Lunar and Martian Silica
Abstract
:1. Introduction
2. Moon
2.1. Lunar Igneous Process
2.1.1. Apollo Collections
2.1.2. Lunar Meteorites
2.1.3. Remote-Sensing Observation
2.2. Shock Metamorphism on the Moon
2.3. Alkaline Fluid Activity of the Moon
3. Mars
3.1. Martian Igneous Process
3.2. Shock Metamorphism on Mars
3.3. Acid Fluid Activity of Mars
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Papike, J.J. Comparative planetary mineralogy: Chemistry of melt-derived pyroxene, feldspar, and olivine. In Planetary Materials; Reviews in Mineralogy & Geochemistry; Papike, J.J., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1998; pp. 7-1–7-11. [Google Scholar]
- Lucey, P.; Korotev, R.L.; Gillis, J.J.; Taylor, L.A.; Lawrence, D.; Campbell, B.A.; Elphic, R.; Feldman, B.; Hood, L.L.; Hunten, D.; et al. Understanding the lunar surface and space-moon interactions. In New Views of the Moon, Reviews in Mineralogy & Geochemistry; Jolliff, B.L., Wieczorek, M.A., Shearer, C.K., Neal, C.R., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2006; pp. 83–220. [Google Scholar]
- Ohtani, E.; Ozawa, S.; Miyahara, M.; Ito, Y.; Mikouchi, T.; Kimura, M.; Arai, T.; Sato, K.; Hiraga, K. Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. Proc. Natl. Acad. Sci. USA 2011, 108, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, M.; Kaneko, S.; Ohtani, E.; Sakai, T.; Nagase, T.; Kayama, M.; Nishido, H.; Hirao, N. Discovery of seifertite in a shocked lunar meteorite. Nat. Commun. 2013, 4, 1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, S.; Miyahara, M.; Ohtani, E.; Arai, T.; Hirao, N.; Sato, K. Discovery of stishovite in Apollo 15299 sample. Am. Mineral. 2015, 100, 1308–1311. [Google Scholar] [CrossRef]
- Lee, M.R.; MacLaren, I.; Andersson, S.M.L.; Kovács, A.; Tomkinson, T.; Mark, D.F.; Smith, C.L. Opal-A in the Nakhla meteorite: A tracer of ephemeral liquid water in the Amazonian crust of Mars. Meteorit. Planet. Sci. 2015, 50, 1362–1377. [Google Scholar] [CrossRef] [Green Version]
- Kayama, M.; Tomioka, N.; Ohtani, E.; Seto, Y.; Nagaoka, H.; Götze, J.; Miyake, A.; Ozawa, S.; Sekine, T.; Miyahara, M.; et al. Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith. Sci. Adv. 2018, 4, eaar4378. [Google Scholar] [CrossRef] [PubMed]
- Squyres, S.W.; Arvidson, R.E.; Ruff, S.; Gellert, R.; Morris, R.V.; Ming, D.W.; Crumpler, L.; Farmer, J.D.; Des Marais, D.J.; Yen, A.; et al. Detection of silica-rich deposits on Mars. Science 2008, 320, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-W.; Postberg, F.; Sekine, Y.; Shibuya, T.; Kempf, S.; Horányi, M.; Juhász, A.; Altobelli, N.; Suzuki, K.; Masaki, Y.; et al. Ongoing hydrothermal activities within Enceladus. Nature 2015, 519, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Sekine, Y.; Shibuya, T.; Postberg, F.; Hsu, H.-W.; Suzuki, K.; Masaki, Y.; Kuwatani, T.; Mori, M.; Hong, P.K.; Yoshizaki, M.; Tachibana, S.; Sirono, S. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jolliff, B.L. Fragments of quartz monzodiorite and felsite in Apollo 14 soil particles. In Proceedings of the Twenty-First Lunar and Planetary Science Conference, Houston, TX, USA, 12–16 March 1991; pp. 101–118. [Google Scholar]
- Leroux, H.; Cordier, P. Magmatic cristobalite and quartz in the NWA 856 Martian meteorite. Meteorit. Planet. Sci. 2006, 41, 913–923. [Google Scholar] [CrossRef] [Green Version]
- Akimoto, S.; Yagi, T.; Inoue, K. High temperature-pressure phase boundaries in silicate systems using in situ X-ray diffraction. In High-Pressure Research, Applications in Geophysics; Academic: New York, NY, USA, 1977; pp. 595–602. [Google Scholar]
- Presnall, D.C. Phase diagrams of Earth-forming minerals. In Mineral Physics & Crystallography: A Handbook of Physical Constants; Ahrens, T.J., Ed.; American Geophysical Union: Washington, DC, USA, 1995; pp. 248–268. [Google Scholar]
- Swamy, V.; Saxena, S.K.; Sundman, B.; Zhang, J. A thermodynamic assessment of silica phase diagram. J. Geophys. Res. 1994, 99, 11787–11794. [Google Scholar] [CrossRef]
- Kuwayama, Y. Ultrahigh pressure and high temperature experiments using a laser heated diamond anvil cell in multimegabar pressures region. Rev. High Press. Sci. Technol. 2008, 18, 3–10. [Google Scholar] [CrossRef]
- Tomioka, N.; Miyahara, M. High-pressure minerals in shocked meteorites. Meteorit. Planet. Sci. 2017, 52, 2017–2039. [Google Scholar] [CrossRef]
- Kubo, T.; Kato, T.; Higo, Y.; Funakoshi, K. Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite. Sci. Adv. 2015, 1, e1500075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, T.G.; El Goresy, A.; Wopenka, B.; Chen, M. A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events. Science 1999, 284, 1511–1513. [Google Scholar] [CrossRef] [PubMed]
- Kring, D.A.; Gleason, J.D. Magmatic temperatures and compositions on early Mars as inferred from the orthopyroxene-silica assemblage in ALH84001. In Proceedings of the Annual Meteoritical Society Meeting, Maui, HI, USA, 21–25 July 1997. [Google Scholar]
- Pang, R.-L.; Zhang, A.-C.; Wang, S.-Z.; Wang, R.-C.; Yurimoto, H. High-pressure minerals in eucrite suggest a small source crater on Vesta. Sci. Rep. 2016, 6, 26063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kihara, K. An X-ray study of the temperature dependence of the quartz structure. Eur. J. Mineral. 1990, 2, 63–78. [Google Scholar] [CrossRef]
- Dollase, W.A.; Cliff, R.A.; Wetherill, G.W. Note on tridymite in rock 12021. Proc. Lunar Sci. Conf. 1971, 1, 141–142. [Google Scholar]
- Konnert, J.H.; Appleman, D.E. The crystal structure of low tridymite. Acta Cryst. 1978, 34, 391–403. [Google Scholar] [CrossRef] [Green Version]
- El Goresy, A.; Dera, P.; Sharp, T.G.; Prewitt, C.T.; Chen, M.; Dubrovinsky, L.; Wopenka, B.; Boctor, N.Z.; Hemley, R.J. Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur. J. Mineral. 2008, 20, 523–528. [Google Scholar] [CrossRef]
- El Goresy, A.; Dubrovinsky, L.; Sharp, T.G.; Saxena, S.K.; Chen, M. A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite. Science 2000, 288, 1632–1634. [Google Scholar] [CrossRef] [PubMed]
- Papike, J.J.; Taylor, L.; Simon, S. Lunar minerals. In Lunar Sourcebook; Heiken, G.H., Vaniman, D.T., French, B.M., Eds.; Cambridge University Press: New York, NY, USA, 1991; pp. 121–181. [Google Scholar]
- Warren, P.H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 1985, 13, 201–240. [Google Scholar] [CrossRef]
- Hiesinger, H.; Head, J.W.; Wolf, U.; Jaumann, R.; Neukum, G. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Gephys Res. 2003, 108, E001985. [Google Scholar] [CrossRef]
- Morota, T.; Haruyama, J.; Ohtake, M.; Matsunaga, T.; Honda, C.; Yokota, Y.; Kimura, J.; Ogawa, Y.; Demura, H.; Iwasaki, A.; et al. Timing and characteristics of the latest mare eruption on the Moon. Earth Planet. Sci. Lett. 2011, 302, 255–266. [Google Scholar] [CrossRef]
- Borg, L.E.; Gaffney, A.M.; Shearer, C.K.; DePaolo, D.J.; Hutcheon, I.D.; Owens, T.L.; Ramon, E.; Brennecka, G. Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. Geochim. Cosmochim. Acta 2009, 73, 3963–3980. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Gillis, J.J.; Haskin, L.A.; Korotev, R.L.; Wieczorek, M.A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. 2000, 105, 4197–4216. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, M.; Haruyama, J.; Matsunaga, T.; Yokota, Y.; Morota, T.; Honda, C.; LISM Team. Performance and scientific objectives of the SELENE (KAGUYA) Multiband Imager. Earth Planets Space 2008, 60, 257–264. [Google Scholar] [CrossRef]
- Ohtake, M.; Matsunaga, T.; Haruyama, J.; Yokota, Y.; Morota, T.; Honda, C.; Ogawa, Y.; Torii, M.; Miyamoto, H.; Arai, T.; et al. The global distribution of pure anorthosite on the Moon. Nature 2009, 461, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Ishihara, Y.; Morota, T.; Hirata, N.; Ohtake, M.; Hiroi, T.; Yokota, Y.; et al. Possible mantle origin of olivine around lunar impact basins detected by SELENE. Nat. Geosci. 2010, 3, 533–536. [Google Scholar] [CrossRef]
- Neal, C.R.; Taylor, T.A. Petrogenesis of mare basalts: A record of lunar volcanism. Geochim. Cosmochim. Acta 1992, 56, 2177–2211. [Google Scholar] [CrossRef]
- Taylor, G.J.; Warren, P.H.; Ryder, G.; Delano, J.; Pieters, C.; Lofgren, G. Lunar rocks. In Lunar Sourcebook; Heiken, G.H., Vaniman, D.T., French, B.M., Eds.; Cambridge University Press: New York, NY, USA, 1991; pp. 183–284. [Google Scholar]
- Neal, C.R. The Moon 35 years after Apollo: What’s left to learn? Chem. Erde-Geohcem. 2008. [Google Scholar] [CrossRef]
- Ryder, G. Lunar sample 15405: Remnant of a KREEP basalt-granite differentiated pluton. Earth Planet. Sci. Lett. 1976, 29, 255–268. [Google Scholar] [CrossRef]
- Seddio, S.M.; Korotev, R.L.; Jolliff, B.L.; Wang, A. Silica polymorphs in lunar granite: Implications for granite petrogenesis on the Moon. Am. Mineral. 2015, 100, 1533–1543. [Google Scholar] [CrossRef]
- Seddio, S.M.; Jolliff, B.L.; Korotev, R.L.; Carpenter, P.K. Thorite in an Apollo 12 granite fragment and age determination using the electron microprobe. Geochim. Cosmochim. Acta 2014, 135, 307–320. [Google Scholar] [CrossRef]
- Meyer, C.; Williams, I.S.; Compston, W. Uranium-lead ages for lunar zircons: Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteorit. Planet. Sci. 1996, 31, 370–387. [Google Scholar] [CrossRef]
- Warren, P.H.; Kallemeyn, G.W. Geochemical investigations of five lunar meteorites: Implications for the composition, origin and evolution of the lunar crust. Antarct. Meteor. Res. 1991, 4, 91–117. [Google Scholar]
- Arai, T.; Takeda, H.; Yamaguchi, A.; Ohtake, M. A new model of lunar crust: Asymmetry in crustal composition and evolution. Earth Planet. Space 2008, 60, 433–444. [Google Scholar] [CrossRef]
- Gross, J.; Treiman, A.H.; Mercer, C.N. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust. Earth Planet. Sci. Lett. 2014, 388, 318–328. [Google Scholar] [CrossRef]
- Korotev, R.L. Lunar geochemistry as told by lunar meteorites. Chem. Erde-Geochem. 2005, 65, 297–346. [Google Scholar] [CrossRef]
- Korotev, R.L.; Jolliff, B.L.; Zeigler, R.A.; Gillis, J.J.; Haskin, L.A. Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim. Cosmochim. Acta 2003, 67, 4895–4923. [Google Scholar] [CrossRef]
- Nagaoka, H.; Takeda, H.; Karouji, Y.; Ohtake, M.; Yamaguchi, A.; Yoneda, S.; Hasebe, N. Implications for the origins of pure anorthosites found in the feldspathic lunar meteorites, Dhofar 489 group. Earth Planets Space 2014, 66, 115. [Google Scholar] [CrossRef]
- Takeda, H.; Yamaguchi, A.; Bogard, D.D.; Karouji, Y.; Ebihara, M.; Ohtake, M.; Saiki, K.; Arai, T. Magnesian anorthosites and a deep crustal rock from the farside crust of the moon. Earth Planet. Sci. Lett. 2006, 247, 171–184. [Google Scholar] [CrossRef]
- Treiman, A.H.; Maloy, A.K.; Shearer, C.K., Jr.; Gross, J. Magnesian anorthositic granulites in lunar meteorites Allan Hills A81005 and Dhofar 309: Geochemistry and global significance. Meteorit. Planet. Sci. 2010, 45, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Warren, P.H.; Ulff-Møller, F.; Kallemeyn, G.W. ‘New’ lunar meteorites: Impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust. Meteorit. Planet. Sci. 2005, 40, 989–1014. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Karouji, Y.; Takeda, H.; Nyquist, L.E.; Bogard, D.D.; Ebihara, M.; Shih, C.-Y.; Reese, Y.D.; Garrison, D.; Park, J.; et al. The variety of lithologies in the Yamato-86032 lunar meteorite: Implications for formation processes of the lunar crust. Geochim. Cosmochim. Acta 2010, 74, 4507–4530. [Google Scholar] [CrossRef]
- List of Lunar Meteorites. Available online: http://meteorites.wustl.edu/moon_meteorites_list_alumina.htm (accessed on 9 April 2018).
- Jolliff, B.L.; Korotev, R.L.; Zeigler, R.A.; Floss, C. Northwest Africa 773: Lunar mare breccia with a shallow-formed olivine-cumulate component, inferred very-low-Ti (VLT) heritage, and a KREEP connection. Geochim. Cosmochim. Acta 2003, 67, 4857–4879. [Google Scholar] [CrossRef]
- Fagan, T.J.; Taylor, G.J.; Keil, K.; Hicks, T.L.; Killgore, M.; Bunch, T.E.; Wittke, J.H.; Mittlefehldt, D.W.; Clayton, R.N.; Mayeda, T.K.; et al. Northwest Africa 773: Lunar origin and iron-enrichment trend. Meteorit. Planet. Sci. 2003, 38, 529–554. [Google Scholar] [CrossRef] [Green Version]
- Fagan, T.J.; Kashima, D.; Wakabayashi, Y.; Suginohara, A. Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite. Geochim. Cosmochim. Acta 2014, 133, 97–127. [Google Scholar] [CrossRef]
- Zhang, A.-C.; Hsu, W.-B.; Floss, C.; Li, X.-H.; Li, Q.-L.; Liu, Y.; Taylor, L.A. Petrogenesis of lunar meteorite Northwest Africa 2977: Constraints from in situ microprobe results. Meteorit. Planet. Sci. 2011, 45, 1929–1947. [Google Scholar] [CrossRef]
- Collins, S.J.; Righter, K.; Brandon, A. Mineralogy, petrology and oxygen fugacity of the LaPaz Ice Field lunar basaltic meteorites and the origin and evolution of evolved lunar basalts. In Proceedings of the Thirty-Sixth Lunar and Planetary Science Conference, League City, TX, USA, 14–18 March 2005. [Google Scholar]
- Wang, Y.; Hsu, W.; Guan, Y.; Li, X.; Li, Q.; Liu, Y.; Tang, G. Petrogenesis of the Northwest Africa 4734 basaltic lunar meteorite. Geochim. Cosmochim. Acta 2012, 92, 329–344. [Google Scholar] [CrossRef]
- Al-Kathiri, A.; Gnos, E.; Hofmann, B.A. The regolith portion of the lunar meteorite Sayh al Uhaymir 169. Meteorit. Planet. Sci. 2007, 42, 2137–2152. [Google Scholar] [CrossRef] [Green Version]
- Ashley, J.M.; Robinson, M.S.; Stopar, J.D.; Glotch, T.D.; Hawke, B.R.; van der Bogert, C.H.; Hiesinger, H.; Lawrence, S.J.; Jolliff, B.L.; Greenhagen, B.T.; et al. The Lassell massif-A silicic lunar volcano. Icarus 2016, 273, 248–261. [Google Scholar] [CrossRef]
- Glotch, T.D.; Lucey, P.G.; Bandfield, J.L.; Greenhagen, B.T.; Thomas, I.R.; Elphic, R.C.; Bowles, N.; Wyatt, M.B.; Allen, C.C.; Hanna, K.D.; et al. Highly silicic compositions on the Moon. Science 2010, 329, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
- Hagerty, J.J.; Lawrence, D.J.; Hawke, B.R.; Vaniman, D.T.; Elphic, R.C.; Feldman, W.C. Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon. J. Geophys. Res. 2006, 111, E06002. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Wiseman, S.A.; Lawrence, S.J.; Tran, T.N.; Robinson, M.S.; Sato, H.; Hawke, B.R.; Scholten, F.; Oberst, J.; Hiesinger, H.; et al. Non-mare silicic volcanism on the lunar farside at Compton-Belkovich. Nat. Geosci. 2011, 4, 566–571. [Google Scholar] [CrossRef]
- Wilson, J.T.; Eke, V.R.; Massey, R.J.; Elphic, R.C.; Jolliff, B.L.; Lawrence, D.L.; Llewellin, E.W.; McElwaine, J.N.; Teodoro, L.F.A. Evidence for explosive silicic volcanism on the Moon from the extended distribution of thorium near the Compton-Belkovich Volcanic Complex. J. Geophys. Res. 2015, 120, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Roedder, E.; Weiblen, P.W. Lunar petrology of silicate melt inclusions, Apollo 11 rocks. Geochim. Cosmochim. Acta Suppl. 1970, 1, 801–837. [Google Scholar]
- Sharp, T.G.; DeCarli, P.S. Shock effects in meteorites. In Meteorites and the Early Solar System; Lauretta, D.S., McSween, H.Y., Eds.; Arizona University Press: Tucson, AZ, USA, 2006; pp. 653–678. [Google Scholar]
- Biren, M.B.; Spray, J.G. Shock veins in the central uplift of the Manicouagan impact structure: Context and genesis. Earth Planet. Sci. Lett. 2011, 303, 310–322. [Google Scholar] [CrossRef]
- Koeberl, C.; Kurat, G.; Brandstätter, F. Gabbroic lunar mare meteorites Asuka-881757 (Asuka-31) and Yamato 793169: Geochemical and mineralogical study. Antarct. Meteor. Res. 1993, 6, 14–34. [Google Scholar]
- Arai, T.; Takeda, H.; Warren, P.H. Four lunar meteorites: Crystallization trends of pyroxenes and spinels. Meteorit. Planet. Sci. 1996, 31, 877–892. [Google Scholar] [CrossRef]
- El Goresy, A.; Gillet, P.; Chen, M.; Stähle, V.; Graup, G. In situ finding of the fabric settings of shock-induced quartz/coesite phase transition in crystalline clasts in suevite of the Ries crater, Germany. In Proceedings of the 64th Annual Meteoritical Society Meeting, Vatican City, Italy, 10–14 September 2001. [Google Scholar]
- Ling, Z.C.; Wang, A.; Jolliff, B.L. Mineralogy and geochemistry of four lunar soils by laser-Raman study. Icarus 2011, 211, 101–113. [Google Scholar] [CrossRef]
- Misawa, K.; Tatsumoto, M.; Dalrymple, G.B.; Yanai, K. An extremely low U/Pb source in the Moon: U-Th-Pb, Sm-Nd, Rb-Sr, and 40Ar/39Ar isotopic systematics and age of lunar meteorite Asuka 881757. Geochim. Cosmochim. Acta 1993, 57, 4687–4702. [Google Scholar] [CrossRef]
- Hiesinger, H.; Head, J.W., III. New Views of Lunar Geoscience: An Introduction and Overview. In New Views of the Moon, Reviews in Mineralogy & Geochemistry; Jolliff, B.L., Wieczorek, M.A., Shearer, C.K., Neal, C.R., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2006; Volume 60, pp. 1–81. [Google Scholar]
- Nishiizumi, K.; Arnold, J.R.; Caffee, M.W.; Finkel, R.C.; Southon, J. Cosmic ray exposure histories of lunar meteorites Asuka 881757, Yamato 793169, and Calcalong Creek. In Proceedings of the 17th Symposium on Antarctic Meteorites, Tokyo, Japan, 19–21 August 1992; pp. 129–132. [Google Scholar]
- Hemley, R.J.; Prewitt, C.T.; Kingma, K.J. High-pressure behavior of silica. Rev. Mineral. 1994, 29, 41–81. [Google Scholar]
- Murakami, M.; Hirose, K.; Ono, S.; Ohishi, Y. Stability of CaCl2-type and α-PbO2 at high pressure and temperature determined by in-situ X-ray measurements. Geophys. Res. Lett. 2003, 30, 1207. [Google Scholar] [CrossRef]
- Kuwayama, Y.; Hirose, K.; Sata, N.; Ohishi, Y. The pyrite-type high-pressure form of silica. Science 2005, 309, 923–925. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, Y.; Yagi, T. New pressure-induced transformations of silica at room temperature. Nature 1990, 347, 267–269. [Google Scholar] [CrossRef]
- Dubrovinsky, L.S.; Saxena, S.K.; Lazor, P.; Ahuja, R.; Eriksson, O.; Wills, J.M.; Johansson, B. Pressure-induced transformations of cristobalite. Chem. Phys. Lett. 2001, 333, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Melosh, H.J. A Geologic Process. In Impact Cratering; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Blaß, U.W. Shock-induced formation mechanism of seifertite in shergottites. Phys. Chem. Miner. 2013, 40, 425–437. [Google Scholar] [CrossRef]
- Marchi, S.; Bottke, W.F.; Cohen, B.A.; Wuennemann, K.; Kring, D.A.; McSween, H.Y.; De Sanctis, M.C.; O’Brien, D.P.; Schenk, P.; Raymond, C.A.; et al. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 2013, 6, 303–307. [Google Scholar] [CrossRef]
- Taylor, S.R.; Gorton, M.P.; Muir, P.; Nance, W.; Rudowski, R.; Ware, N. Lunar highlands composition: Apennine Front. Geochim. Cosmochim. Acta 1973, 2, 1445–1459. [Google Scholar]
- McKay, D.S.; Bogard, D.D.; Morris, R.V.; Korotev, R.L.; Wentworth, S.J.; Johnson, P. Apollo 15 regolith breccias: Window to a KREEP regolith. In Proceedings of the 19th Lunar and Planetary Science Conference, Houston, TX, USA, 14–19 March 1989; pp. 19–41. [Google Scholar]
- Langenhorst, F.; Poirier, J.P. “Eclogitic” minerals in a shocked basaltic meteorite. Earth Planet. Sci. Lett. 2000, 176, 259–265. [Google Scholar] [CrossRef]
- Langenhorst, F.; Poirier, J.P. Anatomy of black veins in Zagami: Clues to the formation of high-pressure phases. Earth Planet. Sci. Lett. 2000, 184, 37–55. [Google Scholar] [CrossRef]
- Beck, P.; Gillet, P.; Gautron, L.; Daniel, I.; El Goresy, A. A new natural high-pressure (Na, Ca)-hexaluminosilicate [(CaxNa1-x)Al3+xSi3-xO11] in shocked Martian meteorites. Earth Planet. Sci. Lett. 2004, 219, 1–12. [Google Scholar] [CrossRef]
- Miyahara, M.; Ohtani, E.; Yamaguchi, A.; Ozawa, S.; Sakai, T.; Hirao, N. Discovery of coesite and stishovite in eucrite. Proc. Natl. Acad. Sci. USA 2014, 111, 10939–10942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akaogi, M.; Navrotsky, A. The quartz–coesite–stishovite transformations: New calorimetric measurements and calculation of phase diagrams. Phys. Earth Planet. Inter. 1984, 36, 124–134. [Google Scholar] [CrossRef]
- Zhang, J.; Liebermann, R.C.; Gasparik, T.; Herzberg, C.T.; Fei, Y. Melting and subsolidus relations of SiO2 at 9–14 GPa. J. Geophys. Res. 1993, 98, 19785–19793. [Google Scholar] [CrossRef]
- Duke, M.B.; Gaddis, L.R.; Taylor, G.J.; Schmitt, H.H. Earth-Moon System, Planetary Science, and Lessons Learned. In New Views of the Moon, Reviews in Mineralogy & Geochemistry; Jolliff, B.L., Wieczorek, M.A., Shearer, C.K., Neal, C.R., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2006; pp. 657–704. [Google Scholar]
- Sunshine, J.M.; Farnham, T.L.; Feaga, L.M.; Groussin, O.; Merlin, F.; Milliken, R.E.; A’Hearn, M.F. Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 2009, 326, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W.; Ricco, A.; Elphic, R.C.; et al. Detection of water in the LCROSS ejecta plume. Science 2010, 330, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Schäf, O.; Ghobarkar, H.; Garnier, A.; Vagner, C.; Lindner, J.K.N.; Hanss, J.; Reller, A. Synthesis of nanocrystalline low temperature silica polymorphs. Solid State Sci. 2006, 8, 625–633. [Google Scholar] [CrossRef]
- Kyono, A.; Yokooji, M.; Chiba, T.; Tamura, T.; Tuji, A. Pressure-induced crystallization of biogenic hydrous amorphous silica. J. Mineral. Petrol. Sci. 2017, 112, 324–335. [Google Scholar] [CrossRef]
- Heaney, P.J.; Post, J.E. The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties. Science 1992, 255, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Heaney, P.J. Moganite as an indicator for vanished evaporites: A testament reborn? J. Sediment. Res. 1995, 65, 633–638. [Google Scholar]
- Petrovic, I.; Heaney, P.J.; Navrotsky, A. Thermochemistry of the new silica polymorph moganite. Phys. Chem. Miner. 1996, 23, 119–126. [Google Scholar] [CrossRef]
- Götze, J.; Nasdala, L.; Kleeberg, R.; Wenzel, M. Occurrence and distribution of “moganite” in agate/chalcedony: A combined micro-Raman, Rietveld, and cathodoluminescence study. Contrib. Mineral. Petrol. 1998, 133, 96–105. [Google Scholar] [CrossRef]
- Fernandes, V.A.; Burgess, R.; Turner, G. 40Ar-39Ar chronology of lunar meteorites Northwest Africa 032 and 773. Meteorit. Planet. Sci. 2003, 38, 555–564. [Google Scholar] [CrossRef]
- Nishiizumi, K.; Hillegonds, D.J.; McHargue, L.R.; Jull, A.J.T. Exposure and terrestrial histories of new lunar and martian meteorites. In Proceedings of the 35th Lunar and Planetary Science Conference, League City, TX, USA, 15–19 March 2004. [Google Scholar]
- Schorghofer, N.; Taylor, G.J. Subsurface migration of H2O at lunar cold traps. J. Geophys. Res. 2007, 112, E02010. [Google Scholar] [CrossRef]
- Zuber, M.T.; Head, J.W.; Smith, D.E.; Neumann, G.A.; Mazarico, E.; Torrence, M.H.; Aharonson, O.; Tye, A.R.; Fassett, C.I.; Rosenburg, M.A.; et al. Constraints on the volatile distribution within Shackleton crater at the lunar south pole. Nature 2012, 486, 378–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meteoritical Bulletin Database. Available online: https://www.lpi.usra.edu/meteor/ (accessed on 15 June 2018).
- Nyquist, L.E.; Bogard, D.D.; Shih, C.-Y.; Greshake, A.; Stoffler, D.; Eugster, O. Ages and geologic histories of Martian meteorites. Chronol. Evol. Mars 2001, 96, 105–164. [Google Scholar]
- Niihara, T. Uranium-lead age of baddeleyite in shergottite Roberts Massif 04261: Implications for magmatic activity on Mars. J. Geophys. Res. 2011, 116, E12008. [Google Scholar] [CrossRef]
- Fritz, J.; Artemieva, N.; Greshake, A. Ejection of Martian meteorites. Meteorit. Planet. Sci. 2005, 40, 1393–1411. [Google Scholar] [CrossRef] [Green Version]
- Mittlefehldt, D.W. ALH84001, a cumulate orthopyroxenite member of the Martian meteorite clan. Meteoritics 1994, 29, 214–221. [Google Scholar] [CrossRef]
- Romanek, C.S.; Grady, M.M.; Wright, I.P.; Mittlefehldt, D.W.; Socki, R.A.; Pillinger, C.T.; Gibson, E.K. Record of fluid-rock interactions on Mars from the meteorite ALH84001. Nature 1994, 372, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Romanek, C.S.; Thomas, K.L.; Gibson, E.K.; McKay, D.S.; Socki, R.A. Carbon and sulfur-bearing minerals in the Martian meteorite Allan Hills 84001. Meteoritics 1995, 30, 567–568. [Google Scholar]
- Dreibus, G.; Burghele, A.; Jochum, K.P.; Spettel, B.; Wlotzka, F.; Wänke, H. Chemical and mineral composition of ALH84001: A Martian orthopyroxenite. Meteoritics 1994, 29, 461. [Google Scholar]
- Harvey, R.P.; McSween, H.Y. A possible high-temperature origin for the carbonates in Martian meteorite ALH84001. Nature 1996, 382, 49–51. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Vali, H.; Romanek, C.S.; Clemett, S.J.; Chillier, X.D.F.; Maechling, C.R.; Zare, R.N. Search for life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science 1996, 273, 924–930. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.S.; Thomas-Keprta, K.L.; Romanek, C.S.; Gibson, E.K.; Vali, H. Evaluating the evidence for past life on Mars: Response. Science 1996, 274, 2123–2124. [Google Scholar]
- Corrigan, C.M.; Harvey, R.P.; Bradley, J. Sodium-bearing pyroxene in ALH 84001. In Proceedings of the Thirty-First Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2000; p. 1762. [Google Scholar]
- Corrigan, C.M.; Harvey, R.P. Multi-generational carbonate assemblages in martian meteorite Allan Hills 84001: Implications for nucleation, growth and alteration. Meteorit. Planet. Sci. 2004, 39, 17–30. [Google Scholar] [CrossRef]
- Brearley, A.J. Hydrous phases in ALH84001: Further evidence for preterrestrial alteration and a shock-induced thermal overprint. In Proceedings of the Thirty-First Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2000. [Google Scholar]
- Greenwood, J.O.; McSween, H.Y., Jr. Petrogenesis of Allan Hills 84001: Constraints from impact-melted feldspathic and silica glasses. Meteorit. Planet. Sci. 2001, 36, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Melwani Daswani, M.; Schwenzer, S.P.; Reed, M.H.; Wright, I.P.; Grady, M.M. Alteration minerals, fluids, and gases on early Mars: Predictions from 1-D flow geochemical modeling of mineral assemblages in meteorite ALH 84001. Meteorit. Planet. Sci. 2016, 51, 2154–2174. [Google Scholar] [CrossRef] [Green Version]
- Scott, E.R.D.; Yamaguchi, A.; Krot, A.N. Petrological evidence for shock melting of carbonates in the Martian meteorite ALH84001. Nature 1997, 387, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Turner, G.; Knott, S.F.; Ash, R.D.; Gilmour, J.D. Ar-Ar chronology of the Martian meteorite ALH84001: Evidence for the timing of the early bombardment of Mars. Geochim. Cosmochim. Acta 1997, 61, 3835–3850. [Google Scholar] [CrossRef]
- Valley, J.W.; Eiler, J.M.; Graham, C.M.; Gibson, E.K.; Romanek, C.S.; Stolper, E.M. Low-temperature carbonate concretions in the Martian meteorite ALH84001: Evidence from stable isotopes and mineralogy. Science 1997, 275, 1633–1637. [Google Scholar] [CrossRef] [PubMed]
- Cooney, T.F.; Scott, E.R.D.; Krot, A.N.; Sharma, S.K.; Yamaguchi, A. Vibrational spectroscopic study of minerals in the Martian meteorite ALH84001. Am. Mineral. 1999, 84, 1569–1576. [Google Scholar] [CrossRef]
- White, L.M.; Gibson, E.K.; Thomas-Keprta, K.L.; Clemett, S.J.; McKay, D.S. Putative indigenous carbon-bearing-alteration features in Martian meteorite Yamato 000593. Astrobiology 2014, 14, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Imae, N.; Ikeda, Y.; Shinoda, K.; Kojima, H.; Iwata, N. Yamato Nakhlites: Petrography and mineralogy. Antarct. Meteor. Res. 2003, 16, 13–33. [Google Scholar]
- Symes, S.J.; Borg, L.E.; Shearer, C.K.; Irving, A.J. The age of the Martian meteorite Northwest Africa 1195 and the differentiation history of the Shergottites. Geochim. Cosmochim. Acta 2008, 72, 1696–1710. [Google Scholar] [CrossRef]
- Herd, C.D.K.; Walton, E.L.; Agee, C.B.; Muttik, N.; Ziegler, K.; Shearer, C.K.; Bell, A.S.; Santos, A.R.; Burger, P.V.; Simon, J.I.; et al. The Northwest Africa 8159 martian meteorite: Expanding the martian meteorite suite to the Amazonian. Geochim. Cosmochim. Acta 2017, 218, 1–26. [Google Scholar] [CrossRef]
- Smith, J.V.; Hervig, R.L. Shergotty meteorite: Mineralogy, petrography, and minor elements. Meteoritics 1979, 14, 121–142. [Google Scholar] [CrossRef]
- McSween, H.Y.; Taylor, L.A.; Stolper, E.M. Allan Hills 77005: A new meteorite type found in Antarctica. Science 1979, 204, 1201–1203. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y. Petrology of magmatic silicate inclusions in the Allan Hills 77005 Lherzolitic Shergottite. Meteorit. Planet. Sci. 1998, 33, 803–812. [Google Scholar] [CrossRef]
- Malavergne, V.; Guyot, F.; Benzerara, K.; Martinez, I. Description of new shock-induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteorit. Planet. Sci. 2001, 36, 1297–1305. [Google Scholar] [CrossRef] [Green Version]
- Barrat, J.A.; Gillet, P.; Sautter, V.; Jambon, A.; Javoy, M.; Göpel, C.; Lesourd, M.; Keller, F.; Petit, E. Petrology and geochemistry of the basaltic Shergottite Northwest Africa 480. Meteorit. Planet. Sci. 2002, 37, 487–499. [Google Scholar] [CrossRef]
- Jambon, A.; Barrat, J.-A.; Sautter, V.; Gillet, P.; Göpel, C.; Javoy, M.; Joron, J.-L.; Lesourd, M. The basaltic Shergottite Northwest Africa 856: Petrology and chemistry. Meteorit. Planet. Sci. 2002, 37, 1147–1164. [Google Scholar] [CrossRef]
- Taylor, L.A.; Nazarov, M.A.; Shearer, C.K.; McSween, H.Y., Jr.; Cahill, J.; Neal, C.R.; Icanova, M.A.; Barsukova, L.D.; Lentz, R.C.; Clayton, R.N.; et al. Martian meteorite Dhofar 019: A new Shergottite. Meteorit. Planet. Sci. 2002, 37, 1107–1128. [Google Scholar] [CrossRef]
- Mikouchi, T.; Barrat, J.A. NWA 5029 Basaltic Shergottite: A Clone of NWA 480/1460? In Proceedings of the 72nd Annual Meeting of the Meteoritical, Nancy, France, 13–18 July 2009.
- Howarth, G.H.; Udry, A.; Day, J.M.D. Petrogenesis of basaltic shergottite Northwest Africa 8657: Implications for fO2 correlations and element redistribution during shock melting in shergottites. Meteorit. Planet. Sci. 2018, 53, 249–267. [Google Scholar] [CrossRef]
- Irving, A.J.; Kuehner, S.M. Northwest Africa 5298: A strongly shocked basaltic Shergottite equilibrated at QFM and high temperature. Meteorit. Planet. Sci. 2008, 43, A63. [Google Scholar]
- Hui, H.; Peslier, A.; Lapan, T.; Schafer, J.; Brandon, A.; Irving, A.J. Petrogenesis of basaltic Shergottite Northwest Africa 5298: Closed system crystallization of an oxidized mafic melt. Meteorit. Planet. Sci. 2011, 46, 1313–1328. [Google Scholar] [CrossRef]
- Mikouchi, T. Mineralogical similarities and differences between the Los Angeles basaltic shergottite and the Asuka-881757 lunar mare meteorite. Antarct. Meteor. Res. 2001, 14, 1–20. [Google Scholar]
- Chennaoui Aoudjehane, H.; Jambon, A.; Reynard, B.; Blanc, P. Silica as a shock index in Shergottites: A catholuminescence study. Meteorit. Planet. Sci. 2005, 40, 1–14. [Google Scholar]
- Stöffler, D.; Ostertag, R.; Jammes, C.; Pfannschmidt, G.; Sen Gupta, P.R.; Simon, S.B.; Papike, J.J.; Beauchamp, R.H. Shock metamorphism and petrography of the Shergotty achondrite. Geochim. Cosmochim. Acta 1986, 50, 889–913. [Google Scholar] [CrossRef]
- El Goresy, A.; Gillet, P.; Miyahara, M.; Ohtani, E.; Ozawa, S.; Beck, P.; Montagnac, G. Shock-induced deformation of Shergottites: Shock–pressures and perturbations of magmatic ages on Mars. Geochim. Cosmochim. Acta 2013, 101, 233–262. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kimura, M.; Takeda, H.; Shimoda, G.; Kita, N.T.; Morishita, Y.; Suzuki, A.; Jagoutz, E.; Dreibus, G. Petrology of a new basaltic Shergottite: Dhofar 378. Antarct. Meteor. Res. 2006, 19, 20–44. [Google Scholar]
- Hu, S.; Lin, Y.T.; Zhang, T.; Gu, L.X.; Tang, X. Discovery of first coesite in the martian meteorite Northwest Africa 8675. In Proceedings of the 80th Annual Meeting of the Meteoritical Society, Santa Fe, NM, USA, 23–28 July 2017. [Google Scholar]
- McCoy, T.J.; Lofgren, G.E. Crystallization of the Zagami Shergottite: An experimental study. Earth Planet. Sci. Lett. 1999, 173, 397–411. [Google Scholar] [CrossRef]
- Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L.E.; Park, J.; Yamashita, H.; Hirata, D. Complex formation history of highly evolved basaltic shergottite, Zagami. In Proceedings of the 75th Annual Meeting of the Meteoritical, Cairns, Australia, 12–17 August 2012. [Google Scholar]
- Rubin, A.E.; Warren, P.H.; Greenwood, J.P.; Verish, R.S.; Leshin, L.A.; Hervig, R.L.; Clayton, R.N.; Mayeda, T.K. Los Angeles: The most differentiated basaltic Martian meteorite. Geology 2000, 28, 1011–1014. [Google Scholar] [CrossRef]
- Warren, P.H.; Greenwood, J.P.; Rubin, A.E. Los Angeles: A tale of two stones. Meteorit. Planet. Sci. 2004, 39, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Rost, D.; Stephan, T.; Geshake, A.; Fritz, J.; Jesseberger, E.K.; Weber, I.; Stoffler, D. A combined TOF-SIMS, EMP/SEM of a three-phase symplectite in the Los Angeles basaltic Shergottite. Meteorit. Planet. Sci. 2009, 44, 1225–1237. [Google Scholar] [CrossRef]
- Aramovich, C.J.; Herd, C.D.K.; Papike, J.J. Symplectites derived from metastable phases in Martian basaltic meteorites. Am. Mineral. 2002, 87, 1351–1359. [Google Scholar] [CrossRef]
- Roszjar, J.; Bishoff, A.; Llorca, J.; Pack, A. Ksar Gilane 002 (KG002)—A new Shergottite: Discovery, mineralogy, chemistry and oxygen isotopes. In Proceedings of the 43nd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2012. [Google Scholar]
- Llorca, J.; Roszjar, J.; Cartwright, J.A.; Bischoff, A.; Ott, U.; Pack, A.; Merchel, S.; Rugel, G.; Fimiani, L.; Ludwig, P.; et al. The Ksar Ghilane 002 shergottite—The 100th registered Martian meteorite fragment. Meteorit. Planet. Sci. 2013, 48, 493–513. [Google Scholar] [CrossRef]
- Bunch, T.E.; Irving, A.J.; Wittke, J.H.; Kuehner, S.M. Highly evolved basaltic Shergottite Northwest Africa 2800: A clone of Los Angeles. In Proceedings of the Thirty-Ninth Lunar and Planetary Science Conference, League City, TX, USA, 10–14 March 2008. [Google Scholar]
- Udry, A.; Howarth, G.H.; Lapen, T.J.; Righter, M. Petrogenesis of the NWA 7320 enriched martian gabbroic shergottite: Insight into the martian crust. Geochim. Cosmochim. Acta 2017, 204, 1–18. [Google Scholar] [CrossRef]
- Lindsley, D.H. Pyroxene thermometry. Am. Mineral. 1983, 68, 477–493. [Google Scholar]
- Agee, C.B.; Wilson, N.V.; McCubbin, F.M.; Ziegler, K.; Polyak, V.J.; Sharp, Z.D.; Asmerom, Y.; Nunn, M.H.; Shaheen, R.; Thiemens, M.H.; et al. Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science 2013, 339, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Beck, P.; Pommerol, A.; Zanda, B.; Remusat, L.; Lorand, J.P.; Göpel, C.; Hewins, R.; Pont, S.; Lewin, E.; Quirico, E.; et al. A Noachian source region for the “Black Beauty” meteorite, and a source lithology for Mars surface hydrated dust? Earth Planet. Sci. Lett. 2015, 427, 104–111. [Google Scholar] [CrossRef]
- Ruff, S.W.; Farmer, J.D. Silica deposits in Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun. 2016, 7, 13554. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.V.; Vaniman, D.T.; Blake, D.F.; Gellert, R.; Chipera, S.J.; Rampe, E.B.; Ming, D.W.; Morrison, S.M.; Downs, R.T.; Treimann, A.H.; et al. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. Proc. Natl. Acad. Sci. USA 2016, 113, 7071–7076. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Tschauner, O.; Becett, J.R.; Liu, Y.; Rossman, G.R.; Zhuravlev, K.; Prakapenka, V.; Dera, P.; Taylor, L.A. Tissintite, (Ca, Na, □)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite. Earth Planet. Sci. Lett. 2015, 422, 194–205. [Google Scholar] [CrossRef]
- Teter, D.M.; Hemley, R.J.; Kresse, G.; Hafner, J. High pressure polymorphism in silica. Phys. Rev. Lett. 1998, 80, 2145–2148. [Google Scholar] [CrossRef]
- Kingma, K.; Cohen, R.E.; Hemley, R.J.; Mao, H.-K. Transformation of stishovite to a denser phase at lower-mantle pressures. Nature 1995, 374, 243–245. [Google Scholar] [CrossRef]
- Dubrovinsky, L.S.; Saxena, S.K.; Lazor, P.; Ahuja, R.; Eriksson, O.; Wills, J.M.; Johansson, B. Experimental and theoretical identification of a new high-pressure phase of silica. Nature 1997, 388, 362–365. [Google Scholar] [CrossRef]
- Ma, C.; Tschauner, O. A new high-pressure calcium aluminosilicate (CaAl2Si3.5O11) in martian meteorites: Another after-life for plagioclase and connections to the CAS phase. In Proceedings of the 48th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017; p. 1128. [Google Scholar]
- Baziotis, I.P.; Yang, L.; Paul, S.; DeCarli, H.; Melosh, J.; McSween, H.Y.; Bodnar, R.J.; Taylor, L.A. The Tissint Martian meteorite as evidence for the largest impact excavation. Nat. Commun. 2013, 4, 1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walton, E.L.; Sharp, T.G.; Hu, J.; Filiberto, J. Heterogeneous mineral assemblages in Martian meteorite Tissint as a result of a recent small impact event on Mars. Geochim. Cosmochim. Acta 2014, 140, 334–348. [Google Scholar] [CrossRef]
- Walton, E.L.; Spray, J.G. Mineralogy, microtexture, and composition of shock-induced melt pockets in the Los Angeles basaltic shergottite. Meteorit. Planet. Sci. 2003, 38, 1865–1875. [Google Scholar] [CrossRef]
- He, Q.; Xiao, L.; Balta, J.B.; Baziotis, I.P.; Hsu, W.; Guan, Y. Petrography and geochemistry of the enriched basaltic shergottite Northwest Africa 2975. Meteorit. Planet. Sci. 2015, 50, 2024–2044. [Google Scholar] [CrossRef] [Green Version]
- Boonsue, S.; Spray, J. Shock-induced phase transformations in melt pockets within Martian meteorite NWA 4468. Spectrosc. Lett. 2012, 45, 127–134. [Google Scholar] [CrossRef]
- Ashworth, J.R.; Hutchison, R. Water in noncarbonaceous stony meteorites. Nature 1975, 256, 714–715. [Google Scholar] [CrossRef]
- Treiman, A.H.; Barrett, R.A.; Gooding, J.L. Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite. Meteoritics 1993, 28, 86–97. [Google Scholar] [CrossRef]
- Treiman, A.H.; Lindstrom, D.J. Trace element geochemistry of Martian iddingsite in the Lafayette meteorite. J. Geophys. Res. 1997, 102, 9153–9163. [Google Scholar] [CrossRef] [Green Version]
- Bridges, J.C.; Schwenzer, S.P. The nakhlite hydrothermal brine on Mars. Earth Planet. Sci. Lett. 2012, 359–360, 117–123. [Google Scholar] [CrossRef]
- Tomkinson, T.; Lee, M.R.; Mark, D.F.; Smith, C.L. Sequestration of Martian CO2 by mineral carbonation. Nat. Commun. 2013, 4, 2662. [Google Scholar] [CrossRef] [PubMed]
- Gooding, J.L.; Wentworth, S.J.; Zolensky, M.E. Aqueous alteration of the Nakhla meteorite. Meteoritics 1991, 26, 135–143. [Google Scholar] [CrossRef]
- Gillet, P.; Barrat, J.A.; Deloule, E.; Wadhwa, M.; Jambon, A.; Sautter, V.; Devouard, B.; Neuville, D.; Benzerara, K.; Lesourd, M. Aqueous alteration in the Northwest Africa 817 (NWA 817) Martian meteorite. Earth Planet. Sci. Lett. 2002, 203, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Day, J.M.D.; Taylor, L.A.; Floss, C.; McSween, H.Y. Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars. Meteorit. Planet. Sci. 2006, 41, 581–606. [Google Scholar] [CrossRef] [Green Version]
- Treiman, A.H.; Irving, A.J. Petrology of Martian meteorite Northwest Africa 998. Meteorit. Planet. Sci. 2008, 43, 829–854. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, T.; Nakamura, T.; Misawa, K.; Imae, N.; Aoki, T.; Toh, S. Laihunite and jarosite in the Yamato 00 nakhlites: Alteration products on Mars? J. Geophys. Res. 2009, 114, E10004. [Google Scholar] [CrossRef]
- Thomas-Keprta, K.L.; Wentworth, S.J.; McKay, D.S.; Gibson, E.K. Field emission gun scanning electron (FEGSEM) and transmisison electron (TEM) microscopy of phyllosilicates in Martian meteorites ALH 84001, Nakhla, and Shergotty. In Proceedings of the 31st Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2000. [Google Scholar]
- Morris, R.V.; Klingelhofer, G.; Schroder, C.; Rodionov, D.S.; Yen, A.; Ming, D.W.; de Souza, P.A.; Fleischer, I.; Wdowiak, T.; Gellert, R.; et al. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. 2006, 111, E02S13. [Google Scholar] [CrossRef]
- McLennan, S.M. Sedimentary silica on Mars. Geology 2003, 31, 315–318. [Google Scholar] [CrossRef]
- Baker, L.L.; Agenbroad, D.J.; Wood, S.A. Experimental hydrothermal alteration of a Martian analog basalt: Implications for Martian meteorites. Meteorit. Planet. Sci. 2000, 35, 31–38. [Google Scholar] [CrossRef]
- Tosca, N.J.; McLennan, S.M.; Lindsley, D.H.; Schoonen, M.A.A. Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited. J. Geophys. Res. 2004, 109, E050003. [Google Scholar] [CrossRef]
- Bandfield, J.L. High-silica deposits of an aqueous origin in western Hellas Basin, Mars. Geophys. Res. Lett. 2008, 35, 142–147. [Google Scholar] [CrossRef]
- Mustard, J.F.; Murchie, S.L.; Pelkey, S.M.; Ehlmann, B.L.; Milliken, R.E.; Grant, J.A.; Bibring, J.-P.; Poulet, F.; Bishop, J.; Dobrea, E.N.; et al. Hydrated silicate minerals on mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 2008, 454, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Ehlmann, B.L.; Mustard, J.F.; Swayze, G.A.; Clark, R.N.; Bishop, J.L.; Poulet, F.; Des Marais, D.J.; Roach, L.H.; Milliken, R.E.; Wray, J.J.; et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 2009, 114, E00D08. [Google Scholar] [CrossRef]
- Harvey, R.P.; Hamilton, V.E. Syrtis Major as the source region of the nakhlite/chassignite group of Martian meteorites: Implications for the geological history of Mars. In Proceedings of the Thirty-Sixth Lunar and Planetary Science Conference, League City, TX, USA, 14–18 March 2005. [Google Scholar]
Name | Crystal System | Space Group | Lattice Parameter (Å) | Density | Occurrence | Reference | |||
---|---|---|---|---|---|---|---|---|---|
a | B | c | β | (g/cm3) | |||||
α-Quartz | Trigonal | P3121 or P3221 | 4.9137 | 4.9137 | 5.4047 | 90 | 2.6486 | Lunar/martian samples | [22] |
α-Tridymite | Monoclinic | Cc or C2/c | 18.52 | 4.98 | 23.79 | 105.6 | 2.27 | Lunar samples | [23] |
Triclinic (pseudo-orthorhombic) | F1 | 9.932 | 17.216 | 81.864 | 90 | 2.281 | Terrestrial rocks * | [24] | |
α-Cristobalite | Tetragonal | P41212 | 5.063 | 5.063 | 6.99 | 90 | 2.227 | Lunar/martian samples | [4] |
Coesite | Monoclinic | C2/c | 7.14 | 12.45 | 7.17 | 120.02 | 2.89 | Lunar/martian meteorites | [7] |
Stishovite | Tetragonal | P42/mnm | 4.204 | 4.204 | 2.678 | 90 | 4.216 | Lunar/martian samples | [4] |
Seifertite | Orthorhombic | Pbcn or Pnc2 | 4.097 | 5.0462 | 4.4946 | 90 | 4.2949 | Lunar/martian meteorites | [25] |
Baddeleyite-type | Monoclinic | P21/c | 4.375 | 4.584 | 4.708 | 99.97 | 4.3 | Martian meteorite | [26] |
α-Moganite | Monoclinic | I2/a | 8.77 | 4.90 | 10.77 | 90.38 | 2.59 | Lunar meteorite | [7] |
Opal-A | - | - | - | - | - | - | - | Martian meteorite | [6] |
Mission | Landing Site | Sample Weight (kg) | Retuned Date |
---|---|---|---|
Apollo 11 | Mare Tranquilitatis | 21.6 | 24 July 1969 |
Apollo 12 | Oceanus Procellarum | 34.3 | 24 November 1969 |
Apollo 14 | Mare Imbrium | 42.3 | 9 February 1971 |
Apollo 15 | Hadley Rille/Appenine Mts | 77.3 | 7 August 1971 |
Apollo 16 | Descartes Highlands | 95.7 | 27 April 1972 |
Apollo 17 | Mare Serenitatis | 110.5 | 19 December 1972 |
Luna 16 | Mare Fecunditatis | 0.10 | 24 September 1970 |
Luna 20 | Apollonius Highlands | 0.03 | 25 February 1972 |
Luna 24 | Mare Crisium | 0.17 | 22 August 1976 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayama, M.; Nagaoka, H.; Niihara, T. Lunar and Martian Silica. Minerals 2018, 8, 267. https://doi.org/10.3390/min8070267
Kayama M, Nagaoka H, Niihara T. Lunar and Martian Silica. Minerals. 2018; 8(7):267. https://doi.org/10.3390/min8070267
Chicago/Turabian StyleKayama, Masahiro, Hiroshi Nagaoka, and Takafumi Niihara. 2018. "Lunar and Martian Silica" Minerals 8, no. 7: 267. https://doi.org/10.3390/min8070267
APA StyleKayama, M., Nagaoka, H., & Niihara, T. (2018). Lunar and Martian Silica. Minerals, 8(7), 267. https://doi.org/10.3390/min8070267