Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA
Abstract
:1. Introduction
2. History and Geological Setting
3. Materials and Methods
4. Results
5. Discussion
5.1. Geochemistry of Rich Hill Placer Gold
5.1.1. Abundances of Silver and Copper
5.1.2. Manganese and Iron Elemental Abundances
5.1.3. Rim Enrichments and Elemental Abundances
5.2. Biology of Rich Hill Placer Gold
5.2.1. Microbial Culturing
5.2.2. Red and Black Placer Biomats and Nanophase Gold
5.3. Origin and Evolution of the Placer Gold Deposits
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Boyle, R.W. The Geochemistry of Gold and Its Deposits: Together with a Chapter on Geochemical Prospecting for the Element; Geological Survey of Canada: Ottawa, ON, Canada, 1979.
- Saunders, J.A.; Unger, D.L.; Kamenov, G.D.; Fayek, M.; Hames, W.E.; Utterback, W.C. Genesis of Middle Miocene Yellowstone-hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA. Min. Depos. 2008, 43, 715–734. [Google Scholar] [CrossRef]
- Reith, F.; Fairbrother, L.; Nolze, G.; Wilhelmi, O.; Clode, P.L.; Gregg, A.; Parsons, J.E.; Wakelin, S.A.; Pring, A.; Hough, R.; et al. Nanoparticle factories: Biofilms hold key to gold dispersion and nugget formation. Geology 2010, 38, 843–846. [Google Scholar] [CrossRef]
- Lindgren, W. Tertiary Gravels of the Sierra Nevada of California; Professional Paper 78; US Geological Survey: Washington, DC, USA, 1911.
- Watterson, J.R. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching. Geology 1994, 20, 1144–1146. [Google Scholar] [CrossRef]
- Mossman, D.J.; Reimer, T.; Durstling, H. Microbial processes in gold migration and deposition: Modern analogues to ancient deposits. Geosci. Can. 1999, 26, 131–140. [Google Scholar]
- Reith, F.; Lengke, M.F.; Falconer, D.; Craw, D.; Southam, G. Winogradski Review: The geomicrobiology of gold. Int. Soc. Microb. Ecol. J. 2007, 1, 567–584. [Google Scholar] [CrossRef]
- Hough, R.M.; Butt, C.R.M.; Fisher-Buhner, J. The crystallography, metallography and composition of gold. Elements 2009, 5, 297–302. [Google Scholar] [CrossRef]
- Southam, G.; Lengke, M.F.; Fairbrother, L.; Reith, F. The biogeochemistry of gold. Elements 2009, 5, 303–307. [Google Scholar] [CrossRef]
- Hough, R.M.; Butt, C.R.M.; Reddy, S.M.; Verrall, M. Gold nuggets: Supergene or hypogene? Austr. J. Earth Sci. 2007, 54, 959–964. [Google Scholar] [CrossRef]
- Fairbrother, L.; Brugger, J.; Shapter, J.; Laird, J.; Southam, G.; Reith, F. Supergene gold transformation: Biogenic secondary and nano-particulate gold from arid Australia. Chem. Geol. 2012, 320, 17–31. [Google Scholar] [CrossRef]
- Craw, D.; Lilly, K. Gold nugget morphology and geochemical environments of nugget formation, southern New Zealand. Ore Geol. Rev. 2016, 79, 301–315. [Google Scholar] [CrossRef]
- Stewart, J.; Kerr, G.; Prior, D.; Halfpenny, A.; Pearce, M.; Hough, R.; Craw, D. Low temperature recrystallisation of alluvial gold in paleoplacer deposits. Ore Geol. Rev. 2017, 88, 43–56. [Google Scholar] [CrossRef]
- Pettke, T.; Frei, R. Isotope systematics in vein gold from Brusson, Val d’Ayas (NW Italy), Pb/Pb evidence for a Piemonte metaophiolite Au source. Chem. Geol. 1996, 127, 111–124. [Google Scholar] [CrossRef]
- Kamenov, G.D.; Saunders, J.A.; Hames, W.E. Mafic magmas as sources for gold in middle-miocene epithermal deposits of northern Great Basin, USA: Evidence from Pb isotopic compositions of native gold. Econ. Geol. 2007, 102, 1191–1195. [Google Scholar] [CrossRef]
- Kamenov, G.D.; Melchiorre, E.B.; Ricker, F.N.; DeWitt, E. Insights from Pb isotopes for native gold formation during hypogene and supergene processes at Rich Hill, Arizona. Econ. Geol. 2013, 108, 1577–1589. [Google Scholar] [CrossRef]
- Standish, C.D.; Dhuime, B.; Chapman, R.J.; Hawkesworth, C.J.; Pike, A.W.G. The genesis of gold mineralisation hosted by orogenic belts: A lead isotope investigation of Irish gold deposits. Chem. Geol. 2014, 378, 40–51. [Google Scholar] [CrossRef]
- Melchiorre, E.B.; Kamenov, G.D.; Sheets-Harris, C.; Andronikov, A.; Leatham, W.B.; Yahn, J.; Lauretta, D.S. Climate-induced geochemical and morphological evolution of placer gold deposits at Rich Hill, Arizona, USA. Geol. Soc. Am. Bull. 2017, 129, 193–202. [Google Scholar] [CrossRef]
- Blake, W.P. Report of the Territorial Geologist. In Report of the Governor of Arizona for 1899; Arizona Territorial Government: Phoenix, AZ, USA, 1899; pp. 42–153. [Google Scholar]
- Tenney, J.B. Unpublished Field Notes; Arizona Bureau of Mines and Mineral Technology: Tucson, AZ, USA, 1933.
- Hall, E.R. Rich Hill Gold Report. In Arizona Gold Placers and Placering; Arizona Bureau of Mines and Mineral Technology: Tucson, AZ, USA, 1934; pp. 43–46. [Google Scholar]
- Wilson, E.D. Arizona Gold Placers and Placering, 5th ed.; Arizona, Arizona Bureau of Mines and Mineral Technology: Tucson, AZ, USA, 1952; pp. 43–46.
- Metzger, O.H. Gold Mining and Milling in the Wickenburg Area, Maricopa and Yavapai Counties, Arizona; U.S. Bureau of Mines Information Circular 6991; U.S. Bureau of Mines: Washington, DC, USA, 1938.
- Anderson, P. Stratigraphic Framework, Volcanic-Plutonic Evolution, and Vertical Deformation of the Proterozoic Volcanic belts of Central Arizona; Jenney, J.P., Reynolds, S.J., Eds.; Geologic Evolution of Arizona: Tucson, AZ, USA, 1989; pp. 57–147. [Google Scholar]
- Karlstrom, K.; Ahall, K.I.; Williams, M.L.; McLelland, J.; Geissman, J.W. Long-lived (1.8 to 1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. J. Precamb. Res. 2001, 111, 5–30. [Google Scholar] [CrossRef]
- DeWitt, E. Geochemistry and Tectonic Polarity of Early Proterozoic (1700–1750 Ma) Plutonic Rocks, North-Central Arizona; Jenney, J., Reynolds, S.J., Eds.; Geologic Evolution of Arizona: Tucson, AZ, USA, 1989; pp. 149–163. [Google Scholar]
- Wrucke, C.T. The Middle Proterozoic Apache Group, Troy Quartzite, and Associated Diabase of Arizona; Jenney, J.P., Reynolds, S.J., Eds.; Geologic Evolution of Arizona: Tucson, AZ, USA, 1989; pp. 239–258. [Google Scholar]
- Nevius, J.N. Resuscitation of the Octave Gold Mine. Min. Sci. Press 1921, 123, 122–124. [Google Scholar]
- Shuster, J.; Southam, G. The in-vitro “growth” of gold grains. Geology 2015, 43, 79–82. [Google Scholar] [CrossRef]
- Rakovan, J.; Lüders, V.; Massanek, A.; Nolze, G. Gold crystals from the Lena Goldfields, Bodaibo Area, Eastern Siberia, Russia: Exceptional hoppered octahedra and pseudomorphs after pyrite. Rock. Min. 2017, 92, 16–22. [Google Scholar] [CrossRef]
- Shuster, J. Structural and chemical characterization of placer gold grains: Implications for bacterial contributions to grain formation. Geomicro. J. 2015, 32, 158–169. [Google Scholar] [CrossRef]
- Armstrong, J.T. Quantitative Analysis of Silicates and Oxide Minerals: Comparison of Monte-Carlo, ZAF and Phi-Rho-Z Procedures; Newbury, D.E., Ed.; San Francisco Press: San Francisco, CA, USA, 1988; pp. 239–246. [Google Scholar]
- Donovan, J.J.; Snyder, D.A.; Rivers, M.L. An improved interference correction for trace element analysis. In Proceedings of the Annual Meeting-Electron Microscopy Society of America; San Francisco Press: San Francisco, CA, USA, 1993; pp. 23–28. [Google Scholar]
- Knight, J.B.; McTaggart, K.C. Composition of gold from southwestern British Columbia. BC Dep. Energy Min. Pet. Res. Geol. Fieldwork 1988, 1, 387–394. [Google Scholar]
- Douma, Y.; Knight, J.B. Mounting samples in methylmethocrylate for SEM and EMP analysis: J. Sed. 1994, A64, 675–677. [Google Scholar] [CrossRef]
- Knight, J.B.; Mortensen, J.K.; Morison, S.R. The relationship between placer gold shape, rimming and distance of fluvial transport as exemplified by gold from the Klondike, Yukon Territory, Canada. Econ. Geol. 1999, 94, 635–648. [Google Scholar] [CrossRef]
- Freyssinet, P.; Butt, C.R.M.; Morris, R.C. Piantone, Ore-Forming Processes Related to Lateritic Weathering; Hedenquist, J.W., Thomson, J.F.H., Goldfarb, R.J., Richards, J., Eds.; Economic Geology Publishing Company: New Haven, CT, USA, 2005; pp. 681–722. ISBN 978-1-887483-01-8. [Google Scholar]
- Melchiorre, E.B.; Criss, R.E.; Rose, T.P. Oxygen and carbon isotope study of natural and synthetic malachite. Econ. Geol. 1999, 94, 245–259. [Google Scholar] [CrossRef]
- Melchiorre, E.B.; Criss, R.E.; Rose, T.P. Oxygen and carbon isotope study of natural and synthetic azurite. Econ. Geol. 2000, 95, 621–628. [Google Scholar] [CrossRef]
- Trudinger, P.A. Experimental geomicrobiology in Australia. Earth Sci. Rev. 1976, 12, 259–278. [Google Scholar] [CrossRef]
- Mohapatra, B.K.; Mishra, S.; Singh, P. Biogenic wad in Iron Ore Group of rocks of Bonai-Keonjhar belt, Orissa. J. Geol. Soc. India 2012, 80, 89–95. [Google Scholar] [CrossRef]
- Ghiorse, W.C. Biology of iron-and manganese-depositing bacteria. Ann. Rev. Microbio. 1984, 38, 515–550. [Google Scholar] [CrossRef] [PubMed]
- Polgari, M.; Okita, P.M.; Hein, J.R. Stable isotope evidence for the origin of the Úrkút manganese ore deposit, Hungary. J. Sed. Res. 1991, 61, 384–393. [Google Scholar] [CrossRef]
- Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. In Advances in Microbial Ecology; Springer: New York, NY, USA, 2000; pp. 41–84. [Google Scholar]
- Lovley, D. Dissimilatory Fe (III)-and Mn (IV)-reducing prokaryotes. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 287–308. [Google Scholar] [CrossRef]
- Weber, K.A.; Spanbauer, T.L.; Wacey, D.; Kilburn, M.R.; Loope, D.B.; Kettler, R.M. Biosignatures link microorganisms to iron mineralization in a paleoaquifer. Geology 2012, 40, 747–750. [Google Scholar] [CrossRef]
- Ta, C.; Brugger, J.; Pring, A.; Hocking, R.K.; Lenehan, C.E.; Reith, F. Effect of manganese oxide minerals and complexes on gold mobilization and speciation. Chem. Geol. 2015, 407, 10–20. [Google Scholar] [CrossRef]
- Ta, C.; Reith, F.; Brugger, J.L.; Pring, A.; Lenehan, C.E. Analysis of gold (I/III)-complexes by HPLC-ICP-MS demonstrates gold (III) stability in surface waters. Enviro. Sci. Technol. 2014, 48, 5737–5744. [Google Scholar] [CrossRef] [PubMed]
- Clever, H.L.; Johnson, S.A.; Derrick, M.E. The solubility of mercury and some sparingly solub le mercury salts in water and aqueous electrolyte solutions. J. Phys. Chem. Ref. Data 1985, 14, 631–680. [Google Scholar] [CrossRef]
- Barton, A.F. CRC Handbook of Solubility Parameters and Other Cohesion Parameters; CRC Press: Routledge, NJ, USA, 2017; ISBN 9780849301766. [Google Scholar]
- Groen, J.C.; Craig, J.R.; Rimstidt, J.D. Gold-rich rim formation on electrum grains in placers. Can. Min. 1990, 28, 207–228. [Google Scholar]
- Desborough, G.A. Silver depletion indicated by microanalysis of gold from placer occurrences, western United States. Econ. Geol. 1970, 65, 304–311. [Google Scholar] [CrossRef]
- Shuster, J.; Lengke, M.; Márquez-Zavalía, M.F.; Southam, G. Floating gold grains and nanophase particles produced from the biogeochemical weathering of a gold-bearing ore. Econ. Geol. 2016, 111, 1485–1494. [Google Scholar] [CrossRef]
- Watterson, J.R.; Nishi, J.M.; Botinelly, T. Evidence That Gold Crystals Can Nucleate on Spores of Bacillus Cereus; Open-File Report 84-487; US Geological Survey: Washington, DC, USA, 1984.
- Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Benotmane, M.A.; Monsieurs, P.; Grass, G.; Doonan, C.; Vogt, S.; Lai, B.; et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc. Natl. Acad. Sci. USA 2009, 106, 17757–17762. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, L.; Etschmann, B.; Brugger, J.; Shapter, J.; Southam, G.; Reith, F. Biomineralization of gold in biofilms of Cupriavidus metallidurans. Enviro. Sci. Technol. 2013, 47, 2628–2635. [Google Scholar] [CrossRef] [PubMed]
- Tamaoka, J.; Ha, D.M.; Komagata, K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. noand Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Intern. J. Syst. Bact. 1987, 37, 52–59. [Google Scholar] [CrossRef]
- Willems, A.; DeVos, C. The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 2583–2590. [Google Scholar]
- Gilligan, H.; Lum, G.; Vandamme, P.; Whittier, S. Burkholderia, Stenotrophomonas, Ralstonia, Brevundimonas, Comamonas, Delftia, Pandoraea, and Acidovorax. In Manual of Clinical Microbiology; ASM Press: Washington, DC, USA, 2003; pp. 729–748. [Google Scholar]
- Kerr, G.; Falconer, D.; Reith, F.; Craw, D. Transport-related mylonitic ductile deformation and shape change of alluvial gold, southern New Zealand. Sedim. Geol. 2017. [Google Scholar] [CrossRef]
- Brugger, J.; Etschmann, B.; Grosse, C.; Plumridge, C.; Kaminski, J.; Paterson, D.; Shar, S.S.; Ta, C.; Howard, D.L.; de Jonge, M.D.; et al. Can biological toxicity drive the contrasting behavior of platinum and gold in surface environments? Chem. Geol. 2013, 343, 99–110. [Google Scholar] [CrossRef]
- Dufresne, M.B. Origin of Gold in the White Channel Sediments of the Klondike Region, Yukon Teritory. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 1986. [Google Scholar]
- Dufresne, M.B.; Morison, S.R.; Nesbitt, B.E. Evidence of hydrothermal alteration in White Channel sediments and bedrock of the Klondike area, west-central Yukon. Yuk. Geol. 1986, 1, 44–49. [Google Scholar]
- Tempelman-Kluit, D.J. White Channel Gravel of the Klondike. Yuk. Exp. Geol. 1979, 1980, 7–31. [Google Scholar]
- Smith, G.A. Climatic influences on continental deposition during late-stage filling of an extensional basin, southeastern Arizona. Geol. Soc. Am. Bull. 1994, 106, 1212–1228. [Google Scholar] [CrossRef]
Type | Au (wt %) | Ag (wt %) | Cu (wt %) |
---|---|---|---|
Red Placer 1 | 99.3 ± 0.3 | 0.62 ± 0.02 | 0.035 ± 0.003 |
Red Placer 2 | 99.5 ± 0.2 | 0.50 ± 0.02 | 0.034 ± 0.003 |
Red Placer 3 | 90.3 ± 0.2 | 9.5 ± 0.1 | 0.044 ± 0.004 |
Red Placer 4 | 89.8 ± 0.2 | 10.1 ± 0.2 | 0.042 ± 0.003 |
White Placer 1 | 99.5 ± 0.2 | 0.48 ± 0.03 | 0.029 ± 0.003 |
White Placer 2 | 97.5 ± 0.1 | 2.4 ± 0.2 | 0.031 ± 0.003 |
White Placer 3 | 90.4 ± 0.1 | 9.6 ± 0.1 | 0.033 ± 0.003 |
White Placer 4 | 90.1 ± 0.2 | 9.8 ± 0.1 | 0.034 ± 0.003 |
Black Placer 1 | 99.3 ± 0.2 | 0.5 ± 0.8 | 0.051 ± 0.005 |
Black Placer 2 | 99.1 ± 0.1 | 0.62 ± 0.08 | 0.052 ± 0.005 |
Black Placer 3 | 90.0 ± 0.3 | 8.7 ± 0.6 | 0.049 ± 0.003 |
Black Placer 4 | 90.2 ± 0.1 | 8.8 ± 0.7 | 0.043 ± 0.004 |
Sample Number | Type | Au (wt%) | Ag (mg/kg) | Cu (mg/kg) | Mn (mg/kg) | Fe (mg/kg) |
---|---|---|---|---|---|---|
JY2 | Red Placer | 95.3 ± 0.4 | 47,000 ± 4000 | 380 ± 40 | < LOD | 1700 ± 200 |
JY3 | Red Placer | 95.1 ± 0.4 | 48,000 ± 2000 | 390 ± 60 | < LOD | 2000 ± 300 |
JY4 | Red Placer | 96.7 ± 0.4 | 33,000 ± 1000 | 370 ± 80 | < LOD | 6900 ± 400 |
JY5 | Red Placer | 97.6 ± 0.3 | 21,600 ± 900 | 360 ± 70 | < LOD | 5800 ± 300 |
JY8 | Red Placer | 95.7 ± 0.1 | 37,100 ± 2000 | 380 ± 40 | < LOD | 18,500 ± 600 |
JY9 | Red Placer | 94.4 ± 0.3 | 43,000 ± 1000 | 380 ± 30 | < LOD | 16,700 ± 500 |
JY11 | Red Placer | 96.0 ± 0.3 | 32,000 ± 1000 | 400 ± 80 | < LOD | 6400 ± 300 |
JY12 | Red Placer | 93.2 ± 0.4 | 68,000 ± 2000 | 420 ± 90 | < LOD | 12,100 ± 400 |
JY13 | Red Placer | 97.3 ± 0.3 | 22,300 ± 900 | 340 ± 30 | < LOD | 9800 ± 400 |
EM1 | Red Placer | 97.1 ± 0.3 | 25,900 ± 500 | 330 ± 30 | < LOD | 8800 ± 400 |
EM2 | Red Placer | 94.8 ± 0.1 | 42,000 ± 5000 | 370 ± 60 | < LOD | 27,900 ± 900 |
EM3 | Red Placer | 95.7 ± 0.3 | 41,000 ± 2000 | 400 ± 60 | < LOD | 6800 ± 400 |
EM4 | Red Placer | 96.6 ± 0.3 | 34,000 ± 1000 | 350 ± 50 | < LOD | 2500 ± 300 |
EM5 | Red Placer | 95.6 ± 0.3 | 41,000 ± 1000 | 330 ± 60 | < LOD | 4700 ± 300 |
EM6 | Red Placer | 95.8 ± 0.1 | 32,999 ± 2000 | 330 ± 30 | < LOD | 42,000 ± 1300 |
JY19 | White Placer | 99.5 ± 0.3 | 4300 ± 100 | 330 ± 30 | < LOD | 2900 ± 700 |
JY14 | White Placer | 99.7 ± 0.3 | 2600 ± 100 | 280 ± 20 | < LOD | 4100 ± 300 |
JY15 | White Placer | 99.4 ± 0.4 | 6200 ± 200 | 310 ± 30 | < LOD | 1900 ± 200 |
JY16 | White Placer | 99.5 ± 0.3 | 3800 ± 100 | 350 ± 40 | < LOD | 9800 ± 400 |
JY17 | White Placer | 99.5 ± 0.4 | 3700 ± 100 | 320 ± 20 | < LOD | 2100 ± 600 |
JY7 | White Placer | 99.5 ± 0.3 | 4400 ± 100 | 340 ± 30 | < LOD | 8600 ± 400 |
EM14 | White Placer | 98.9 ± 0.3 | 4900 ± 100 | 320 ± 30 | < LOD | 4900 ± 300 |
EM15 | White Placer | 99.1 ± 0.3 | 4600 ± 100 | 330 ± 30 | < LOD | 4300 ± 200 |
RA W1 | White Placer | 99.6 ± 0.2 | 2300 ± 100 | 320 ± 30 | < LOD | 3400 ± 100 |
RA W2 | White Placer | 99.6 ± 0.4 | 1700 ± 40 | 310 ± 30 | < LOD | 4300 ± 100 |
RA W3 | White Placer | 99.8 ± 0.1 | 1120 ± 60 | 270 ± 50 | < LOD | 4600 ± 100 |
RA W4 | White Placer | 99.8 ± 0.2 | 1220 ± 70 | 310 ± 50 | < LOD | 4200 ± 100 |
RA W5 | White Placer | 99.4 ± 0.2 | 3200 ± 100 | 330 ± 30 | < LOD | 4700 ± 100 |
RA W6 | White Placer | 99.0 ± 0.1 | 5000 ± 200 | 290 ± 30 | < LOD | 5600 ± 100 |
RA W7 | White Placer | 99.7 ± 0.4 | 2600 ± 300 | 280 ± 20 | < LOD | 5400 ± 300 |
JY6 | Black Placer | 99.8 ± 0.1 | 1300 ± 100 | 440 ± 60 | 3600 ± 20 | 32,000 ± 1000 |
JY21 | Black Placer | 99.9 ± 0.2 | 970 ± 70 | 430 ± 50 | 4900 ± 300 | 54,000 ± 1700 |
JY22 | Black Placer | 99.5 ± 0.3 | 2140 ± 60 | 450 ± 50 | 3900 ± 200 | 45,000 ± 1000 |
JY23 | Black Placer | 98.9 ± 0.5 | 2300 ± 50 | 460 ± 60 | 6800 ± 400 | 70,000 ± 2200 |
JY24 | Black Placer | 99.3 ± 0.3 | 1630 ± 60 | 440 ± 60 | 5600 ± 300 | 64,000 ± 2000 |
JY25 | Black Placer | 99.9 ± 0.2 | 900 ± 50 | 480 ± 40 | 4200 ± 300 | 53,000 ± 2000 |
EM10 | Black Placer | 99.7 ± 0.3 | 1960 ± 60 | 420 ± 60 | 3100 ± 400 | 65,000 ± 2000 |
EM11 | Black Placer | 99.6 ± 0.2 | 1870 ± 60 | 490 ± 50 | 4600 ± 300 | 55,000 ± 1000 |
EM12 | Black Placer | 99.3 ± 0.2 | 2100 ± 70 | 500 ± 60 | 3800 ± 300 | 46,000 ± 1000 |
EM 14 | Black Placer | 99.9 ± 0.3 | 990 ± 70 | 470 ± 50 | 3700 ± 200 | 44,000 ± 1200 |
RA B1 | Black Placer | 99.7 ± 0.2 | 2210 ± 70 | 510 ± 60 | 3000 ± 300 | 47,000 ± 1000 |
RA B2 | Black Placer | 99.8 ± 0.1 | 920 ± 60 | 480 ± 70 | 4900 ± 300 | 54,000 ± 1000 |
RA B3 | Black Placer | 99.7 ± 0.3 | 2100 ± 80 | 460 ± 60 | 3600 ± 200 | 49,000 ± 1000 |
RA B4 | Black Placer | 99.9 ± 0.2 | 1060 ± 50 | 480 ± 60 | 6300 ± 200 | 59,000 ± 1000 |
RA B5 | Black Placer | 99.5 ± 0.2 | 1800 ± 100 | 440 ± 50 | 3400 ± 200 | 43,000 ± 1000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melchiorre, E.B.; Orwin, P.M.; Reith, F.; Rea, M.A.D.; Yahn, J.; Allison, R. Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA. Minerals 2018, 8, 56. https://doi.org/10.3390/min8020056
Melchiorre EB, Orwin PM, Reith F, Rea MAD, Yahn J, Allison R. Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA. Minerals. 2018; 8(2):56. https://doi.org/10.3390/min8020056
Chicago/Turabian StyleMelchiorre, Erik B., Paul M. Orwin, Frank Reith, Maria Angelica D. Rea, Jeff Yahn, and Robert Allison. 2018. "Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA" Minerals 8, no. 2: 56. https://doi.org/10.3390/min8020056
APA StyleMelchiorre, E. B., Orwin, P. M., Reith, F., Rea, M. A. D., Yahn, J., & Allison, R. (2018). Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA. Minerals, 8(2), 56. https://doi.org/10.3390/min8020056