Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle
Abstract
:1. Introduction
2. General Geology
2.1. Ratanakiri Volcanic Province (RVP)
2.2. Zircon Deposits
3. Materials and Methods
3.1. Sample Descriptions
3.2. Cathodoluminescence Microscopy and Electron Microprobe Analyses
3.3. Trace-Element Analysis
3.4. Hf-Isotope Analysis
3.5. Geochronometry
3.5.1. U-Pb Dating by LA-ICP-MS
3.5.2. (U-Th)/He Thermochronology
3.6. δ18O Isotopic Analyses
4. Results
4.1. Zircon Crystal Morphology and CL Zonation
4.2. Zircon Chemistry
Ti-in-Zircon Thermometer
4.3. Geochronology Results
4.4. Hf Isotope Signatures
4.5. Oxygen Isotope Ratios
5. Discussion
5.1. Classification and Comparisons of RVP Zircon Xenocrysts
5.2. Source Affinities
5.3. Carbonatitic Signatures in Ratanakiri Zircons
5.4. Variation in Zircon-Bearing Xenocryst Assemblages in SE Asia
5.5. Models for Generation of RVP Zircon-Rich, Corundum-Poor Gem Suite
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shor, R.; Weldon, R. Ruby and sapphire production and distribution: A quarter century of change. Gems Gemol. 2009, 45, 236–259. [Google Scholar] [CrossRef]
- Smith, M.H.; Balmer, W.A. Zircon mining in Cambodia. Gems Gemol. 2009, 45, 152–154. [Google Scholar]
- Schwarz, D. Coloured gemstones—Mines and Markets. In Proceedings of the 34th International Gemmological Conference, Vilnius, Lithuania, 25–30 August 2015; pp. 110–112. [Google Scholar]
- Abduriyim, A.; Sutherland, F.L.; Belousova, E.A. U-Pb age and origin of gem zircon from the New England sapphire fields, New South Wales, Australia. Aust. J. Earth Sci. 2012, 59, 1067–1081. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineralog. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Chen, T.; Ai, H.; Yang, M.; Zheng, S.; Liu, Y. Brownish Red Zircon from Muling, China. Gems Gemol. 2011, 47, 36–41. [Google Scholar] [CrossRef]
- Garnier, V.; Ohnenstetter, D.; Guliani, G.; Fallick, A.E.; Trong, T.P.; Quang, V.H.; Van, L.P.; Schwarz, D. Basalt petrology, zircon ages and sapphire genesis from Dak Nong, southern Vietnam. Mineral. Mag. 2005, 69, 21–38. [Google Scholar] [CrossRef]
- Graham, I.; Sutherland, L.; Zaw, K.; Nechaev, V.; Khanchuk, A. Advances in our understanding of the gem corundum deposits of the West Pacific continental margins intraplate basaltic fields. Ore Geol. Rev. 2008, 34, 200–215. [Google Scholar] [CrossRef]
- Qiu, Z.; Wu, F.; Yu, Q.; Xie, L.; Yang, S. Hf isotopes of zircon megacrysts from the Cenozoic basalts in eastern China. Chin. Sci. Bull. 2005, 50, 2602–2611. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Coenraads, R.R.; Abduriyim, A.; Meffre, S.; Hoskin, P.W.O.; Giuliani, G.; Beattie, R.; Wuhrer, R.; Sutherland, G.B. Corundum (sapphire) and zircon relationships, Lava Plains gem fields, NE Australia: Integrated mineralogy, geochemistry, age determination, genesis and geographical typing. Mineral. Mag. 2015, 79, 545–581. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Graham, I.; Yaxley, G.; Armstrong, R.; Giuliani, G.; Hoskin, P.; Nechaev, V.; Woodhead, J. Major zircon megacryst suites of the Indo-Pacific lithospheric margin (ZIP) and their petrogenetic and regional implications. Mineral. Petrol. 2016, 110, 399–420. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Piilonen, P.C.; Zaw, K.; Meffre, S.; Thompson, J. Sapphire within zircon-rich gem deposits, Bo Loei, Ratanakiri Province, Cambodia: Trace elements, inclusions, U-Pb dating and genesis. Aust. J. Earth Sci. 2015, 62, 761–773. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, X.; Chen, X. Genesis of zircon megacrysts in Cenozoic alkali basalts and the heterogeneity of subcontinental lithospheric mantle, eastern China. Mineral. Petrol. 2010, 100, 75–94. [Google Scholar] [CrossRef]
- Zaw, K.; Sutherland, F.L.; Dellapasqua, F.; Ryan, C.G.; Yui, T.-F.; Mernagh, T.P.; Duncan, D. Contrasts in gem corundum characteristics, eastern Australian basaltic fields: Trace elements, fluid/melt inclusions and oxygen isotopes. Mineral. Mag. 2006, 70, 669–687. [Google Scholar] [CrossRef]
- Fan, P.-F. Tectonic patterns and Cenozoic basalts in the western margin of the South China Sea. Geol. Soc. Malays. Bull. 1995, 37, 91–97. [Google Scholar]
- Fedorov, P.I.; Koloskov, A.V. Cenozoic volcanism of southeast Asia. Petrology 2005, 13, 352–380. [Google Scholar]
- Taylor, J.G.C.; Buravas, S. Gem deposits at Khao Ploi Waen and Bang Ka Cha, Chanthaburi Province. In Geologic Reconnaissance of the Mineral Deposits of Thailand; United States Government Printing Office: Washington, WA, USA, 1951; Volume 984, pp. 144–148. [Google Scholar]
- Harley, S.L.; Kelly, N.M. Zircon Tiny but Timely. Elements 2007, 3, 13–18. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Watson, E.B. Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry. Contrib. Mineral. Petrol. 1979, 70, 407–419. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Linnen, R.L.; Keppler, H. Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim. Cosmochimi. Acta 2002, 66, 3293–3301. [Google Scholar] [CrossRef]
- Cong, F.; Li, S.-Q.; Lin, F.-C.; Shi, M.-F.; Zhu, H.-P.; Siebel, W.; Chen, F. Origin of Zircon Megacrysts from Cenozoic Basalts in Northeastern Cambodia: Evidence from U-Pb Age, Hf-O Isotopes, and Inclusions. J. Geol. 2016, 124, 221–234. [Google Scholar] [CrossRef]
- Ridd, M.F.; Barber, A.J.; Crow, M.J. Introduction to the geology of Thailand. In Geology of Thailand; Ridd, M.F., Barber, A.J., Crow, M.J., Eds.; The Geological Society: London, UK, 2011; pp. 1–17. [Google Scholar]
- Searle, M.P.; Morley, C.K. Tectonic and thermal evolution of Thailand in the regional context of SE Asia. In Geology of Thailand; Ridd, M.F., Barber, A.J., Crow, M.J., Eds.; The Geological Society: London, UK, 2011; pp. 539–571. [Google Scholar]
- Workman, D.R. Geology of Laos, Cambodia, South Vietnam and the eastern part of Thailand. Overseas Geol. Miner. Resour. 1977, 50, 1–34. [Google Scholar]
- Sotham, S. Geology of Cambodia. CCOP Tech. Bull. 1997, 26, 13–23. [Google Scholar]
- Khain, V.E. Tectonics of the Continents and Oceans; Nauchny Mir: Moscow, Russia, 2001. [Google Scholar]
- Mukasa, S.B.; Matthew Fischer, G.; Barr, S.M. The Character of the Subcontinental Mantle in Southeast Asia: Evidence From Isotopic and Elemental Compositions of Extension-Related Cenozoic Basalts in Thailand. In Earth Processes: Reading the Isotopic Code; Basu, A., Hart, S., Eds.; Geophysical Monograph-American Geophysical Union: Washington DC, WA, USA, 1996; Volume 95, pp. 233–252. [Google Scholar]
- Le Pichon, X.; Fournier, M.; Jolivet, L. Kinematics, topography, shortening, and extrusion in the India-Eurasia collision. Tectonics 1992, 11, 1085–1098. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.S.; Kennett, B.L.N.; Toy, V.G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin. J. Geophys. Res. 2006, 111, B02401. [Google Scholar] [CrossRef]
- Sutherland, F.L. Alkaline rocks and gemstones, Australia: A review and synthesis. Aust. J. Earth Sci. 1996, 43, 323–343. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Fanning, C.M. Gem-bearing basaltic volcanism, Barrington, New South Wales: Cenozoic evolution, based on basalt K-Ar ages and zircon fission track and U-Pb isotope dating. Aust. J. Earth Sci. 2001, 48, 221–237. [Google Scholar] [CrossRef]
- Patte, E. Etude de l’ile des Cendres, volcan apparu au large de la côte d’Annam. Bull. Serv. Géol. l’Indoch. 1925, 13, 1–19. [Google Scholar]
- Saurin, E. La néotectonique de l’Indochine. Rev. Géogr. Phys. Géol. Dyn. 1967, 9, 143–151. [Google Scholar]
- Barr, S.M.; MacDonald, A.S. Geochemistry and petrogenesis of Late Cenozoic alkaline basalts of Thailand. Geol. Soc. Malays. Bull. 1978, 10, 25–52. [Google Scholar]
- Barr, S.M.M.; Alan, S. Geochemistry and Geochronology of Late Cenozoic Basalts of Southeast Asia. GSA Bull. 1981, 92, 1069–1142. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Bosshart, G.; Fanning, C.M.; Hoskin, P.W.O.; Coenraads, R.R. Sapphire crystallization, age and origin, Ban Huai Sai, Laos: Age based on zircon inclusions. J. Asian Earth Sci. 2002, 20, 841–849. [Google Scholar] [CrossRef]
- Barr, S.M.J.; Dodie, E. Trace element characteristics of Upper Cenozoic basaltic rocks of Thailand, Kampuchea and Vietnam. J. Southeast Asian Earth Sci. 1990, 4, 233–242. [Google Scholar] [CrossRef]
- Hoang, N.; Flower, M. Petrogenesis of Cenozoic Basalts from Vietnam: Implication for Origins of a ‘Diffuse Igneous Province’. J. Petrol. 1998, 39, 369–395. [Google Scholar] [CrossRef]
- Barr, S.M.; Charusiri, P. Volcanic rocks. In The Geology of Thailand; Ridd, M.F., Barber, A.J., Crow, M.J., Eds.; The Geological Society: London, UK, 2011; pp. 415–438. [Google Scholar]
- Lacombe, P. La massif basaltique quaternaire à zircons-gemmes de Ratanakiri (Cambodge nord-oriental)—Premiére partie. Bull. Rech. Géol. Min. 1969, 3, 31–91. [Google Scholar]
- Lacombe, P. La massif basaltique quaternaire à zircons-gemmes de Ratanakiri (Cambodge nord-oriental)-Troisiéme partie: Minéralogie et géologie des gisements de zircons. Bull. Rech. Géol. Min. 1970, 4, 33–79. [Google Scholar]
- Whitford-Stark, J.L. A survey of Cenozoic volcanism on mainland Asia. In Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 1987; Volume 213. [Google Scholar]
- Zeug, M.; Nasdala, L.; Wanthanachaisaeng, B.; Balmer, W.A.; Corfu, F.; Wildner, M. Blue Zircon from Ratanakiri, Cambodia. J. Gemmol. 2018, 36, 112–132. [Google Scholar] [CrossRef]
- Pouchou, J.L.; Pichoir, F. ‘PAP’j(rZ) Procedure for Improved Quantitative Microanalysis; San Francisco Press: San Francisco, CA, USA, 1984. [Google Scholar]
- Elhlou, S.; Belousova, E.A.; Griffin, W.L.; Pearson, N.J.; O’Reilly, S.Y. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta 2006, 70, A158. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochi. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- DeBievre, P.; Taylor, P.D.P. Table of the isotopic composition of the elements. Int. J. Mass Spectrom. Ion Process. 1993, 123, 149–166. [Google Scholar] [CrossRef]
- Pearson, N.J.; Griffin, W.L.; O’Reilly, S.Y. Mass fractionation correction in laser ablation-multiple collector ICP-MS: Implications for overlap corrections and precise and accurate in situ isotope ratio measurement. In Laser-Ablation ICP-MS in the Earth Sciences; Sylvester, P.J., Ed.; Mineralogical Association of Canada: Quebec City, QC, Canada, 2008; Volume 40, pp. 93–116. [Google Scholar]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.A.; Saeed, A. Reply to “Comment to short-communication ‘Comment: Hf-isotope heterogeneity in zircon 91500’ by W.L. Griffin, N.J. Pearson, E.A. Belousova and A. Saeed [Chemical Geology 233 (2006) 358-363]” by F. Corfu. Chem. Geol. 2007, 244, 354–356. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Wormald, R.J.; Whitehouse, M.J.; Price, R.C. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia. Geology 2005, 33, 797–800. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Scherer, E.; Münker, C.; Mezger, K. Calibration of the Lutetium-Hafnium Clock. Science 2001, 293, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICPMS) to in situ U-Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. In Laser Ablation ICP-MS in the Earth Sciences; Sylvester, P.J., Ed.; Mineralogical Association of Canada: Quebec City, QC, Canada, 2008; pp. 204–207. [Google Scholar]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Stacey, J.S.T.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Reiners, P.W.; Spell, T.L.; Nicolescu, S.; Zanetti, K.A. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim. Acta 2004, 68, 1857–1887. [Google Scholar] [CrossRef]
- Danišík, M.; Kuhlemann, J.; Dunkl, I.; Evans, N.J.; Székely, B.; Frisch, W. Survival of Ancient Landforms in a Collisional Setting as Revealed by Combined Fission Track and (U-Th)/He Thermochronometry: A Case Study from Corsica (France). J. Geol. 2012, 120, 155–173. [Google Scholar] [CrossRef]
- Danišík, M.; Štěpančíková, P.; Evans, N.J. Constraining long-term denudation and faulting history in intraplate regions by multisystem thermochronology: An example of the Sudetic Marginal Fault (Bohemian Massif, central Europe). Tectonics 2012, 31. [Google Scholar] [CrossRef] [Green Version]
- Farley, K.A.; Wolf, R.A.; Silver, L.T. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochim. Cosmochim. Acta 1996, 60, 4223–4229. [Google Scholar] [CrossRef]
- Vermeesch, P. HelioPlot, and the treatment of overdispersed (U-Th-Sm)/He data. Chem. Geol. 2010, 271, 108–111. [Google Scholar] [CrossRef]
- Reiners, P.W. Zircon (U-Th)/He Thermochronometry. Rev. Mineral. Geochem. 2005, 58, 151–179. [Google Scholar] [CrossRef]
- Valley, J.W.; Chiarenzelli, J.R.; McLelland, J.M. Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett. 1994, 126, 187–206. [Google Scholar] [CrossRef]
- Valley, J.W.; Kitchen, N.; Kohn, M.J.; Niendorf, C.R.; Spicuzza, M.J. UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating. Geochim. Cosmochim. Acta 1995, 59, 5223–5231. [Google Scholar] [CrossRef]
- Pupin, J.-P. Zircon and granite petrology. Contrib. Mineral. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Shore, M.; Fowler, A.D. Oscillatory zoning in minerals: A common phenomenon. Can. Mineral. 1996, 34, 1111–1126. [Google Scholar]
- Witter, A.; Nasdala, L.; Wanthanachaisaeng, B.; Bunnag, N.; Škoda, R.; Balmer, W.A.; Geister, G.; Zeug, M. Mineralogical characterization of gem zircon from Ratanakiri, Cambodia. In Proceedings of the CORALS 2013, Vienna, Austria, 3–6 July 2013. [Google Scholar]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Pupin, J.P. Transactions of the Royal Society of Edinburgh, Earth Sciences; RSE Scotland Foundation: Edinburgh, UK, 2000. [Google Scholar]
- Watson, E.B.; Harrison, T.M. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science 2005, 308, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Fu, B.; Page, F.Z.; Cavosie, A.J.; Fournelle, J.; Kita, N.T.; Lackey, J.S.; Wilde, S.A.; Valley, J.W. Ti-in-zircon thermometry: Applications and limitations. Contrib. Mineral. Petrol. 2008, 156, 197–215. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B. Ti diffusion in zircon. Chem. Geol. 2007, 242, 470–483. [Google Scholar] [CrossRef]
- Crisp, L. The effect of pressure on Ti-in-zircon and Zr-in-rutile. In Proceedings of the Petrology and geochemistry seminars, Research School of Earth Sciences, Canberra, Australia, 29 May 2015. [Google Scholar]
- Page, F.Z.; Fu, B.; Kita, N.T.; Fournelle, J.; Spicuzza, M.J.; Schulze, D.J.; Viljoen, F.; Basei, M.A.S.; Valley, J.W. Zircons from kimberlite: New insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim. Cosmochim. Acta 2007, 71, 3887–3903. [Google Scholar] [CrossRef]
- Carbonnel, J.-P.; Duplaix, S.; Selo, M. La méthode des traces de fission de l’U apliquée á la géochronologic. Datation du magmatisme récente de I’Asie du Sud-Est. Rev. Géogr. Phys. Geolo. Dyn. 1972, 14, 29–46. [Google Scholar]
- Carbonnel, J.-P.; Selo, M.; Poupeau, G. Fission track age of the gem deposit of Pailin (Cambodia) and recent tectonics in the Indochinan province. Mod. Geol. 1973, 4, 61–64. [Google Scholar]
- Li, X.-H.; Long, W.-G.; Li, Q.-L.; Liu, Y.; Zheng, Y.-F.; Yang, Y.-H.; Chamberlain, K.R.; Wan, D.-F.; Guo, C.-H.; Wang, X.-C.; et al. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostand. Geoanal. Res. 2010, 34, 117–134. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, D.; Wu, Y.; Wang, Y.; He, H.; Pang, J.; Wang, Y.; Yu, J. A Potential (U-Th)/He Zircon Reference Material from Penglai Zircon Megacrysts. Geostand. Geoanal. Res. 2017, 41, 359–365. [Google Scholar] [CrossRef]
- Dodson, M.H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 1973, 40, 259–274. [Google Scholar] [CrossRef]
- Page, F.Z.; Ushikubo, T.; Kita, N.T.; Riciputi, L.R.; Valley, J.W. High-precision oxygen isotope analysis of picogram samples reveals 2 μm gradients and slow diffusion in zircon. Am. Mineral. 2007, 92, 1772–1775. [Google Scholar] [CrossRef]
- Bowman, J.R.; Moser, D.E.; Valley, J.W.; Wooden, J.L.; Kita, N.T.; Mazdab, F.K. Zircon U-Pb isotope, δ18O and trace element response to 8o m.y. of high temperature metamorphism in the lower crust: Sluggish diffusion and new records of Archean craton formation. Am. J. Sci. 2011, 311, 719–772. [Google Scholar] [CrossRef]
- Mattey, D.; Lowry, D.; Macpherson, C. Oxygen isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 1994, 128, 231–241. [Google Scholar] [CrossRef]
- Upton, B.G.J.; Hinton, R.W.; Aspen, P.; Finch, A.; Valley, J.W. Megacrysts and Associated Xenoliths: Evidence for Migration of Geochemically Enriched Melts in the Upper Mantle beneath Scotland. J. Petrol. 1999, 40, 935–956. [Google Scholar] [CrossRef]
- Valley, J.W.; Kitchen, N.; Kohn, M.J.; Niendorf, C.R.; Spicuzza, M.J. Oxygen Isotopes in Zircon. In Reviews in Mineralogy and Geochemistry; Hanchar, J.M., Hoskin, P.W.O., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2003; Volume 53, pp. 343–385. [Google Scholar]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples From Eastern Australian Granitoids. J. Petrol. 2006, 47, 329–353. [Google Scholar] [CrossRef]
- Heaman, L.M.; Bowins, R.; Crocket, J. The chemical composition of igneous zircon suites: Implications for geochemical tracer studies. Geochim. Cosmochim. Acta 1990, 54, 1597–1607. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Seifert, W.; Rhede, D.; Tietz, O. Typology, chemistry and origin of zircon from alkali basalts of SE Saxony (Germany). N. Jahrb. Mineralo. Abh. 2008, 184, 299–313. [Google Scholar] [CrossRef]
- Shnukov, S.E.; Andreev, A.V.; Savenok, S.P. Admixture elements in zircons and apatites: A tool for provenance studies of terrigenous sedimentary rocks. In Proceedings of the European Union of Geosciences (EUG 9), Strasbourg, France, 23–27 March 1997. [Google Scholar]
- Pupin, J.-P. Granite genesis related to geodynamics from Hf-Y in zircon. Earth Environ. Sci. Trans. R. Soc. Edinb. 2000, 91, 245–256. [Google Scholar] [CrossRef]
- Visonà, D.; Caironi, V.; Carraro, A.; Dallai, L.; Fioretti, A.M.; Fanning, M. Zircon megacrysts from basalts of the Venetian Volcanic Province (NE Italy): U-Pb ages, oxygen isotopes and REE data. Lithos 2007, 94, 168–180. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Borghini, G.; Fumagalli, P.; Rampone, E. The Stability of Plagioclase in the Upper Mantle: Subsolidus Experiments on Fertile and Depleted Lherzolite. J. Petrol. 2010, 51, 229–254. [Google Scholar] [CrossRef]
- Hinton, R.W.; Upton, B.G.J. The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta 1991, 55, 3287–3302. [Google Scholar] [CrossRef]
- Coenraads, R.R.; Vichit, P.; Sutherland, F.L. An unusual sapphire-zircon-magnetite xenolith from the Chanthaburi Gem Province, Thailand. Mineral. Mag. 1995, 59, 465–479. [Google Scholar] [CrossRef]
- Khamloet, P.; Pisutha-Arnond, V.; Sutthirat, C. Mineral inclusions in sapphire from the basalt-related deposit in Bo Phloi, Kanchanaburi, western Thailand: Indication of their genesis. Russ. Geol. Geophys. 2014, 55, 1087–1102. [Google Scholar] [CrossRef]
- Izokh, A.E.; Smirnov, S.Z.; Egorova, V.V.; Tuan Anh, T.; Kovyazin, S.V.; Phuong, N.T.; Kalinina, V.V. The conditions of formation of sapphire and zircon in the areas of alkali-basaltoid volcanism in Central Vietnam. Russ. Geol. Geophys. 2010, 51, 719–733. [Google Scholar] [CrossRef]
- Guo, J.; O’Reilly, S.Y.; Griffin, W.L. Corundum from basaltic terrains: A mineral inclusion approach to the enigma. Contrib. Mineral. Petrol. 1996, 122, 368–386. [Google Scholar] [CrossRef]
- Guo, J.; O’Reilly, S.Y.; Griffin, W.L. Zircon inclusions in corundum megacrysts: I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts. Geochim. Cosmochim. Acta 1996, 60, 2347–2363. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Hoskin, P.W.O.; Fanning, C.M.; Coenraads, R.R. Models of corundum origin from alkali basaltic terrains: A reappraisal. Contrib. Mineral. Petrol. 1998, 133, 356–372. [Google Scholar] [CrossRef]
- Benisek, A.; Finger, F. Factors controlling the development of prism faces in granite zircons: A microprobe study. Contrib. Mineral. Petrol. 1993, 114, 441–451. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Grimes, C.B.; Wooden, J.L.; Cheadle, M.J.; John, B.E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Mineral. Petrol. 2015, 170, 92–117. [Google Scholar] [CrossRef]
- Liu, Y.; Williams, I.S.; Chen, J.; Wan, Y.; Sun, W. The significance of Paleoproterozoic zircon in carbonatite dikes associated with the Bayan Obo REE-Nb-Fe deposit. Am. J. Sci. 2008, 308, 379–397. [Google Scholar] [CrossRef]
- Campbell, L.S.; Compston, W.; Sircombe, K.N.; Wilkinson, C.C. Zircon from the East Orebody of the Bayan Obo Fe-Nb-REE deposit, China, and SHRIMP ages for carbonatite-related magmatism and REE mineralization events. Contrib. Mineral. Petrol. 2014, 168, 1041. [Google Scholar] [CrossRef]
- Saava, E.V.; Belyatsky, B.V.; Antonov, A.B. Carbonatitic Zircon-Myth or Reality: Mineralogical-Geochemical Analyses. Available online: http://alkaline09.narod.ru/abstracts/Savva_Belyatsky.htm (accessed on 26 October 2018).
- Bell, K.; Simonetti, A. Source of parental melts to carbonatites—Critical isotopic constraints. Mineral. Petrol. 2010, 98, 77–89. [Google Scholar] [CrossRef]
- Chakmouradian, A. The geochemistry of continental carbonatites revisited: Two major types of continental carbonatites and their trace-element signatures. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 19–24 April 2009; p. 10806. [Google Scholar]
- Thi, T.N.; Wada, H.; Ishikawa, T.; Shimano, T. Geochemistry and petrogenesis of carbonatites from South Nam Xe, Lai Chau area, northwest Vietnam. Mineral. Petrol. 2014, 108, 371–390. [Google Scholar]
- Hou, Z.; Liu, Y.; Tian, S.; Yang, Z.; Xie, Y. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.F.; Yaxley, G.M.; Rosenthal, A.; Buhre, S.; Kiseeva, E.S.; Rapp, R.P.; Jacob, D.E. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 2009, 112, 274–283. [Google Scholar] [CrossRef]
- Su, B.-X.; Zhang, H.-F.; Sakyi, P.A.; Ying, J.-F.; Tang, Y.-J.; Yang, Y.-H.; Qin, K.-Z.; Xiao, Y.; Zhao, X.-M. Compositionally stratified lithosphere and carbonatite metasomatism recorded in mantle xenoliths from the Western Qinling (Central China). Lithos 2010, 116, 111–128. [Google Scholar] [CrossRef]
- Deng, L.L.; Liu, Y.; Gao, S. Pacific slab-induced carbonatite mantle metasomatism in the eastern North China Craton. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Zeng, G.; Chen, L.-H.; Xu, X.-S.; Jiang, S.-Y.; Hofmann, A.W. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chem. Geol. 2010, 273, 35–45. [Google Scholar] [CrossRef]
- Deng, L.; Liu, Y.; Zong, K.; Zhu, L.; Xu, R.; Hu, Z.; Gao, S. Trace element and Sr isotope records of multi-episode carbonatite metasomatism on the eastern margin of the North China Craton. Geochem. Geophys. Geosyst. 2017, 18, 220–237. [Google Scholar] [CrossRef]
- Yaxley, G.M.; Green, D.H.; Kamenetsky, V. Carbonatite Metasomatism in the Southeastern Australian Lithosphere. J. Petrol. 1998, 39, 1917–1930. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, F.L.; Graham, I.T.; Hollis, J.D.; Meffre, S.; Zwingmann, H.; Jourdan, F.; Pogson, R.E. Multiple felsic events within post-10 Ma volcanism, Southeast Australia: Inputs in appraising proposed magmatic models. Aust. J. Earth Sci. 2014, 61, 241–267. [Google Scholar] [CrossRef]
- Yu, J.-H.; O’Reilly, S.Y.; Zhang, M.; Griffin, W.L.; Xu, X. Roles of Melting and Metasomatism in the Formation of the Lithospheric Mantle beneath the Leizhou Peninsula, South China. J. Petrol. 2006, 47, 355–383. [Google Scholar] [CrossRef]
- Monchoux, P.; Fontan, F.; De Parseval, P.; Martin, R.F.; Wang, C.R. Igneous albitite dikes in orogenic lherzolites, western Pyréneés, France: A possible source for corundum and alkali feldspar xenocrysts in basaltic terraines. I. Mineralogical associations. Can. Mineral. 2006, 44, 817–842. [Google Scholar] [CrossRef]
- Pin, C.; Monchoux, P.; Paquette, J.L.; Azambre, B.; Wang, C.R.; Martin, R.F. Igneous albititic dikes in orogenic lherzolites, western Pyréneés, France: A possible source for corundum and alkali feldspar xenocrysts in basaltic terraines. II. Geochemical and petrogenetic considerations. Can. Mineral. 2006, 44, 843–856. [Google Scholar] [CrossRef]
- Long, A.M.; Menzies, M.A.; Thirlwall, M.F.; Upton, B.G.J.; Aspen, P. Carbonatite-mantle interaction: A possible origin for megacryst/xenolith suites in Scotland. In Proceedings of the 5th International Kimberlite Conference, Araxá, Brazil, 18 June–4 July 1991; pp. 467–477. [Google Scholar]
- Bakumenko, I.T.; Tomilenko, A.A.; Bazarova, T.Y.; Yarmolyuk, V.V. The conditions of formation of volcanics in the Late Mesozoic–Cenozoic West Trans-Baikalian volcanic area (from results of study of melt and fluid inclusions in minerals). Geokhimiya 1999, 12, 1352–1356. [Google Scholar]
- Gervasoni, F.; Klemme, S.; Rocha-Júnior, E.R.V.; Berndt, J. Zircon saturation in silicate melts: A new and improved model for aluminous and alkaline melts. Contrib. Mineral. Petrol. 2016, 171, 21. [Google Scholar] [CrossRef]
Sample | BC45 | BC46-1 | BC46-2 | BS47 | PT48-1 | PT48-2 | PT48-3 | PT49-1 | PT49-2 | PT50-1 | PT50-2 | PT50-3 |
n * | 6 | 7 | 7 | 8 | 7 | 4 | 10 | 8 | 7 | 8 | 7 | 7 |
HfO2 | 0.74 | 0.72 | 0.80 | 0.69 | 0.74 | 0.77 | 0.73 | 0.77 | 0.80 | 0.71 | 0.76 | 0.79 |
ZrO2 | 66.87 | 66.04 | 66.57 | 66.58 | 67.04 | 66.67 | 67.07 | 67.50 | 67.52 | 67.46 | 67.39 | 67.34 |
Y2O3 | 0.04 | 0.01 | 0.03 | 0.10 | 0.02 | 0.03 | 0.06 | 0.02 | 0.03 | 0.03 | 0.02 | 0.03 |
ThO2 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 |
UO2 | 0.01 | 0.00 | 0.00 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 |
SiO2 | 32.34 | 31.69 | 32.05 | 32.62 | 32.47 | 32.38 | 32.49 | 32.35 | 32.26 | 32.32 | 32.30 | 32.22 |
Total | 100.01 | 98.47 | 99.46 | 100.01 | 100.28 | 99.86 | 100.37 | 100.66 | 100.62 | 100.53 | 100.47 | 100.40 |
Sample | BL51-1 | BL51-2 | BL52 | BL53-1 | BL53-2 | BL54-1 | BL54-2 | BL54-3 | BL55-1 | BL55-2 | BL55-3 | BL55-4 |
n * | 6 | 6 | 8 | 16 | 10 | 10 | 5 | 11 | 5 | 6 | 7 | 8 |
HfO2 | 0.79 | 0.72 | 0.69 | 0.75 | 0.73 | 0.71 | 0.72 | 0.75 | 0.75 | 0.71 | 0.71 | 0.70 |
ZrO2 | 67.66 | 67.84 | 68.17 | 65.79 | 66.31 | 66.04 | 65.80 | 65.39 | 66.93 | 67.20 | 66.98 | 67.11 |
Y2O3 | 0.03 | 0.04 | 0.07 | 0.11 | 0.03 | 0.03 | 0.04 | 0.17 | 0.08 | 0.03 | 0.06 | 0.05 |
ThO2 | 0.01 | 0.00 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | 0.07 | 0.01 | 0.01 | 0.01 | 0.01 |
UO2 | 0.01 | 0.01 | 0.01 | 0.04 | 0.01 | 0.01 | 0.01 | 0.05 | 0.03 | 0.02 | 0.01 | 0.01 |
SiO2 | 32.08 | 32.06 | 31.99 | 32.67 | 32.68 | 32.38 | 32.30 | 32.26 | 32.28 | 32.27 | 32.27 | 32.35 |
Total | 100.58 | 100.67 | 100.94 | 99.41 | 99.78 | 99.19 | 98.88 | 98.69 | 100.07 | 100.24 | 100.04 | 100.23 |
Locality (Code) | Bokeo Clas (BC) | Bei Srok (BS) | Phum Throm (PT) | BoLoei (BL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample # (n) * | 45 (5) | 46-1 (4) | 46-2 (4) | 47 (5) | 49-1 (4) | 49-2 (4) | 50-1 (4) | 50-2 (4) | 50-3 (3) | 53-1 (3) | 53-2 (4) |
HfO2 wt % | 0.73 | 0.71 | 0.80 | 0.68 | 0.78 | 0.79 | 0.71 | 0.76 | 0.80 | 0.75 | 0.72 |
Hf wt % | 0.62 | 0.60 | 0.67 | 0.58 | 0.66 | 0.67 | 0.60 | 0.64 | 0.68 | 0.64 | 0.61 |
P | 58 | 47 | 51 | 91 | 34 | 43 | 51 | 51 | 54 | 53 | 47 |
Ti | 5.1 | 4.5 | 3.7 | 7.7 | 3.1 | 3.1 | 4.6 | 3.7 | 3.8 | 3.8 | 4.0 |
Nb | 4.0 | 1.7 | 2.3 | 11.7 | 1.3 | 2.0 | 2.7 | 2.4 | 3.2 | 3.9 | 2.5 |
Ta | 1.7 | 0.9 | 1.3 | 3.3 | 0.6 | 1.1 | 1.2 | 1.3 | 1.6 | 1.8 | 1.0 |
Pb204 | 1.05 | 1.16 | 1.02 | 1.48 | 0.97 | 1.27 | 1.19 | 1.18 | 1.61 | 1.58 | 1.28 |
Pb206 | 0.05 | 0.05 | 0.02 | 0.13 | 0.06 | 0.07 | 0.03 | 0.03 | 0.06 | 0.18 | 0.04 |
Pb207 | 0.03 | 0.02 | 0.02 | 0.04 | 0.02 | 0.02 | 0.00 | 0.02 | 0.03 | 0.01 | 0.04 |
Pb208 | 0.02 | 0.06 | 0.01 | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 | 0.07 | 0.02 | 0.01 |
Th | 42 | 19 | 13 | 168 | 9 | 17 | 25 | 25 | 30 | 51 | 22 |
U | 83 | 41 | 39 | 187 | 23 | 43 | 55 | 58 | 61 | 90 | 42 |
Th/U | 0.46 | 0.46 | 0.33 | 0.88 | 0.35 | 0.35 | 0.43 | 0.44 | 0.38 | 0.54 | 0.41 |
Nb/Ta | 2.2 | 2.0 | 1.8 | 3.5 | 2.3 | 2.0 | 2.2 | 1.8 | 2.1 | 2.1 | 2.4 |
Yb/SmN | 71 | 77 | 86 | 25 | 83 | 79 | 59 | 67 | 97 | 52 | 79 |
Lu/GdN | 20 | 21 | 24 | 7 | 23 | 22 | 15 | 19 | 28 | 13 | 20 |
Y/Hf | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Eu/Eu*N | 1.00 | 1.01 | 0.99 | 0.99 | 1.04 | 1.00 | 1.00 | 1.03 | 0.95 | 1.02 | 0.99 |
Y | 365.9 | 150.4 | 169.9 | 921.8 | 119.7 | 196.1 | 259.3 | 245.1 | 222.7 | 299.8 | 206.2 |
La | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl |
Ce | 1.7 | 0.7 | 0.9 | 5.3 | 0.6 | 1.0 | 1.0 | 1.1 | 1.2 | 2.3 | 1.2 |
Pr | 0.1 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nd | 0.9 | 0.3 | 0.3 | 3.8 | 0.3 | 0.6 | 0.5 | 0.7 | 0.3 | 0.6 | 0.3 |
Sm | 1.7 | 0.6 | 0.6 | 6.7 | 0.6 | 1.0 | 1.2 | 1.3 | 0.7 | 1.2 | 0.8 |
Eu | 1.3 | 0.5 | 0.5 | 4.6 | 0.4 | 0.7 | 0.9 | 0.9 | 0.6 | 1.0 | 0.6 |
Gd | 8.8 | 3.5 | 3.4 | 29.7 | 2.8 | 4.8 | 6.4 | 6.1 | 4.2 | 7.4 | 4.8 |
Tb | 2.9 | 1.1 | 1.2 | 8.8 | 0.9 | 1.5 | 2.1 | 1.9 | 1.5 | 2.4 | 1.6 |
Dy | 37 | 15 | 16 | 103 | 12 | 19 | 27 | 24 | 20 | 31 | 21 |
Ho | 12 | 5 | 6 | 30 | 4 | 7 | 9 | 8 | 7 | 10 | 7 |
Er | 55 | 23 | 26 | 120 | 18 | 30 | 39 | 37 | 35 | 43 | 30 |
Tm | 11 | 5 | 5 | 20 | 4 | 6 | 7 | 7 | 7 | 8 | 6 |
Yb | 100 | 44 | 54 | 166 | 36 | 57 | 63 | 70 | 69 | 68 | 52 |
Lu | 18 | 8 | 10 | 25 | 7 | 11 | 11 | 13 | 13 | 12 | 9 |
ΣREE | 250 | 107 | 124 | 524 | 86 | 139 | 168 | 172 | 160 | 186 | 135 |
ΣREE+Y | 616 | 257 | 294 | 1446 | 205 | 335 | 427 | 417 | 383 | 486 | 341 |
Ce/Ce*N | 18 | 11 | 23 | 24 | 14 | 21 | 19 | 13 | 38 | 31 | 37 |
Locality | Sample # (n) * | Ti ppm ± 2 SD | T °C ± 2 SD |
---|---|---|---|
Bokeo Clas | 45 (5) | 5.07 ± 2.83 | 682 ± 46 |
- | 46-1 (4) | 4.53 ± 1.45 | 675 ± 23 |
- | 46-2 (4) | 3.75 ± 1.20 | 661 ± 26 |
Bei Srok | 47 (5) | 7.68 ± 2.38 | 718 ± 24 |
Phum Throm | 49-1 (4) | 3.05 ± 1.04 | 646 ± 24 |
- | 49-2 (4) | 3.14 ± 1.07 | 648 ± 26 |
- | 50-1 (4) | 4.64 ± 0.81 | 677 ± 14 |
- | 50-2 (4) | 3.67 ± 0.36 | 660 ± 7 |
- | 50-3 (3) | 3.81 ± 2.87 | 659 ± 63 |
BoLoei | 53-1 (3) | 3.77 ± 1.23 | 661 ± 26 |
- | 53-2 (4) | 4.03 ± 3.52 | 662 ± 69 |
Locality | U-Pb | Fission Track/(U-Th)/He | Reference |
---|---|---|---|
Ratanakiri Volcanic Province (This Study) | - | - | - |
Bokeo Clas (BC45) | 0.98 ± 0.12 | - | This study |
Bokeo Clas (BC46) | 1.07 ± 0.19 | 0.91 ± 0.02 | - |
Bei Srok (BS47) | 1.143 ± 0.073 | 1.02 ± 0.02 | - |
Phum Throm (PT49) | 1.56 ± 0.21 | 0.93 ± 0.02 | - |
Phum Throm (PT50) | 0.88 ± 0.22 | 1.02 ± 0.02 | - |
- | - | 0.86 ± 0.02 | - |
BoLoei (BL53) | 0.978 ± 0.054 | 0.96 ± 0.06 | - |
- | - | 0.96 ± 0.09 | - |
RVP (unknown locality) | 0.92 ± 0.07 | - | [45] |
- | - | - | - |
Pailin, Cambodia | 2.74 ± 0.47 | 2.14 ± 0.02 | This study |
- | 2.27 ± 0.15–2.60 ± 0.20 1.77 ± 0.15–2.0 ± 0.20 | - | [78] [79] |
Chanthaburi-Trat, Thailand | 1.19 ± 0.29–2.22 ± 0.22 | 0.90 ± 0.04–2.13 ± 0.04 | This study |
- | 2.57 ± 0.20 | - | [78] |
Dak Nong, Vietnam | 1.05 ± 0.05 | - | [7] |
- | 7.13 ± 0.88 | - | - |
Xuan-Loc, Vietnam | 0.57–0.70 | - | [78] |
- | 0.2–0.9 | - | - |
Ban Huai Sai, Laos | 1.14 ± 0.07–1.46 ± 0.06 | - | [38] |
- | 2.4 ± 0.7–4.3 ± 1.0 | - | [11] |
Penglai, Hainan Island, China | 4.4 ± 0.1 | - | [80] |
- | - | 4.06 ± 0.35 | [81] |
Mingxi, China | 1.2 ± 0.1 | - | [13] |
NE Australia | 2.61 ± 0.16–2.92 ± 0.16 | - | [10] |
δ18O | δ18O | ||||
---|---|---|---|---|---|
Sample | mg | μml | μml/mg | raw | VSMOW |
Cambodia-RVP | - | - | - | - | - |
Bokeo Clas, BC46 | 2.85 | 32.7 | 11.5 | 4.93 | 4.95 |
Bei Srok, BS47 | 3.14 | 34.8 | 11.1 | 4.87 | 4.89 |
Phum Throm, PT49 | 2.82 | 30.7 | 10.9 | 4.99 | 5.01 |
Phum Throm, PT50 | 3.40 | 36.7 | 10.8 | 4.86 | 4.88 |
Bo Loei, BL55 | 3.26 | 35.1 | 10.8 | 4.90 | 4.92 |
Cambodia-Pailin | 2.97 | 32.1 | 10.8 | 5.93 | 5.95 |
Thailand | - | - | - | - | - |
Khao Ploi Waen, Chanthaburi-Trat | 3.80 | 41.0 | 10.8 | 6.14 | 6.16 |
Tok Phrom, Chanthaburi-Trat | 3.05 | 32.3 | 10.6 | 5.80 | 5.82 |
Bo Phloi, Kanchanaburi | 3.46 | 37.1 | 10.7 | 5.86 | 5.88 |
Standards | - | - | - | - | - |
UWG-2, garnet | 3.39 | 45.6 | 13.5 | 5.78 | - |
UWG-2, garnet | 2.29 | 31.4 | 13.7 | 5.79 | - |
UWG-2, garnet | 2.16 | 28.3 | 13.1 | 5.80 | - |
UWG-2, garnet | 2.70 | 36.0 | 13.3 | 5.77 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piilonen, P.C.; Sutherland, F.L.; Danišík, M.; Poirier, G.; Valley, J.W.; Rowe, R. Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle. Minerals 2018, 8, 556. https://doi.org/10.3390/min8120556
Piilonen PC, Sutherland FL, Danišík M, Poirier G, Valley JW, Rowe R. Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle. Minerals. 2018; 8(12):556. https://doi.org/10.3390/min8120556
Chicago/Turabian StylePiilonen, Paula C., F. Lin Sutherland, Martin Danišík, Glenn Poirier, John W. Valley, and Ralph Rowe. 2018. "Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle" Minerals 8, no. 12: 556. https://doi.org/10.3390/min8120556
APA StylePiilonen, P. C., Sutherland, F. L., Danišík, M., Poirier, G., Valley, J. W., & Rowe, R. (2018). Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle. Minerals, 8(12), 556. https://doi.org/10.3390/min8120556