Mineralogical and Geochemical Characteristics of Trace Elements in the Yongdingzhuang Mine, Datong Coalfield, Shanxi Province, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Proximate Analysis
4.2. Mineralogical Composition
4.3. Geochemistry
4.3.1. Major Elements
4.3.2. Trace Elements
5. Discussion
5.1. Elemental Associations
5.2. Selected Elements
5.2.1. TiO2 and Al2O3
5.2.2. Zirconium
5.2.3. Beryllium
5.2.4. Strontium and Ba
5.2.5. Lithium
5.2.6. Thallium and Hg
5.2.7. Gallium
5.2.8. Fluorine
5.3. Rare Earth Elements and Yttrium
5.3.1. Geochemical Characteristics of REY
5.3.2. Patterns of REY
6. Conclusions
- (1)
- The No. 4 coal samples of the Yongdingzhuang Mine have a medium ash yield content (average 20.76%), a low moisture content (average 1.46%), a medium-high volatile content (average 27.45%), and a low sulfur content (average 0.70%).
- (2)
- The mineralogical compositions are mainly kaolinite and quartz with minor amounts of pyrite and anatase. Kaolinite occurs in the form of infillings in fusinite and disseminations in collodetrinite, suggesting syngenetic and early diagenetic authigenic origin. In addition, quartz occurs primarily as detrital grains derived from the source region.
- (3)
- The ratio of Al2O3 and TiO2 in coal seam No. 4 ranged from 4.36 to 44.50 (18.96 on average), indicating that sediments formed by weathering of the parent rocks, which mainly had felsic or intermediate geochemical characteristics. The ratio of Sr and Ba ranged from 0.09 to 0.37 (0.21 on average), clearly suggesting a terrestrial sedimentary environment.
- (4)
- Compared to both average Chinese coals and average world hard coals, REY in the No. 4 coal seam have higher concentration. The REY mainly occurs as inorganic matter in the ash yield, which is consistent with its strong correlation with ash yield. Furthermore, no pronounced or negative Ce anomalies and weak negative or positive Eu anomalies demonstrate that the REY originated from granite of Yinshan Oldland and natural waters or hydrothermal solutions that may circulate in coal basins.
- (5)
- Al2O3 and SiO2 are prevailing abundant major oxides in No. 4 coals, with higher SiO2/Al2O3 (1.54), compared to average Chinese coals, with a large proportion of SiO2 in the form of free silica within coals. With regard to valuable elements, the concentrations of Al, Li, Ga, Zr, Nb, Ta, Hf, Th, and REY were slightly higher than those of average world hard coals. In some coal seams, the concentrations of these elements reached industrial levels and are thus economical to extract. Furthermore, As, Hg, Be, F, U, Pb, Se, Cr, Cd, Ni, and Tl are the main hazardous trace elements in No. 4 coals. Moreover, the Be, Tl, Hg and Pb are slightly higher than in average world hard coals, which is a concern for human and environmental health during combustion and utilization. In terms of the mode of occurrence, Li, F, Cr, Ga, Se, Cd, Zr, Pb, Nb, Ta, and Hf occur as inorganic matter in clay minerals. Cobalt, Ni, As, Tl, and Hg have a strong correlation with sulfur, suggesting a occurrence in sulfide minerals. Lithium and F also occur in anatase, gorceixite and goyazite. Beryllium has affinity to anatase; gallium is mainly associated with kaolinite and to a lesser extent, with gorceixite and goyazite; zirconium also occurs as inorganic matter in ncluding kaolinie, gorceixite and goyazite. These elements and minerals should be further investigated in future studies.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- BP. BP Statistical Review of World Energy June 2014; BP: London, UK, 2014. [Google Scholar]
- Dai, S.F.; Finkelman, R.B. Coal geology in China: An overview. Int. Geol. Rev. 2018, 60, 531–534. [Google Scholar] [CrossRef]
- Tian, H.Z.; Lu, L.; Hao, J.M.; Gao, J.J.; Cheng, K.; Liu, K.Y.; Qin, P.P.; Zhu, C.Y. A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts. Energy Fuels 2013, 27, 601–614. [Google Scholar] [CrossRef]
- Tang, S.H.; Sun, S.L.; Qin, Y.; Jiang, Y.F.; Wang, W.F. Distribution characteristics of sulfur and the main harmful trace elements in China’s Coal. Acta Geol. Sin. Engl. Ed. 2008, 82, 722–730. [Google Scholar]
- Hower, J.C.; Rimmer, S.M.; Bland, A.E. Geochemistry of the blue gem coal bed, Knox County, Kentucky. Int. J. Coal Geol. 1991, 18, 211–231. [Google Scholar] [CrossRef]
- Kolker, A.; Finkelman, R.B. Potentially hazardous elements in coal: Modes of occurrence and summary of concentration data for coal components. Coal Prep. 1998, 19, 133–157. [Google Scholar] [CrossRef]
- Dai, S.F.; Yang, J.Y.; Ward, C.R.; Hower, J.C.; Liu, H.D.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Dai, S.F.; Zeng, R.S.; Sun, Y.Z. Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. Int. J. Coal Geol. 2006, 66, 217–226. [Google Scholar] [CrossRef]
- Kolker, A.; Senior, C.; van Alphen, C.; Koenig, A.; Geboy, N. Mercury and trace element distribution in density separates of a South African Highveld (#4) coal: Implications for mercury reduction and preparation of export coal. Int. J. Coal Geol. 2017, 170, 7–13. [Google Scholar]
- Seredin, V.V.; Dai, S.F.; Sun, Y.Z.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Dai, S.F.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.F.; Yan, X.Y.; Ward, C.R.; Hower, J.C.; Wang, X.B.; Zhao, L.; Ren, D.Y.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Dai, S.F.; Ward, C.R.; Granham, I.T.; French, D.; Hower, J.C.; Zhao, L.; Wang, X.B. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth Sci. Rev. 2017, 175, 44–74. [Google Scholar] [CrossRef]
- Dai, S.F.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Granham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.Y.; Wang, X.B. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Wang, A. Discriminant effect of sedimentary environment by the Sr/Ba ratio of different existing forms. Acta Sedimentol. Sin. 1996, 3, 297–304. [Google Scholar]
- Dai, S.F.; Wang, P.P.; Ward, C.R.; Tang, Y.G.; Song, X.L.; Jiang, J.H.; Hower, J.C.; Li, T.J.; Seredin, V.V.; Wagner, N.J.; et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 2015, 152, 19–46. [Google Scholar] [CrossRef]
- Hower, J.C.; Granite, E.J.; Mayfield, D.B.; Lewis, A.S.; Finkelman, R.B. Notes on contributions to the science of rare earth element enrichment in coal and coal combustion by-products. Minerals 2016, 6, 32. [Google Scholar] [CrossRef]
- Dou, G.M. Datong Coalfield Carboniferous-Permian Coal Seam Occurrence Characteristics and Control Effects; Taiyuan University of Technology: Taiyuan, China, 2013; (In Chinese with English abstract). [Google Scholar]
- Liu, B.J.; Lin, M.Y. Enrichment mechanism of lithium in coal seam No. 9 of the Pingshuo mining district, Ningwu coalfield. Geol. Explor. 2014, 50, 1070–1075, (In Chinese with English abstract). [Google Scholar]
- Dai, S.F.; Ren, D.Y.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y.P. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Liu, D.N.; Zhou, A.C.; Chang, Z.G. Geochemistry characteristics of major and rare earth elements in No. 8 raw and weathered coal from Taiyuan Formation of Datong Coalfield. J. China Coal Soc. 2015, 40, 422–430, (In Chinese with English abstract). [Google Scholar]
- Liu, D.N.; Zhou, A.C.; Ma, M.L. Coal facies characteristics of No. 5 coal seam in Baidong Mine Area, Datong Coalfield. Coal Geol. China 2011, 23, 1–4, (In Chinese with English abstract). [Google Scholar]
- China Coal Research Institute. GB/T 482-2008. Sampling of Coal Seams; Chinese National Standard; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2008. (In Chinese)
- Dai, S.F.; Wang, X.B.; Zhou, Y.P.; Hower, J.C.; Li, D.H.; Chen, W.M.; Zhu, X.W.; Zou, J.H. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the Late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem. Geol. 2011, 282, 29–44. [Google Scholar] [CrossRef]
- Li, X.; Dai, S.F.; Zhang, W.G.; Li, T.; Zheng, X.; Chen, W.M. Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2014, 124, 1–4. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Total Fluorine in Coal and Coke by Pyrohydrolytic Extraction and Ion Selective Electrode or Ion Chromatograph Methods; Standard D5987-96, 2002; ASTM International: West Conshohocken, PA, USA, reapproved 2007.
- Dai, S.F.; Hower, J.C.; Ward, C.R.; Guo, W.M.; Song, H.J.; O’Keefe, J.M.K.; Xie, P.P.; Hood, M.M.; Yan, X.Y. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144, 23–47. [Google Scholar] [CrossRef]
- China Coal Research Institute. GB/T 15224.1-2010, Classification for Quality of Coal, Part 1; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- China Coal Science Research Institute. MT/T850-2000, Classification for Total Moisture in Coal; Chinese National Standard; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2000. (In Chinese)
- China Coal Research Institute. MT/T849-2000, Classification for Volatile Matter of Coal; Chinese National Standard; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2000. (In Chinese)
- China Coal Research Institute. GB/T 15224.2-2010, Classification for Quality of Coal, Part 2; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- Ward, C.R. Minerals in bituminous coals of the Sydney Basin (Australia) and the Illinois Basin (U.S.A.). Int. J. Coal Geol. 1989, 13, 455–479. [Google Scholar] [CrossRef]
- Dai, S.F.; Jiang, Y.F.; Ward, C.R.; Gu, L.D.; Seredin, V.V.; Liu, H.D.; Zhou, D.; Wang, X.B.; Sun, Y.Z.; Zou, J.H.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Kang, J.; Li, X. Modes of occurrence of minerals in the Carboniferous coals from the Wuda Coalfield, northern China: With an emphasis on apatite formation. Arabian J. Geosci. 2016, 9, 606. [Google Scholar] [CrossRef]
- Yang, N.; Tang, S.H.; Zhang, S.H.; Chen, Y.Y. Modes of occurrence and abundance of trace elements in Pennsylvanian coals from the Pingshuo Mine, Ningwu Coalfield, Shanxi Province, China. Minerals 2016, 6, 40. [Google Scholar] [CrossRef]
- Dai, S.F.; Zou, J.H.; Jiang, Y.F.; Ward, C.R.; Wang, X.B.; Li, T.; Xue, W.F.; Liu, S.D.; Tian, H.M.; Sun, X.H. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol. 2012, 94, 250–270. [Google Scholar] [CrossRef]
- Querol, X.; Chinenon, S.; Lopez-Soler, A. Iron sulphide precipitation sequence in Albian coals from the Maestrazgo basin, southeastern Iberean range, northeastern Spain. Int. J. Coal Geol. 1989, 11, 171–189. [Google Scholar] [CrossRef]
- Dai, S.F.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.W.; Zhang, W.G.; Song, W.J.; Wang, P.P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, B.; Duan, P.P.; Shi, Z.X.; Ma, J.L.; Lin, M.Y. Geochemical characteristics of trace elements in the No. 6 Coal seam from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China. Minerals 2016, 6, 28. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Chou, C.-L.; Li, S.S.; Jiang, Y.F. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of clarkes for carbonaceous biolithes: World average for trace element concentrations in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Spears, D.; Zheng, Y. Geochemistry and origin of elements in some UK coals. Int. J. Coal Geol. 1999, 38, 161–179. [Google Scholar] [CrossRef]
- Eskenazy, G.; Finkelman, R.B.; Chattarjee, S. Some considerations concerning the use of correlation coefficients and cluster analysis in interpreting coal geochemistry data. Int. J. Coal Geol. 2010, 83, 491–493. [Google Scholar] [CrossRef]
- Kortenski, J.; Sotirov, A. Trace and major element concentration and distribution in Neogene lignite from the Sofia basin. Int. J. Coal Geol. 2002, 52, 63–82. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, X.B.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.K.; Huang, W.H.; Li, T.; Li, X.; Liu, H.D. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90, 72–99. [Google Scholar] [CrossRef]
- Yang, N.; Tang, S.H.; Zhang, S.H.; Chen, Y.Y. Mineralogical and geochemical compositions of the No. 5 Coal in Chuancaogedan Mine, Junger Coalfield, China. Minerals 2015, 5, 788–800. [Google Scholar] [CrossRef]
- Hayashi, K.I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Zhong, Y.T.; Guan, J.P. The Guadalupian–Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos 2010, 119, 10–19. [Google Scholar] [CrossRef]
- Dai, S.F.; Luo, Y.B.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.D.; Tian, H.M.; Zou, J.H. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Finkelman, R.B. Modes of Occurrence of Trace Elements in Coal; U.S. Geological Survey Open-File Report No. OFR-81-99; U.S. Geological Survey: Reston, VA, USA, 1981; p. 301.
- Dai, S.F.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.Y.; Ma, Y.W.; Sun, Y.Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Duan, P.P.; Wang, W.F.; Liu, X.H.; Qian, F.C.; Sang, S.X.; Xu, S.C. Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high-sulfur coal, Yunnan Province, China. Int. J. Coal Geol. 2017, 173, 129–141. [Google Scholar] [CrossRef]
- Finkelman, R.B. Trace and minor elements in coal. In Organic Geochemistry; Engel, M.H., Macko, S.A., Eds.; Plenum: New York, NY, USA, 1993; pp. 593–607. [Google Scholar]
- Swaine, D.J. Trace Elements in Coal; Butterworths: London, UK, 1990. [Google Scholar]
- Crowley, S.S.; Stanton, R.W.; Ryer, T.A. The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah. Org. Geochem. 1989, 14, 315–331. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.F. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: London, UK, 1985; p. 312. [Google Scholar]
- Dai, S.F.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Yan, X.Y.; Dai, S.F.; Graham, I.T.; He, X.; Shan, K.H.; Liu, X. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2018, 19, 152–156. [Google Scholar] [CrossRef]
- Scott, C.T.; Deonarine, A.; Kolker, A.; Adams, M.; Holland, J.F. Size distribution of rare earth elements in coal ash. In Proceedings of the World of Coal Ash Conference, Nashville, TN, USA, 5–7 May 2015. [Google Scholar]
- Hower, J.C.; Eble, C.F.; O’Keefe, J.M.K.; Dai, S.F.; Wang, P.P.; Xie, P.P.; Liu, J.J.; Ward, C.R.; French, D. Petrology, palynology, and geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian) in Eastern Kentucky, USA. Minerals 2015, 5, 592–622. [Google Scholar] [CrossRef]
- Seredin, V.V. Rare earth elements in germanium-bearing coal seams of the Spetsugli Deposit (Primor’e Region, Russia). Geol. Ore Depos. 2005, 47, 238–255. [Google Scholar]
Sample | Thickness (cm) | Mad | Ad | Vdaf | St.d | Sp.d | Ss.d | So.d |
---|---|---|---|---|---|---|---|---|
YDZ4-1 | 20 | 1.7 | 14.47 | 33.43 | 1.35 | 0.96 | 0.01 | 0.38 |
YDZ4-2 | 20 | 1.56 | 13.6 | 31.16 | 0.51 | 0.30 | 0.01 | 0.19 |
YDZ4-3 | 20 | 1.84 | 9.82 | 30.61 | 1.10 | 0.74 | 0.01 | 0.35 |
YDZ4-4 | 10 | 0.74 | 83.19 | 18.35 | 0.10 | 0.09 | 0.01 | 0.00 |
YDZ4-5 | 10 | 1.66 | 12.9 | 35.94 | 0.62 | 0.18 | 0.01 | 0.43 |
YDZ4-6 | 10 | 1.29 | 48.67 | 16.07 | 0.18 | 0.16 | 0.01 | 0.01 |
YDZ4-7 | 10 | 1.28 | 39.3 | 24.13 | 0.20 | 0.18 | 0.01 | 0.01 |
YDZ4-8 | 5 | 0.95 | 61.21 | 19.43 | 0.20 | 0.17 | 0.01 | 0.02 |
YDZ4-9 | 20 | 1.28 | 27.46 | 28.53 | 0.43 | 0.20 | 0.01 | 0.21 |
YDZ4-10 | 20 | 1.55 | 12.43 | 26.87 | 1.02 | 0.20 | 0.01 | 0.80 |
YDZ4-11 | 20 | 1.39 | 11.89 | 25.68 | 1.97 | 0.31 | 0.02 | 1.65 |
YDZ4-12 | 15 | 1.36 | 20.23 | 23.92 | 0.56 | 0.15 | 0.01 | 0.40 |
YDZ4-13 | 15 | 1.31 | 19.58 | 21.68 | 0.37 | 0.33 | 0.01 | 0.03 |
YDZ4-14 | 15 | 1.33 | 20.55 | 21.89 | 0.35 | 0.25 | 0.01 | 0.09 |
YDZ4-15 | 10 | 1.55 | 12.51 | 32.14 | 0.53 | 0.34 | 0.01 | 0.18 |
AVE | - | 1.46 | 20.76 | 27.45 | 0.70 | 0.33 | 0.01 | 0.36 |
Sample | LOI | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | MnO | Na2O | K2O | P2O5 | SiO2/Al2O3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
YDZ4-1 | 85.53 | 7.49 | 0.18 | 4.57 | 1.28 | 0.07 | 0.29 | 0.0032 | 0.0048 | 0.02 | 0.013 | 1.64 |
YDZ4-2 | 86.4 | 6.52 | 0.17 | 5.00 | 1.18 | 0.07 | 0.26 | 0.0014 | 0.0021 | 0.04 | 0.006 | 1.30 |
YDZ4-3 | 90.18 | 6.12 | 0.16 | 3.08 | 0.14 | 0.03 | 0.12 | 0.0011 | bdl | 0.01 | 0.004 | 1.99 |
YDZ4-4 | 16.81 | 48.54 | 0.80 | 32.27 | 0.50 | 0.12 | 0.09 | 0.0012 | 0.0073 | 0.62 | 0.061 | 1.50 |
YDZ4-5 | 87.1 | 7.00 | 0.12 | 5.34 | 0.23 | 0.02 | 0.05 | 0.0003 | 0.0002 | 0.03 | 0.005 | 1.31 |
YDZ4-6 | 51.33 | 27.00 | 1.66 | 19.39 | 0.26 | 0.02 | 0.06 | bdl | 0.0067 | 0.07 | 0.035 | 1.39 |
YDZ4-7 | 60.7 | 21.73 | 0.98 | 15.98 | 0.32 | 0.02 | 0.06 | 0.0007 | 0.0095 | 0.05 | 0.044 | 1.36 |
YDZ4-8 | 38.79 | 33.35 | 1.00 | 26.11 | 0.26 | 0.02 | 0.07 | bdl | 0.0103 | 0.06 | 0.024 | 1.28 |
YDZ4-9 | 72.54 | 14.76 | 0.39 | 11.65 | 0.35 | 0.02 | 0.09 | 0.0005 | 0.0059 | 0.04 | 0.013 | 1.27 |
YDZ4-10 | 87.57 | 6.10 | 0.15 | 4.93 | 0.97 | 0.02 | 0.09 | 0.0002 | 0.0022 | 0.01 | 0.004 | 1.24 |
YDZ4-11 | 88.11 | 5.30 | 0.27 | 4.07 | 2.08 | 0.01 | 0.05 | 0.0004 | 0.0025 | 0.01 | 0.005 | 1.30 |
YDZ4-12 | 79.77 | 12.00 | 1.33 | 6.22 | 0.45 | 0.01 | 0.05 | 0.0009 | bdl | 0.03 | 0.014 | 1.93 |
YDZ4-13 | 80.42 | 11.67 | 1.40 | 6.10 | 0.21 | 0.01 | 0.05 | 0.0005 | bdl | 0.02 | 0.013 | 1.91 |
YDZ4-14 | 79.45 | 12.49 | 1.38 | 6.25 | 0.22 | 0.01 | 0.05 | 0.0006 | bdl | 0.02 | 0.013 | 2.00 |
YDZ4-15 | 87.49 | 6.60 | 0.58 | 4.96 | 0.17 | 0.01 | 0.05 | 0.0002 | 0.0020 | 0.02 | 0.006 | 1.33 |
AVE | 79.74 | 11.14 | 0.67 | 7.16 | 0.60 | 0.03 | 0.10 | 0.0008 | 0.0028 | 0.03 | 0.01 | 1.54 |
Chinese coal 1 | - | 8.47 | 0.33 | 5.98 | 4.85 | 0.22 | 1.23 | 0.015 | 0.16 | 0.19 | 0.09 | 1.42 |
CC | - | 1.32 | 2.03 | 1.20 | 0.12 | 0.14 | 0.08 | 0.05 | 0.02 | 0.16 | 0.11 | - |
Elements | Li | Be | F | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | As | Se | Rb | Sr | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YDZ4-1 | 21.27 | 3.84 | 92 | 8.15 | 26.10 | 34 | 31.10 | 64.20 | 52.30 | 34.30 | 16.90 | 24.33 | 2.47 | 0.80 | 11.60 | 306 |
YDZ4-2 | 12.50 | 5.53 | 77 | 9.01 | 17.40 | 28.10 | 16.40 | 30.20 | 57.40 | 26.60 | 13.40 | 1.71 | 2.87 | 0.68 | 9.40 | 182 |
YDZ4-3 | 7.91 | 2.39 | 96 | 5.08 | 19.80 | 14.90 | 17.90 | 27.60 | 46.30 | 21.10 | 18.20 | 15.07 | 1.32 | 1.16 | 9.46 | 267 |
YDZ4-4 | 90.60 | 2.83 | 550 | 5.93 | 24.50 | 48.60 | 4.37 | 25.90 | 18.20 | 20.80 | 25.20 | 1.29 | 1.47 | 24.90 | 116 | 152 |
YDZ4-5 | 20.60 | 2.76 | 96 | 4.91 | 36 | 14 | 20.50 | 26.40 | 58.20 | 27.70 | 22 | 1.53 | 3.94 | 1.22 | 9.60 | 355 |
YDZ4-6 | 192 | 8.30 | 267 | 17 | 50.80 | 37.30 | 2.40 | 24.40 | 58.30 | 31 | 31.20 | 1.68 | 5.42 | 2.86 | 12.50 | 330 |
YDZ4-7 | 145 | 7.44 | 248 | 16 | 37.30 | 24.90 | 1.88 | 14.10 | 34 | 24.40 | 18.80 | 0.82 | 3.13 | 1.87 | 18.50 | 268 |
YDZ4-8 | 174 | 6.15 | 327 | 9.26 | 29.50 | 14.20 | 2.79 | 14.10 | 18.40 | 22.80 | 26.30 | 1.02 | 2.40 | 1.88 | 10.80 | 218 |
YDZ4-9 | 85.60 | 4.83 | 168 | 7.53 | 23.80 | 13.70 | 10.80 | 18.90 | 47.30 | 29.20 | 13.20 | 1.58 | 2.99 | 1.36 | 11.50 | 200 |
YDZ4-10 | 26.70 | 5.23 | 83 | 4.67 | 15.10 | 15.80 | 16.90 | 24.70 | 16.90 | 12.70 | 7.16 | 8.68 | 2.87 | 0.34 | 2.86 | 108 |
YDZ4-11 | 17.80 | 5.75 | 68 | 4.03 | 17.90 | 21.20 | 27.40 | 29.30 | 53.40 | 28.10 | 10.10 | 18.52 | 2.38 | 0.30 | 9.26 | 151 |
YDZ4-12 | 38.80 | 10.80 | 100 | 10.20 | 36.30 | 38.20 | 8.73 | 22 | 54.40 | 39.20 | 10.80 | 3.40 | 3.68 | 1.18 | 13.60 | 191 |
YDZ4-13 | 42.20 | 13.20 | 152 | 12 | 51.30 | 47 | 8.49 | 24 | 72.70 | 54.90 | 13.50 | 1.73 | 6.55 | 0.92 | 15.20 | 242 |
YDZ4-14 | 38.30 | 11.80 | 96 | 11 | 45.80 | 41.40 | 7.98 | 21.90 | 61.10 | 57.50 | 13.80 | 1.83 | 5.90 | 0.71 | 12.80 | 238 |
YDZ4-15 | 28.80 | 8.33 | 63 | 7.83 | 31.10 | 11.40 | 11.90 | 22.30 | 56.80 | 53.50 | 15.70 | 1.37 | 4.74 | 0.82 | 8.12 | 217 |
AVE | 52.11 | 6.94 | 123.54 | 9.03 | 31.44 | 26.30 | 14.03 | 26.92 | 51.47 | 33.86 | 15.75 | 6.33 | 3.71 | 1.09 | 11.11 | 235 |
World 1 | 14 | 2 | 82 | 3.70 | 28 | 17 | 6 | 17 | 16 | 28 | 6 | 8.30 | 1.30 | 18 | 100 | 36 |
Chinese 2 | 31.80 | 2.11 | 130 | 4.38 | 35.10 | 15.40 | 7.08 | 13.70 | 17.50 | 41.40 | 6.55 | 2.78 | 3.79 | 9.25 | 140 | 89.50 |
CC 3 | 3.72 | 3.47 | 1.51 | 2.44 | 1.12 | 1.55 | 2.34 | 1.58 | 3.22 | 1.21 | 2.63 | 0.76 | 2.86 | 0.06 | 0.11 | 6.53 |
CC 4 | 1.64 | 3.29 | 0.95 | 2.06 | 0.90 | 1.71 | 1.98 | 1.97 | 2.94 | 0.82 | 2.40 | 2.28 | 0.98 | 0.12 | 0.08 | 2.63 |
Elements | Nb | Mo | Cd | In | Sb | Cs | Ba | Hf | Ta | W | Hg | Tl | Pb | Bi | Th | U |
YDZ4-1 | 13.10 | 11 | 0.14 | 0.08 | 1.40 | 0.08 | 34.30 | 5.29 | 0.41 | 1.33 | 0.79 | 4.65 | 30.90 | 0.24 | 8.07 | 3.52 |
YDZ4-2 | 5.57 | 7.42 | 0.08 | 0.10 | 0.92 | 0.06 | 32.80 | 3.86 | 0.39 | 1.26 | 0.12 | 0.62 | 14.50 | 0.31 | 8.24 | 2.17 |
YDZ4-3 | 9.20 | 12.70 | 0.12 | 0.10 | 0.98 | 0.19 | 37.50 | 5.60 | 0.33 | 2.44 | 0.86 | 5.27 | 31.50 | 0.28 | 7.79 | 3.22 |
YDZ4-4 | 31.40 | 1.80 | 0.08 | 0.17 | 12.30 | 3.05 | 326 | 5.70 | 2.96 | 3.04 | 0.17 | 0.47 | 32.60 | 1.63 | 26 | 3.54 |
YDZ4-5 | 12.80 | 8.34 | 0.15 | 0.12 | 1.13 | 0.17 | 34.20 | 8.27 | 0.42 | 1.14 | 0.31 | 0.77 | 56.10 | 0.28 | 10.20 | 5.11 |
YDZ4-6 | 44.80 | 3.76 | 0.16 | 0.27 | 0.43 | 0.63 | 143 | 9.79 | 2.99 | 3.03 | 0.08 | 0.22 | 50.90 | 1.40 | 30.80 | 6.98 |
YDZ4-7 | 22.70 | 2.19 | 0.13 | 0.20 | 0.34 | 0.32 | 124 | 7.50 | 1.69 | 1.59 | 0.05 | 0.10 | 60.10 | 0.97 | 23.90 | 4.64 |
YDZ4-8 | 26.20 | 1.31 | 0.11 | 0.16 | 0.27 | 0.28 | 180 | 8.51 | 1.61 | 2.22 | 0.08 | 0.24 | 39.50 | 0.46 | 15.20 | 4.29 |
YDZ4-9 | 8.08 | 1.93 | 0.10 | 0.14 | 0.52 | 0.17 | 72.10 | 6.20 | 0.53 | 0.79 | 0.21 | 0.76 | 26 | 0.22 | 10.40 | 3.17 |
YDZ4-10 | 3.50 | 7.11 | 0.06 | 0.07 | 0.42 | 0.03 | 20.80 | 2.41 | 0.23 | 0.42 | 0.46 | 2.91 | 19.80 | 0.17 | 5.09 | 1.49 |
YDZ4-11 | 4.63 | 5.64 | 0.10 | 0.13 | 8.46 | 0.03 | 25.20 | 3.35 | 0.35 | 0.73 | 1.17 | 9.82 | 13.20 | 0.26 | 5.25 | 1.40 |
YDZ4-12 | 23.40 | 2.68 | 0.09 | 0.12 | 0.32 | 0.14 | 77.60 | 5.03 | 1.39 | 1.61 | 0.22 | 1.21 | 18.20 | 0.43 | 21.80 | 3.36 |
YDZ4-13 | 25 | 2.79 | 0.10 | 0.17 | 10.20 | 0.10 | 72.20 | 6.53 | 1.69 | 1.83 | 0.18 | 0.56 | 25.60 | 0.59 | 25.20 | 3.93 |
YDZ4-14 | 29.50 | 2.40 | 0.11 | 0.20 | 9.07 | 0.07 | 65.10 | 6.91 | 2.09 | 2.19 | 0.18 | 0.54 | 26.60 | 0.59 | 24.70 | 3.86 |
YDZ4-15 | 16.90 | 3.50 | 0.10 | 0.11 | 5.61 | 0.12 | 34 | 4.69 | 0.77 | 0.73 | 0.15 | 0.78 | 23.90 | 0.50 | 7.37 | 2.69 |
AVE | 16.86 | 5.50 | 0.11 | 0.14 | 3.06 | 0.16 | 59.45 | 5.80 | 1.02 | 1.47 | 0.37 | 2.17 | 30.56 | 0.48 | 14.52 | 3.50 |
World 1 | 4 | 2.10 | 0.20 | 0.04 | 1.00 | 1.10 | 150 | 1.20 | 0.30 | 0.99 | 0.10 | 0.58 | 9 | 1.10 | 3.20 | 1.90 |
Chinese 2 | 9.44 | 3.08 | 0.25 | 0.05 | 0.84 | 1.13 | 159 | 3.71 | 0.62 | 0.62 | 0.16 | 0.47 | 15.1 | 0.79 | 3.84 | 2.43 |
CC 3 | 4.22 | 2.62 | 0.55 | 3.48 | 3.06 | 0.15 | 0.40 | 4.84 | 3.41 | 1.48 | 3.68 | 3.74 | 3.40 | 0.44 | 4.54 | 1.84 |
CC 4 | 1.79 | 1.78 | 0.44 | 2.78 | 3.64 | 0.14 | 0.37 | 1.56 | 1.65 | 2.37 | 2.30 | 4.62 | 2.02 | 0.61 | 3.78 | 1.44 |
Correlation with Ash Yield |
rash = 0.7–1.0: Na2O (0.73) **, Al2O3 (0.99) **, SiO2 (0.99) **, P2O5 (0.92) **, K2O (0.88) **, Li (0.99) **, F (0.96) **, Sc (0.87) **, Rb (0.88) **, Nb (0.75) **, In (0.86) **, Cs (0.87) **, Ba (0.97) **, Hf (0.71) **, Ta (0.80) **, Bi (0.88) **, Th (0.77) **, U (0.74) ** |
rash = 0.4–0.69: TiO2 (0.67) *, Ga (0.62) *, Sr (0.60) *, Cd (0.48), W (0.53), Pb (0.60) *, REY(0.68) |
rash = 0.2–0.39: Be (0.31), Cr (0.34), Se (0.36), Zr (0.36) rash = −0.2–0.19: MgO (−0.19), Cu (0.00), Zn (−0.01) rash < −0.2: Fe2O3 (−0.34), CaO (−0.27), MnO (−0.27), Co (−0.73) *, Ni (−0.34), As (−0.43), Mo (−0.55), Sb (−0.25), Hg (−0.54), Tl (−0.47) |
Correlation with aluminosilicate |
rAl-Si = 0.7–1.0: P2O5, K2O, Li, F, Sc, Rb, Nb, In, Cs, Ba, Hf, Ta, Bi, Th, U |
rAl-Si = 0.4–0.69: TiO2, Na2O, Ga, Se, Cd, W, Pb, REY |
rAl-Si = 0.2–0.39: Be, Cr, Se, Zr rAl-Si < 0.2: MgO, CaO, MnO, Fe2O3, Co, Ni, Cu, Zn, As, Mo, Sb, Hg, Tl |
Correlation with carbonate |
rCa > 0.7: MgO (0.98) **, MnO (0.86) **, Ni (0.77) ** rCa = 0.5–0.69: Co (0.53), Mo (0.60) *, rCa = 0.35–0.69: As (0.49) |
Correlation with sulfur |
rs > 0.7: Fe2O3 (0.79) **, Co (0.87) **, As (0.89) **, Hg (0.96) **, Tl (0.97) ** rpyritic sulfur >0.7: MnO (0.81) **, Ni (0.82) **, As (0.79) **, Mo (0.74) ** rpyritic sulfur = 0.5–0.69: MgO (0.60) *, CaO (0.67) *, Co (0.63) *, Hg(0.60) * rpyritic sulfur = 0.35–0.49: Tl (0.47) rsulfate sulfur > 0.7: Tl (0.81) ** rsulfate sulfur = 0.5–0.69: Hg (0.69) ** rsulfate sulfur = 0.35–0.49: Co (0.46), As (0.46) rorganic sulfur > 0.7: Hg (0.80) **, Tl (0.87) ** rorganic sulfur = 0.5–0.69: Co (0.66) *, As (0.60) * |
Correlation with phosphate |
rp > 0.7: Li (0.91) **, F (0.91) **, Sc (0.89) **, Rb (0.79) **, Sr (0.73) **, Cs (0.76) **, In (0.77) **, Ba (0.92) **, Bi (0.85) **, Th (0.74) ** rp = 0.5–0.69: V (0.55), Ga (0.55), Nb (0.68) *, Cd (0.50), Hf (0.64) *, Pb (0.67) *, U (0.68) * rp = 0.35–0.49: Be (0.39), Cr (0.35), Zr (0.39), W (0.48) |
Correlation coefficients between selected elements |
Li: Li-Na2O (0.77) **, Li-P2O5 (0.91) **, Li-TiO2 (0.60) *, Li-K2O (0.86) **, Li-F (0.96) **, Li-Ga (0.64) *, Li-Sr (0.52), Li-Ba (0.93) **, Li-Hf (0.68) *, Li-Ta (0.75) **, Li-Th (0.69) **, Li-U (0.72) ** Zr: Zr-Rb (0.63), Zr-Cd (0.94), Zr-Hf (0.85) Be: Be-TiO2 (0.86), Be-Sr (0.48), Be-Ba (0.44) Sr: Sr-P2O5 (0.73) **, Sr-TiO2 (0.64)*, Sr-F (0.64) *, Sr-Ba (0.73) **, Sr-Ta (0.62) *, Sr-Hf (0.61) *, Sr-Th (0.75) **, Sr-U (0.56) * Ba: Ba-TiO2 (0.78) *, Ba-Na2O (0.60), Ba-K2O (0.82) **, Ba-F (0.94) *, Ba-Ga (0.60) *, Ba-Hf (0.74) **, Ba-Ta (0.87) **, Ba-Th (0.87) ** Tl: Tl-Fe2O3 (0.74), Tl-As (0.86) **, Tl-Hg (0.98) ** Hg: Hg-Co (0.81) **, Hg-Fe2O3 (0.66), Hg-As (0.91) ** Ga: Ga-K2O (0.69) **, Ga-F(0.63) **, Ga-Rb (0.85) **, Ga-Zr (0.86) **, Ga-Nb (0.64) *, Ga-Cs (0.87) **, Ga-Cd (0.89) **, Ga-Hf (0.85) **, Ga-U (0.89) ** F: F-Na2O (0.73) **, F-K2O (0.82) **, F-P2O5 (0.91) **, F-Rb (0.88) **, F-Nb (0.66) *, F-In (0.80) **, F-Hf (0.94) **, F-Ta (0.73) **, F-Th (0.72) **, F-U (0.75) ** |
Elements | YDZ4-1 | YDZ4-2 | YDZ4-3 | YDZ4-4 | YDZ4-5 | YDZ4-6 | YDZ4-7 | YDZ4-8 | YDZ4-9 | YDZ4-10 | YDZ4-11 | YDZ4-12 | YDZ4-13 | YDZ4-14 | YDZ4-15 | AVE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | 55.30 | 11.60 | 7.94 | 100.00 | 7.35 | 56.10 | 28.20 | 28.00 | 36.90 | 16.40 | 15.90 | 26.70 | 30.30 | 28.70 | 8.66 | 25.39 |
Ce | 94.00 | 22.80 | 13.90 | 146.00 | 12.20 | 104.00 | 58.20 | 58.60 | 62.70 | 34.40 | 30.70 | 56.20 | 67.50 | 64.40 | 19.80 | 49.29 |
Pr | 11.10 | 2.89 | 1.82 | 16.70 | 1.66 | 11.00 | 6.88 | 5.39 | 6.59 | 4.81 | 3.16 | 6.31 | 8.43 | 7.54 | 2.35 | 5.73 |
Nd | 42.40 | 12.60 | 8.49 | 44.60 | 7.11 | 39.80 | 26.40 | 18.10 | 24.60 | 21.70 | 12.00 | 22.30 | 30.20 | 29.40 | 9.49 | 22.04 |
Sm | 7.31 | 2.72 | 2.25 | 6.26 | 2.03 | 8.35 | 6.09 | 3.17 | 4.04 | 4.41 | 2.29 | 4.41 | 6.00 | 5.87 | 2.11 | 4.45 |
Eu | 1.40 | 0.50 | 0.44 | 0.67 | 0.42 | 1.33 | 1.14 | 0.57 | 0.73 | 0.88 | 0.44 | 0.88 | 1.18 | 1.18 | 0.51 | 0.85 |
Gd | 6.64 | 2.89 | 2.29 | 4.13 | 2.07 | 7.47 | 5.30 | 3.05 | 3.69 | 3.54 | 2.23 | 4.20 | 5.49 | 5.64 | 2.31 | 4.14 |
Td | 1.01 | 0.60 | 0.43 | 0.56 | 0.38 | 1.35 | 1.11 | 0.64 | 0.65 | 0.60 | 0.37 | 0.82 | 1.12 | 1.09 | 0.46 | 0.77 |
Dy | 5.55 | 4.29 | 2.56 | 2.87 | 2.29 | 7.23 | 6.05 | 3.41 | 3.43 | 3.36 | 2.29 | 4.85 | 5.92 | 5.86 | 2.92 | 4.35 |
Y | 27.00 | 25.80 | 13.50 | 14.00 | 11.60 | 37.30 | 32.80 | 18.80 | 17.00 | 16.70 | 12.80 | 35.00 | 44.80 | 40.90 | 22.10 | 25.95 |
Ho | 0.93 | 0.91 | 0.51 | 0.53 | 0.43 | 1.32 | 1.14 | 0.70 | 0.66 | 0.51 | 0.43 | 0.93 | 1.27 | 1.18 | 0.60 | 0.83 |
Er | 2.77 | 2.87 | 1.49 | 1.52 | 1.15 | 3.26 | 2.97 | 1.88 | 1.66 | 1.47 | 1.19 | 2.97 | 3.22 | 3.13 | 1.76 | 2.30 |
Tm | 0.42 | 0.52 | 0.30 | 0.25 | 0.19 | 0.59 | 0.54 | 0.31 | 0.29 | 0.24 | 0.19 | 0.46 | 0.57 | 0.53 | 0.31 | 0.40 |
Yb | 2.71 | 2.94 | 1.57 | 1.59 | 1.21 | 3.23 | 3.07 | 1.92 | 1.67 | 1.29 | 1.20 | 2.69 | 3.28 | 3.03 | 1.77 | 2.28 |
Lu | 0.38 | 0.45 | 0.25 | 0.20 | 0.17 | 0.45 | 0.40 | 0.22 | 0.22 | 0.20 | 0.16 | 0.41 | 0.45 | 0.44 | 0.28 | 0.33 |
∑LREY | 210.11 | 52.61 | 34.4 | 313.56 | 30.35 | 219.25 | 125.77 | 113.26 | 134.83 | 81.72 | 64.05 | 115.92 | 142.43 | 135.91 | 42.41 | 92.65 |
∑MREY | 41.6 | 34.08 | 19.22 | 22.23 | 16.76 | 54.68 | 46.4 | 26.47 | 25.5 | 25.08 | 18.13 | 45.75 | 58.51 | 54.67 | 28.3 | 31.25 |
∑HREY | 7.21 | 7.69 | 4.12 | 4.09 | 3.15 | 8.85 | 8.12 | 5.03 | 4.5 | 3.71 | 3.17 | 7.46 | 8.79 | 8.31 | 4.72 | 5.32 |
∑REY | 258.92 | 94.38 | 57.74 | 339.88 | 50.26 | 282.78 | 180.29 | 144.76 | 164.83 | 110.49 | 85.36 | 169.13 | 209.72 | 198.89 | 75.43 | 149.09 |
δCe | 0.86 | 0.90 | 0.83 | 0.80 | 0.80 | 0.95 | 0.95 | 1.08 | 0.91 | 0.88 | 0.98 | 0.99 | 0.96 | 1.00 | 1.00 | 0.92 |
δEu | 0.99 | 0.79 | 0.89 | 0.62 | 0.97 | 0.78 | 0.88 | 0.81 | 0.88 | 1.03 | 0.94 | 0.93 | 0.91 | 0.93 | 1.04 | 0.92 |
LaN/SmN | 1.13 | 0.64 | 0.53 | 2.40 | 0.54 | 1.01 | 0.69 | 1.32 | 1.37 | 0.56 | 1.04 | 0.91 | 0.76 | 0.73 | 0.62 | 0.81 |
GdN/LuN | 1.49 | 0.55 | 0.77 | 1.76 | 1.02 | 1.41 | 1.12 | 1.15 | 1.43 | 1.52 | 1.15 | 0.86 | 1.04 | 1.08 | 0.70 | 1.09 |
LaN/LuN | 1.57 | 0.28 | 0.34 | 5.39 | 0.46 | 1.34 | 0.75 | 1.34 | 1.81 | 0.89 | 1.04 | 0.70 | 0.72 | 0.70 | 0.33 | 0.84 |
Type | L | H | H | L | M-H | L | M-H | L | L | M-H | L | H | M-H | M-H | H | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Tang, S.; Zhang, S.; Yang, N. Mineralogical and Geochemical Characteristics of Trace Elements in the Yongdingzhuang Mine, Datong Coalfield, Shanxi Province, China. Minerals 2018, 8, 297. https://doi.org/10.3390/min8070297
Yuan Y, Tang S, Zhang S, Yang N. Mineralogical and Geochemical Characteristics of Trace Elements in the Yongdingzhuang Mine, Datong Coalfield, Shanxi Province, China. Minerals. 2018; 8(7):297. https://doi.org/10.3390/min8070297
Chicago/Turabian StyleYuan, Yue, Shuheng Tang, Songhang Zhang, and Ning Yang. 2018. "Mineralogical and Geochemical Characteristics of Trace Elements in the Yongdingzhuang Mine, Datong Coalfield, Shanxi Province, China" Minerals 8, no. 7: 297. https://doi.org/10.3390/min8070297
APA StyleYuan, Y., Tang, S., Zhang, S., & Yang, N. (2018). Mineralogical and Geochemical Characteristics of Trace Elements in the Yongdingzhuang Mine, Datong Coalfield, Shanxi Province, China. Minerals, 8(7), 297. https://doi.org/10.3390/min8070297