13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas
Abstract
:1. Introduction
2. Samples and Analytical Methods
3. Results
3.1. Basic Petrographic and Chemical Data
3.2. 13C-NMR Spectra and Peak-Fitting Results of HOS Coals
4. Discussion
4.1. Aliphatic Carbon Evolution Characteristics of HOS Coals
4.1.1. Aliphatic Carbon (falC)
4.1.2. CH3 Carbon (fal*)
4.1.3. CH2/CH Carbon + Quaternary Carbon (falH)
4.2. Aromatic Carbon Evolution Characteristics of HOS Coals
4.2.1. Aromatic Carbon (farC) and Aromaticity (faCP)
4.2.2. Ratio of Aromatic Bridgehead Carbon to Aromaticity (XBP)
4.3. Oxygen-Containing Functional Group Evolution Characteristics of HOS Coals
4.3.1. Phenolic Ethers (faP)
4.3.2. Carbonyl/Carboxyl Carbon (faC)
4.3.3. Aliphatic Carbon Bonded to Oxygen (falO)
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chou, C.-L. Geologic factors affecting the abundance, distribution, and speciation of sulfur in coals. In Geology of Fossil Fuels, Proceedings of the 30th International Geological Congress: Part B, Beijing, China, 4–14 August 1996; Yang, Q., Ed.; VSP: Utrecht, The Netherlands, 1997; Volume 18, pp. 47–57. [Google Scholar]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Sinninghe Damsté, J.S.; White, C.M.; Green, J.B.; de Leeuw, J.W. Organosulfur Compounds in Sulfur-Rich Raša Coal. Energy Fuels 1999, 13, 728–738. [Google Scholar] [CrossRef]
- White, C.M.; Collins, L.W.; Veloski, G.A.; Irdi, G.A.; Rothenberger, K.S.; Gray, R.J.; LaCount, R.B.; Kasrai, M.; Bancroft, G.M. A study of Mequinenza lignite. Energy Fuels 1994, 8, 155–171. [Google Scholar] [CrossRef]
- Torres-Ordonez, R.J.; Calkins, W.H.; Klein, M.T. Distribution of organic-sulfur-containing structures in high organic sulfur coals. In Geochemistry of Sulfur in Fossil Fuels; ACS Symposium Series; Orr, W.L., White, C.M., Eds.; American Chemical Society: Washington, DC, USA, 1990; pp. 287–295. ISBN 0841218048. [Google Scholar]
- Calkins, W.H. The chemical forms of sulfur in coal: A review. Fuel 1994, 73, 475–484. [Google Scholar] [CrossRef]
- Smith, J.W.; Batts, B.D. The distribution and isotopic composition of sulfur in coal. Geochim. Cosmochim. Acta 1974, 38, 121–133. [Google Scholar] [CrossRef]
- Lei, J. Sulfur occurring regulation of Late Permian coal in Guizhou Province and component, structure and formation of high organosulfur coal. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 1993. (In Chinese with English Abstract). [Google Scholar]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Deposita 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Shao, L.; Jones, T.; Gayer, R.; Dai, S.; Li, S.; Jiang, Y.; Zhang, P. Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, southern China. Int. J. Coal Geol. 2003, 55, 1–26. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.; Wang, X.; Li, X.; Zhao, L.; Kang, H.; et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 2013, 109–110, 77–100. [Google Scholar] [CrossRef]
- Li, W.; Tang, Y.; Deng, X.; Yu, X.; Jiang, S. Geochemistry of the trace elements in the high-organic-sulfur coals from Chenxi coalfield. J. China Coal Soc. 2013, 38, 1227–1233, (In Chinese with English Abstract). [Google Scholar]
- Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, X. Mineralogy and geochemistry of a super high-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol. 2008, 255, 182–194. [Google Scholar] [CrossRef]
- Ren, D.; Tang, Y.; Lei, J. Study on regularities of sulfur occurrence and pyrite magnetism of Late Permian coals in southwest China. J. China Univ. Min. Technol. 1994, 4, 64–73. [Google Scholar]
- Dai, S.; Xie, P.; Ward, C.R.; Yan, X.; Guo, W.; French, D.; Graham, I.T. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geol. Rev. 2017, 88, 235–250. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Chou, C.L.; Wang, X.; Zhao, L.; Zhu, X. Multi-origin of synsedimentary volcanic ash and submarine exhalation for the enrichment of trace elements and minerals in coal. Chin. Sci. Bull. 2008, 53, 3120–3126, (In Chinese with English Abstract). [Google Scholar]
- Lei, J.; Ren, D.; Tang, Y.; Chu, X.; Zhao, R. Sulfur-accumulating model of superhigh organosulfur coal from Guiding, China. Chin. Sci. Bull. 1994, 39, 1817–1821. [Google Scholar]
- Dai, S.; Ren, D.; Tang, Y.; Shao, L.; Li, S. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2002, 51, 237–250. [Google Scholar] [CrossRef]
- Dai, S.; Hou, X.; Ren, D.; Tang, Y. Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. Int. J. Coal Geol. 2003, 55, 139–150. [Google Scholar] [CrossRef]
- Dai, S.; Wang, X.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.K.; Huang, W.; Li, T.; Li, X.; Liu, H.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90–91, 72–99. [Google Scholar] [CrossRef]
- Dai, S.; Yang, J.; Ward, C.R.; Hower, J.C.; Liu, H.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Ward, C.R.; Seredin, V.V.; Hower, J.C.; Li, X.; Song, W.; Wang, X.; Kang, H.; Zheng, L.; et al. Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 2013, 105, 60–84. [Google Scholar] [CrossRef]
- Li, W.; Tang, Y. Sulfur isotopic composition of super high-organic-sulfur coals from the Chenxi coalfield, southern China. Int. J. Coal Geol. 2014, 127, 3–13. [Google Scholar] [CrossRef]
- Dai, S.; Ward, C.R.; Graham, I.T.; French, D.; Hower, J.C.; Zhao, L.; Wang, X. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Sci. Rev. 2017, 175, 44–74. [Google Scholar] [CrossRef]
- Dai, S.; Yan, X.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2016. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2017, in press. [Google Scholar] [CrossRef]
- VanderHart, D.L.; Retcofsky, H.L. Estimation of coal aromaticities by proton decoupled carbon-13 magnetic resonance spectra of whole coals. Fuel 1976, 55, 202–204. [Google Scholar] [CrossRef]
- Zilm, K.W.; Pugmire, R.J.; Larter, S.R.; Allan, J.; Grant, D.M. Carbon-13 CP/MAS spectroscopy of coal macerals. Fuel 1981, 60, 717–722. [Google Scholar] [CrossRef]
- Wilson, M.A.; Pugmire, R.J.; Grant, D.M. Nuclear magnetic resonance spectroscopy of soils and related materials. Relaxation of 13C nuclei in cross polarization nuclear magnetic resonance experiments. Org. Geochem. 1983, 5, 121–129. [Google Scholar] [CrossRef]
- Newman, R.H.; Davenport, S.J. Comparison of Australasian tertiary coals based on resolution-enhanced solid-state 13C n.m.r. spectra. Fuel 1986, 65, 533–540. [Google Scholar] [CrossRef]
- Axelson, D.E. Solid state carbon-13 nuclear magnetic resonance study of Canadian coals. Fuel Process. Technol. 1987, 16, 257–278. [Google Scholar] [CrossRef]
- Hatcher, P.G. Dipolar-dephasing 13C-NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification. Energy Fuels 1988, 2, 48–58. [Google Scholar] [CrossRef]
- Hatcher, P.G.; Lerch, H.E.; Verheyen, T.V. Organic geochemical studies of the transformation of gymnospermous xylem during peatification and coalification to subbituminous coal. Int. J. Coal Geol. 1989, 13, 65–97. [Google Scholar] [CrossRef]
- Hatcher, P.G.; Wilson, M.A.; Vassallo, A.M.; Lerch, H.E. Studies of angiospermous wood in Australian brown coal by nuclear magnetic resonance and analytical pyrolysis: New insights into the early coalification process. Int. J. Coal Geol. 1989, 13, 99–126. [Google Scholar] [CrossRef]
- Love, G.D.; Law, R.V.; Snape, C.E. Determination of nonprotonated aromatic carbon concentrations in coals by single pulse excitation carbon-13 NMR. Energy Fuels 1993, 7, 639–644. [Google Scholar] [CrossRef]
- Maroto-Valer, M.M.; Taulbee, D.N.; Andresen, J.M.; Hower, J.C.; Snape, C.E. Quantitative 13C-NMR study of structural variations within the vitrinite and inertinite maceral groups for semifusinite-rich bituminous coal. Fuel 1998, 77, 805–813. [Google Scholar] [CrossRef]
- Freitas, J.C.C.; Bonagamba, T.J.; Emmerich, F.G. 13C high resolution solid-state NMR study of peat carbonization. Energy Fuels 1999, 13, 53–59. [Google Scholar] [CrossRef]
- Yoshida, T.; Sasaki, M.; Ikeda, K.; Mochizuki, M.; Nogami, Y.; Inokuchi, K. Prediction of coal liquefaction reactivity by solid state 13C-NMR spectral data. Fuel 2002, 81, 1533–1539. [Google Scholar] [CrossRef]
- Almendros, G.; Knicker, H.; Gonzalez-Vila, F.J. Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid state 13C- and 15N-NMR spectroscopy. Org. Geochem. 2003, 34, 1559–1568. [Google Scholar] [CrossRef]
- Crelling, J.C.; Schrader, R.H.; Benedict, L.G. Effects of weathered coal on coking properties and coke quality. Fuel 1979, 58, 542–546. [Google Scholar] [CrossRef]
- Snape, C.E.; Axelson, D.E.; Botto, R.E.; Delpuech, J.J.; Tekely, P.; Gerstein, B.C.; Pruski, M.; Maciel, G.E.; Wilson, M.A. Quantitative reliability of aromaticity and related measurements on coals by 13C n.m.r. A debate. Fuel 1989, 68, 547–560. [Google Scholar] [CrossRef]
- Hatcher, P.G.; Faulon, J.L.; Wenzel, K.A.; Cody, G.D. A structural model for lignin-derived vitrinite from high-volatile bituminous coal (coalified wood). Energy Fuels 1992, 6, 813–820. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.K.; Hatcher, P.G. Composition of coal. In Hydrocarbons from Coal; Law, B.E., Rice, D.D., Eds.; AAPG: Tulsa, OK, USA, 1993; pp. 79–118. ISBN 0891810463. [Google Scholar]
- Wilson, M.A.; Hanna, J.V.; Anderson, K.B.; Botto, R.E. 1H CRAMPS NMR derived hydrogen distributions in various coal macerals. Org. Geochem. 1993, 20, 985–999. [Google Scholar] [CrossRef]
- Botto, R.E. Fossil fuels. In Encyclopedia of Nuclear Magnetic Resonance; Grant, D.M., Harris, R.K., Eds.; John Wiley & Sons: New York, NY, USA, 1996; pp. 2101–2118. ISBN 978-0-471-95839-0. [Google Scholar]
- Pugmire, R.J. Coal structure from solid state NMR. In Encyclopedia of Nuclear Magnetic Resonance; Grant, D.M., Harris, R.K., Eds.; Wiley: Chichester, UK, 1996; pp. 1355–1365. ISBN 0471958395. [Google Scholar]
- Nanny, M.A.; Minear, R.A.; Leenheer, J.A. Nuclear Magnetic Resonance in Environmental Chemistry; Oxford University Press: New York, NY, USA, 1997; ISBN 0195097513. [Google Scholar]
- Suggate, R.P.; Dickinson, W.W. Carbon NMR of coals: The effects of coal type and rank. Int. J. Coal Geol. 2004, 57, 1–22. [Google Scholar] [CrossRef]
- Mao, J.; Cory, R.M.; McKnight, D.M.; Schmidt-Rohr, K. Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR. Org. Geochem. 2007, 38, 1277–1292. [Google Scholar] [CrossRef]
- Mao, J.; Tremblay, L.; Gagne, J.P.; Kohl, S.; Rice, J.; Schmidt-Rohr, K. Humic acids from particulate organic matter in the Saguenay Fjord and the St. Lawrence Estuary investigated by advanced solid-state NMR. Geochim. Cosmochim. Acta 2007, 71, 5483–5499. [Google Scholar] [CrossRef]
- Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, M.; Xu, L.; Schmidt-Rohr, K. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C-NMR spectroscopy. Geochim. Cosmochim. Acta 2010, 74, 2110–2127. [Google Scholar] [CrossRef]
- Mao, J.; Palazzo, A.J.; Olk, D.C.; Clapp, C.E.; Senesi, N.; Bashore, T.L.; Cao, X. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR. Soil Sci. 2010, 175, 329–338. [Google Scholar] [CrossRef]
- Newman, R.H.; Sim, M.N.; Johnston, J.H.; Collen, J.D. Comparison of aromaticity and phenolic content as parameters for characterization of coal by 13C n.m.r. spectroscopy. Fuel 1988, 67, 420–425. [Google Scholar] [CrossRef]
- Dickinson, W.W.; Newman, R.H.; Price, L.C.; Sykes, R. 13C-NMR Spectra and Selected Maturation Parameters from 15 Wells in Southern Taranaki Basin, New Zealand; Geology Board of Studies Publication No. 19; Research School of Earth Sciences, Victoria University of Wellington: Wellington, New Zealand, 1996; p. 31. [Google Scholar]
- Liu, D.; Peng, P. Possible chemical structures and biological precursors of different vitrinites in coal measure in Northwest China. Int. J. Coal Geol. 2008, 75, 204–212. [Google Scholar] [CrossRef]
- Cao, X.; Mastalerz, M.; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy. Int. J. Coal Geol. 2011, 88, 67–74. [Google Scholar] [CrossRef]
- Van Niekerk, D.; Pugmire, R.J.; Solum, M.S. Structural characterization of vitrinite-rich and inertinite-rich Permian-aged South African bituminous coals. Int. J. Coal Geol. 2008, 76, 290–300. [Google Scholar] [CrossRef]
- Van Niekerk, D.; Mathews, J.P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals. Fuel 2010, 89, 73–82. [Google Scholar] [CrossRef]
- Xiang, J.; Zeng, F.; Liang, H.; Sun, B.; Zhang, L.; Li, M.; Jia, J. Model construction of the macromolecular structure of Yanzhou Coal and its molecular simulation. J. Fuel Chem. Technol. 2011, 39, 481–488. [Google Scholar] [CrossRef]
- Xiang, J.; Zeng, F.; Li, B.; Zhang, L.; Li, M.; Liang, H. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation. J. Fuel Chem. Technol. 2013, 41, 391–399, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Fuchs, W.; Sandhoff, A.G. Theory of coal pyrolysis. Ind. Eng. Chem. 1942, 34, 567–571. [Google Scholar] [CrossRef]
- Wiser, W.H. ACS Preprint, Division of Fuel Chemistry; American Chemical Society: Washington, DC, USA, 1975; p. 733. [Google Scholar]
- Shinn, J.H. From coal to single stage and two-stage products: A reactive model of coal structure. Fuel 1984, 63, 1187–1196. [Google Scholar] [CrossRef]
- Ye, C. Characterization and modeling of coal high molecular weight components. Ph.D. Thesis, Taiyuan University of Technology, Taiyuan, China, 2008. (In Chinese with English Abstract). [Google Scholar]
- Wilson, M.A.; Verheyen, T.V.; Vassalo, A.M.; Hill, R.S.; Perry, G.J. Selective loss of carbohydrates from plant remains during coalification. Org. Geochem. 1987, 11, 265–271. [Google Scholar] [CrossRef]
- Bates, A.L.; Hatcher, P.G. Solid-state 13C-NMR studies of a large fossil gymnosperm from the Yallourn Open Cut, Latrobe Valley, Australia. Org. Geochem. 1989, 14, 609–617. [Google Scholar] [CrossRef]
- Hatcher, P.G.; Clifford, D.J. The organic geochemistry of coal: From plant materials to coal. Org. Geochem. 1997, 27, 251–274. [Google Scholar] [CrossRef]
- Crowell, D.L. Coal, an Educational Leaflet No. 8; Ohio Division of Natural Resources (ODNR). 2008; (revised). Available online: http://geosurvey.ohiodnr.gov/portals/geosurvey/PDFs/Education/el08.pdf (access on 31 January 2018).
- Ussiri, D.A.N.; Jacinthe, P.; Lal, R. Methods for determination of coal carbon in reclaimed minesoils: A review. Geoderma 2014, 214–215, 155–167. [Google Scholar] [CrossRef]
- ASTM International. Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal; ASTM Standard, D2798-05; Gaseous Fuels, Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- International Committee for Coal and Organic Petrology (ICCP). The new vitrinite classification (ICCP System 1994). Fuel 1998, 77, 349–358. [Google Scholar]
- International Committee for Coal and Organic Petrology (ICCP). The new inertinite classification (ICCP System 1994). Fuel 2001, 80, 459–471. [Google Scholar]
- ASTM International. Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM Standard, D3173-03; Gaseous Fuels, Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- ASTM International. Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM Standard, D3175-02; Gaseous Fuels, Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- ASTM International. Test Method for Ash in the Analysis Sample of Coal and Coke from Coal; ASTM Standard, D3174-04; Gaseous Fuels, Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- ASTM International. Standard Practice for Ultimate Analysis of Coal and Coke; ASTM Standard, D3176-15; Gaseous Fuels, Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM International. Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke; ASTM Standard D3177-02; Gaseous Fuels, Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- ASTM International. Standard Test Method for Forms of Sulfur in Coal; ASTM Standard, D2492-02; Gaseous Fuels, Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- Yoshida, T.; Mackawa, Y. Characterization of coal structure by CP/MAS carbon-13 NMR spectrometry. Fuel Process. Technol. 1987, 15, 385–395. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, P. The study of carbon structure by solid-13C-NMR and XPS. Coal Convers. 1995, 18, 57–62, (In Chinese with English Abstract). [Google Scholar]
- Kawashima, H.; Yamashita, Y.; Saito, I. Studies on structural changes of coal density-separated components during pyrolysis by means of solid-state 13C-NMR spectra. J. Anal. Appl. Pyrolysis 2000, 53, 35–50. [Google Scholar] [CrossRef]
- Takanohashi, T.; Shishido, T.; Kawashima, H.; Saito, I. Characterisation of Hyper Coals from coals of various ranks. Fuel 2008, 87, 592–598. [Google Scholar] [CrossRef]
- Wang, S.; Tang, Y.; Schobert, H.H.; Guo, Q.; Wang, F. Liquefaction reactivity and 13C-NMR of coals rich in barkinite and semifusinite. J. Fuel Chem. Technol. 2010, 38, 129–133, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, Y.; Cao, X.; Zhu, D.; Chappell, M.A.; Miller, L.F.; Mao, J. Characterization of coals and their laboratory-prepared black carbon using advanced solid-state 13C nuclear magnetic resonance spectroscopy. Fuel Process. Technol. 2012, 96, 56–64. [Google Scholar] [CrossRef]
- Wang, P.; Jin, L.; Liu, J.; Zhu, S.; Hu, H. Analysis of coal tar derived from pyrolysis at different atmospheres. Fuel 2013, 104, 14–21. [Google Scholar] [CrossRef]
- Mei, Y.; Zhao, X.; Sun, W.; Tang, J.; Qiao, A. Spectral Analysis of Coal Tar from Xiaohuangshan Region. Chin. J. Magn. Reson. 2011, 28, 339–348, (In Chinese with English Abstract). [Google Scholar]
- Mei, Y. Study on spectroscopy and performance potential of hydrocarbons in Xinjiang coal. Master’s Thesis, Xinjiang University, Urumqi, China, 2011. (In Chinese with English Abstract). [Google Scholar]
- Castro-Marcano, F.; Lobodin, V.V.; Rodgers, R.P.; McKenna, A.M.; Marshall, A.G.; Mathews, J.P. A molecular model for Illinois No. 6 Argonne Premium coal: Moving toward capturing the continuum structure. Fuel 2012, 95, 35–49. [Google Scholar] [CrossRef]
- Zhang, Y. 13C-NMR research of coalification mechanism for low-medium rank coal. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2006. (In Chinese with English Abstract). [Google Scholar]
- Chen, D.; Hu, J.; Ye, C. The high resolution 13C-NMR study on Chinese coals. Sci. China Ser. D 1996, 26, 525–530, (In Chinese with English Abstract). [Google Scholar]
- Luo, Y.; Li, W.; Chen, Y. 13C-NMR analysis on different macerals of several low-to-medium rank coals. J. Fuel Chem. Technol. 2005, 33, 540–543, (In Chinese with English Abstract). [Google Scholar]
Sample | Seam-Bench | Rmax 1 (%) | Location | Mine | Age | Formation | Area |
---|---|---|---|---|---|---|---|
YX | 1-1 2 | 0.293 | Dayou, Gansu | Yongxing Mine | Middle Jurassic | Yaojie Formation | Northern China |
JJP | 8-5 | 0.724 | Chenxi, Hunan | Jiangjiaping Mine | Late Permian | Wujiaping Formation | Southern China |
WHS | 9-17 | 1.078 | Wuda, Inner Mongolia | Wuhushan Mine | Late Carboniferous | Taiyuan Formation | Northern China |
XY | 10-3 | 1.150 | Fenxi, Shanxi | Xinyu Mine | Late Carboniferous | Taiyuan Formation | Northern China |
CM | 6-1 | 1.404 | Guiding, Guizhou | Caimiao Mine | Late Permian | Changxing Formation | Southern China |
SSP | 11-5 | 1.752 | Hancheng, Shaanxi | Sangshuping Mine | Late Carboniferous | Taiyuan Formation | Northern China |
6K | 3-9 | 1.801 | Heshan, Guangxi | Heshan No.6 Mine | Late Permian | Heshan Formation | Southern China |
GH | M9-1 | 1.804 | Yanshan, Yunnan | Ganhe Mine | Late Permian | Wujiaping Formation | Southern China |
WTP | 15-4 | 3.934 | Jincheng, Shanxi | Wangtaipu Mine | Late Carboniferous | Taiyuan Formation | Northern China |
Parameter | Assignment | Chemical Shift (ppm) |
---|---|---|
fal* | CH3 carbon 1 | 0–25 |
falH | CH/CH2 carbon + quaternary carbon 2 | 25–51 |
falO | aliphatic carbon bonded to oxygen 3 | 51–90 |
faH+B | protonated aromatic carbon + aromatic bridgehead carbon | 90–137 |
faH | protonated aromatic carbon | 90–129 |
faN | non-protonated aromatic carbon | 129–165 |
faB+S | aromatic carbon bonded to carbon | 129–150 |
faB | aromatic bridgehead carbon | 129–137 |
faS | alkylated aromatic carbon | 137–150 |
faP | phenolic ethers | 150–165 |
faC | carbonyl/carboxyl carbon 4 | 165–220 |
faCP | aromaticity | 90–165 |
falC | aliphatic carbon | 0–90 |
farC | aromatic carbon | 90–220 |
XBP | ratio of aromatic bridgehead carbon to aromaticity | (129–137)/(90–165) |
Sample | Maceral 1 (%) | Proximate Analysis (%) | Ultimate Analysis (%) | Total Sulfur and Forms of Sulfur (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V/H | I | L | Mad | Ad | Vdaf | Cdaf | Hdaf | Ndaf | Odaf | St,d | Sp,d | Ss,d | So,d | So,d/St,d | |
YX | 96.6 | 0.5 | 2.9 | 17.51 | 12.38 | 44.84 | 72.83 | 4.79 | 1.08 | 19.00 | 4.07 | 2.01 | 0.04 | 2.02 | 50 |
JJP | 72.5 | 27.5 | 0.0 | 0.19 | 5.28 | 39.00 | 80.61 | 5.41 | 0.65 | 3.26 | 10.08 | 0.53 | 0.00 | 9.55 | 95 |
WHS | 79.3 | 18.7 | 2.0 | 0.36 | 5.16 | 24.02 | nd | nd | nd | nd | 2.48 | 0.06 | 0.01 | 2.41 | 97 |
XY | 77.7 | 22.3 | 0.0 | 0.70 | 2.58 | 21.71 | 88.01 | 4.73 | 1.24 | 2.89 | 3.26 | 0.22 | 0.00 | 3.04 | 93 |
CM | 94.0 | 6.0 | 0.0 | 0.42 | 15.65 | 21.06 | 82.98 | 4.83 | 0.49 | 1.45 | 9.27 | 0.60 | 0.02 | 8.65 | 93 |
SSP | 84.0 | 16.0 | 0.0 | 0.40 | 18.71 | 17.14 | 84.21 | 4.04 | 1.07 | 4.53 | 5.53 | 0.48 | 0.05 | 5.00 | 90 |
6K | 77.5 | 22.5 | 0.0 | 0.32 | 23.62 | 14.27 | 82.34 | 3.46 | 0.58 | 1.03 | 10.44 | 0.80 | 0.02 | 9.62 | 92 |
GH | 65.0 | 32.7 | 2.3 | 0.44 | 15.08 | 12.53 | 80.67 | 3.10 | 0.67 | 2.23 | 12.09 | 0.77 | 0.00 | 11.32 | 94 |
WTP | 86.1 | 13.9 | 0.0 | 4.00 | 9.33 | 5.84 | 94.34 | 2.53 | 0.78 | 1.30 | 1.06 | 0.11 | 0.00 | 0.95 | 89 |
Sample | fal* | falH | falO | falC | faH | ||||||
0–16 | 16–25 | 0–25 | 25–36 | 36–51 | 25–51 | 51–75 | 75–90 | 51–90 | 0–90 | 90–129 | |
YX | 5.49 | 5.18 | 10.67 | 7.68 | 15.92 | 23.60 | - | 2.96 | 2.96 | 37.23 | 31.48 |
JJP | 4.33 | 1.32 | 5.64 | 20.28 | 5.63 | 25.92 | - | 0.90 | 0.90 | 32.46 | 40.88 |
WHS | 3.90 | 2.67 | 6.57 | 15.24 | 3.35 | 18.59 | - | 1.32 | 1.32 | 26.47 | 47.04 |
XY | 2.83 | 3.36 | 6.19 | 9.81 | 4.31 | 14.11 | 1.42 | - | 1.42 | 21.73 | 61.97 |
CM | 4.05 | 3.31 | 7.36 | 11.59 | 1.42 | 13.00 | 0.88 | 3.72 | 4.60 | 24.97 | 62.51 |
SSP | - | 3.48 | 3.48 | 6.75 | 1.05 | 7.81 | - | 1.30 | 1.30 | 12.59 | 66.92 |
6K | 1.42 | 4.05 | 5.48 | 7.30 | - | 7.30 | 1.40 | 3.87 | 5.28 | 18.05 | 60.99 |
GH | - | 3.52 | 3.52 | 2.63 | 1.99 | 4.62 | 2.01 | 2.02 | 4.04 | 12.18 | 55.70 |
WTP | - | 2.08 | 2.08 | 3.20 | 0.90 | 4.10 | 3.45 | - | 3.45 | 9.63 | 74.15 |
Sample | faB | faS | faB+S | faP | faN | faCP | faC | farC | XBP | ||
129–137 | 137–150 | 129–150 | 150–165 | 129–165 | 90–165 | 165–188 | 188–220 | 165–220 | 90–220 | (129–137)/(90–165) | |
YX | 7.89 | 9.93 | 17.82 | 8.01 | 25.83 | 57.31 | 5.42 | 0.05 | 5.46 | 62.77 | 0.14 |
JJP | 19.27 | 3.18 | 22.45 | 2.55 | 25.01 | 65.89 | 1.65 | - | 1.65 | 67.54 | 0.29 |
WHS | 17.47 | 3.94 | 21.41 | 2.87 | 24.29 | 71.33 | 2.20 | - | 2.20 | 73.53 | 0.24 |
XY | 11.51 | 1.64 | 13.15 | 0.90 | 14.04 | 76.01 | 2.26 | - | 2.26 | 78.27 | 0.15 |
CM | 8.99 | 0.37 | 9.37 | 0.86 | 10.23 | 72.74 | 2.29 | - | 2.29 | 75.03 | 0.12 |
SSP | 12.99 | 1.84 | 14.83 | 3.54 | 18.36 | 85.29 | 2.12 | - | 2.12 | 87.41 | 0.15 |
6K | 9.96 | 3.91 | 13.88 | 5.27 | 19.15 | 80.14 | 1.82 | - | 1.82 | 81.95 | 0.12 |
GH | 22.54 | 4.69 | 27.24 | 0.19 | 27.42 | 83.12 | 4.70 | - | 4.70 | 87.82 | 0.27 |
WTP | 8.67 | 2.93 | 11.59 | 2.02 | 13.61 | 87.76 | 2.61 | - | 2.61 | 90.37 | 0.10 |
Sample | YX | JJP | WHS | XY | CM | SSP | 6K | GH | WTP |
---|---|---|---|---|---|---|---|---|---|
Length of aliphatic chains | 2.40 | 5.69 | 4.91 | 4.46 | 3.86 | - | 6.13 | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Tang, Y. 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas. Minerals 2018, 8, 49. https://doi.org/10.3390/min8020049
Wei Q, Tang Y. 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas. Minerals. 2018; 8(2):49. https://doi.org/10.3390/min8020049
Chicago/Turabian StyleWei, Qiang, and Yuegang Tang. 2018. "13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas" Minerals 8, no. 2: 49. https://doi.org/10.3390/min8020049
APA StyleWei, Q., & Tang, Y. (2018). 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas. Minerals, 8(2), 49. https://doi.org/10.3390/min8020049