2018).
- Dominican Republic Projects, Goldquest. Available online: https://www.goldquestcorp.com/index.php/projects (accessed on 7 September 2018).
- Simmons, S.F.; White, N.C.; John, D.A. Geological characteristics of epithermal precious and base metal deposits. Econ. Geol. 2005, 100, 485–522. [Google Scholar]
- Shimizu, T. Reinterpretation of quartz textures in terms of hydrothermal fluid evolution at the Koryu Au–Ag deposit, Japan. Econ. Geol. 2014, 109, 2051–2065. [Google Scholar] [CrossRef]
- Ogawa, Y.; Shikazono, N.; Ishiyama, D.; Sato, H.; Mizuta, T.; Nakano, T. Mechanism for anhydrite and gypsum formation in the Kuroko massive sulfide-sulfate deposits, North Japan. Miner. Deposita 2007, 42, 219–233. [Google Scholar] [CrossRef]
- Paytan, A.; Kastner, M.; Campbell, D.; Thiemens, M.H. Seawater sulfur isotope fluctuations in the Cretaceous. Science 2004, 304, 1663–1665. [Google Scholar] [CrossRef] [PubMed]
- Bottrell, S.H.; Newton, R.J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Sci. Rev. 2006, 75, 59–83. [Google Scholar] [CrossRef]
- Sangster, D.F. Sulphur and lead isotopes in strata-bound deposits. In Handbook of Strata-Bound and Stratiform Ore Deposits; Wolf, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; Volume 8, pp. 219–266. [Google Scholar]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. Geochem. 1986, 16, 491–559. [Google Scholar]
- Çagatay, M.N.; Eastoe, C.J. A sulfur isotope study of volcanogenic massive sulfide deposits of the eastern black sea province, Turkey. Miner. Deposita 1995, 30, 55–66. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M.B. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal ore Deposits, 3rd ed.; Barnes, H.L., Ed.; John Wiley and Sons: New York, NY, USA, 1997; pp. 517–611. ISBN 978-0-471-57144-5. [Google Scholar]
- Herzig, P.M.; Petersen, S.; Hannington, M.D. Geochemistry and sulfur isotopic com-position of the TAG hydrothermal mound, Mid-Atlantic ridge, 26°N. Proc. Ocean Drill. Program Sci. Results 1998, 158, 47–68. [Google Scholar]
- Amarante, A.; Jiménez, J.; Lewis, J.F. Geology, hydrothermal alteration and geochemistry of epithermal Au-Ag mineralization in the Restauración area Dominican Republic. In Proceedings of the Transactions 11th Caribbean Geological Conference, Bridgetown, Barbados, 20–26 July 1986. [Google Scholar]
- Amarante, J.A.; Lewis, J.F. Geological Setting and Characteristics of Base and Precious Metal Mineralization in the Cordillera Central of the Western Dominican Republic and Massif du Nord Haiti; Abstracts with Programs; Geological Society of America: Boulder, CO, USA, 1996. [Google Scholar]
- Lewis, W.J.; San Martin, A.J.; Gowans, R.M. NI 43-101 Technical Report Mineral Resource Estimate for the Candelones Extension Deposit, Candelones Project, Neita Concession, Dominican Republic; Micon International Limited: Toronto, ON, Canada, 2015; Available online: http://www.unigoldinc.com/i/pdf/TechnicalReports/TechnicalReport-2015.pdf (accessed on 9 September 2018).
- Louca, K. Geological setting and base and precious metal deposits of Northern Haiti. In Transactions of the 12th Caribbean Geological Conference, St. Croix, Virgin Islands, Puerto Rico; Larue, D.K., Draper, G., Eds.; Miami Geological Society: Miami, FL, USA, 1990; pp. 200–216. [Google Scholar]
- Stern, R.J.; Gerya, T. Subduction initiation in nature and models: A review. Tectonophysics 2017. [Google Scholar] [CrossRef]
- Whattam, S.A.; Stern, R.J. The “subduction initiation rule”: A key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib. Mineral. Petrol. 2011, 162, 1031–1045. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torró, L.; Proenza, J.A.; Espaillat, J.; Belén-Manzeta, A.J.; Román-Alday, M.C.; Amarante, A.; González, N.; Espinoza, J.; Román-Alpiste, M.J.; Nelson, C.E. The Discovery of the Romero VMS Deposit and Its Bearing on the Metallogenic Evolution of Hispaniola during the Cretaceous. Minerals 2018, 8, 507. https://doi.org/10.3390/min8110507
Torró L, Proenza JA, Espaillat J, Belén-Manzeta AJ, Román-Alday MC, Amarante A, González N, Espinoza J, Román-Alpiste MJ, Nelson CE. The Discovery of the Romero VMS Deposit and Its Bearing on the Metallogenic Evolution of Hispaniola during the Cretaceous. Minerals. 2018; 8(11):507. https://doi.org/10.3390/min8110507
Chicago/Turabian StyleTorró, Lisard, Joaquín A. Proenza, Julio Espaillat, Albert Joan Belén-Manzeta, María Clara Román-Alday, Alberto Amarante, Norverto González, Jorge Espinoza, Manuel Jesús Román-Alpiste, and Carl E. Nelson. 2018. "The Discovery of the Romero VMS Deposit and Its Bearing on the Metallogenic Evolution of Hispaniola during the Cretaceous" Minerals 8, no. 11: 507. https://doi.org/10.3390/min8110507
APA StyleTorró, L., Proenza, J. A., Espaillat, J., Belén-Manzeta, A. J., Román-Alday, M. C., Amarante, A., González, N., Espinoza, J., Román-Alpiste, M. J., & Nelson, C. E. (2018). The Discovery of the Romero VMS Deposit and Its Bearing on the Metallogenic Evolution of Hispaniola during the Cretaceous. Minerals, 8(11), 507. https://doi.org/10.3390/min8110507