Major and Trace Element Geochemistry of Pyrite and Pyrrhotite from Stratiform and Lamellar Orebodies: Implications for the Ore Genesis of the Dongguashan Copper (Gold) Deposit, Eastern China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Methods
3.1. Electron-Probe Microanalyses
3.2. Laser Ablation Inductively Coupled Plasma Mass Spectrometry Trace Element Analysis
4. Results
4.1. Analysis Results of Electron Probe Microanalysis
4.1.1. Pyrite
4.1.2. Pyrrhotite
4.2. Analysis Results of Laser Ablation Inductively Coupled Plasma Mass Spectrometry
4.2.1. Pyrite
4.2.2. Pyrrhotite
5. Discussion
5.1. Implications for Ore-Forming Environment
5.2. Source of Ore-Forming Materials
5.3. Implications for Ore Genesis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Electron-Probe Microanalyses (EPMA) Data of Pyrite of the Dongguashan Deposit (wt.%)
Sample | S | Fe | As | Co | Ni | Sb | Ag | Au | Total | S/Fe | Co/Ni | Au/Ag | Fe/(S + As) | As/Au | Sb/Au |
Py I | |||||||||||||||
DGS1-9 | 53.47 | 47.83 | - | 0.12 | 0.02 | 0.01 | 0.02 | 0.14 | 101.61 | 1.95 | 6.00 | 8.94 | 0.89 | - | 0.07 |
DGS1-9 | 53.51 | 47.68 | 0.01 | 0.18 | - | - | 0.03 | 0.02 | 101.42 | 1.95 | - | 0.73 | 0.89 | 0.50 | |
DGS1-9 | 52.82 | 47.95 | - | 0.13 | 0.02 | - | - | - | 100.91 | 1.92 | 6.50 | - | 0.91 | ||
DGS1-9 | 51.35 | 47.50 | - | 0.32 | - | - | - | - | 99.16 | 1.88 | - | - | 0.92 | ||
DGS1-9 | 51.27 | 47.65 | - | 0.16 | - | - | - | 0.04 | 99.12 | 1.87 | - | - | 0.93 | ||
DGS1-9 | 51.56 | 47.51 | - | 0.40 | - | 0.01 | 0.04 | 0.06 | 99.58 | 1.89 | - | 1.44 | 0.92 | 0.17 | |
DGS1-9 | 52.43 | 47.55 | - | - | 0.05 | - | 0.02 | 0.12 | 100.16 | 1.92 | - | 7.50 | 0.91 | ||
DGS1-9 | 51.60 | 47.65 | - | 0.18 | 0.04 | - | - | - | 99.47 | 1.89 | 4.25 | - | 0.92 | ||
DGS1-9 | 53.90 | 47.36 | - | 0.38 | 0.01 | - | - | 0.09 | 101.74 | 1.98 | 38.00 | - | 0.88 | ||
DGS1-9 | 53.03 | 46.99 | - | - | 0.01 | - | - | - | 100.03 | 1.97 | - | - | 0.89 | ||
DGS1-9 | 53.65 | 46.65 | - | 0.45 | - | - | - | - | 100.75 | 2.00 | - | - | 0.87 | ||
DGS1-9 | 54.04 | 46.64 | - | - | 0.01 | - | 0.02 | - | 100.71 | 2.02 | - | - | 0.86 | ||
DGS1-9 | 52.72 | 47.41 | 0.01 | 0.26 | 0.02 | 0.01 | 0.02 | 0.08 | 100.39 | 1.94 | 13.00 | 3.78 | 0.90 | 0.13 | 0.13 |
DGS3-4 | 53.50 | 48.03 | - | 0.04 | - | - | 0.05 | 0.07 | 101.69 | 1.94 | - | 1.41 | 0.90 | ||
DGS3-4 | 53.28 | 47.56 | - | - | - | - | - | - | 100.84 | 1.95 | - | - | 0.89 | ||
DGS3-4 | 53.14 | 47.19 | - | 0.19 | - | 0.12 | 0.04 | 0.09 | 100.63 | 1.96 | - | 2.35 | 0.89 | 1.33 | |
DGS3-4 | 51.19 | 45.56 | - | 0.96 | 0.02 | 1.35 | - | 0.22 | 99.30 | 1.96 | 48.00 | - | 0.89 | 6.14 | |
DGS3-4 | 50.98 | 45.88 | - | 0.06 | - | 0.01 | 0.29 | 0.04 | 97.26 | 1.93 | 0.13 | 0.90 | 0.25 | ||
DGS3-4 | 51.69 | 46.02 | 0.01 | 0.07 | - | - | - | 0.17 | 97.94 | 1.96 | - | - | 0.89 | 0.59 | |
DGS3-4 | 54.21 | 47.44 | - | 0.13 | - | - | 0.02 | - | 101.79 | 1.99 | - | - | 0.88 | ||
DGS3-4 | 54.17 | 47.54 | - | - | - | - | - | 0.13 | 101.84 | 1.98 | - | - | 0.88 | ||
DGS3-4 | 54.22 | 47.70 | - | - | - | - | 0.02 | - | 101.94 | 1.98 | - | - | 0.88 | ||
DGS3-4 | 52.74 | 46.69 | 0.01 | 0.31 | 0.01 | 0.68 | 0.11 | 0.14 | 100.01 | 1.97 | 31.00 | 1.26 | 0.89 | 0.71 | 4.86 |
DGS3-5 | 53.67 | 45.98 | 0.66 | 0.01 | 0.01 | - | 0.05 | 0.04 | 100.43 | 2.03 | 1.00 | 0.90 | 0.85 | 16.50 | |
DGS3-5 | 53.61 | 45.72 | 0.82 | 0.01 | 0.02 | - | - | 0.04 | 100.22 | 2.04 | 0.50 | - | 0.84 | 20.50 | |
DGS3-6 | 54.78 | 46.84 | 0.01 | 0.10 | 0.06 | - | 0.03 | - | 101.81 | 2.04 | 1.76 | - | 0.85 | ||
DGS3-6 | 53.75 | 45.59 | - | 0.07 | - | - | 0.06 | 0.12 | 99.59 | 2.05 | - | 1.87 | 0.85 | ||
DGS3-6 | 54.26 | 46.22 | 0.01 | 0.08 | 0.06 | - | 0.05 | 0.12 | 100.70 | 2.04 | 1.33 | 2.62 | 0.85 | 0.08 | |
DGS3-6 | 53.83 | 47.09 | - | - | - | - | 0.03 | - | 100.94 | 1.99 | - | - | 0.87 | ||
DGS3-6 | 53.83 | 47.09 | - | - | - | - | 0.03 | - | 100.94 | 1.99 | - | - | 0.87 | ||
Mean (30) | 53.07 | 47.02 | 0.19 | 0.21 | 0.02 | 0.31 | 0.05 | 0.09 | 100.43 | 1.97 | 10.50 | 2.74 | 0.89 | 2.11 | 3.44 |
Sample | S | Fe | As | Co | Ni | Sb | Ag | Au | Total | S/Fe (at) | Co/Ni | Au/Ag | Fe/(S + As) | As/Au | Sb/Au |
Py II | |||||||||||||||
DGS1-7 | 53.69 | 46.71 | - | 0.45 | 0.01 | 0.01 | 0.02 | 0.05 | 100.92 | 2.00 | 45.00 | 3.19 | 0.87 | 0.20 | |
DGS1-7 | 53.80 | 46.96 | - | 0.05 | 0.01 | 0.01 | 0.02 | 0.12 | 100.95 | 2.00 | 5.00 | 5.57 | 0.87 | 0.08 | |
DGS1-7 | 53.95 | 46.89 | - | 0.12 | 0.03 | - | - | 0.18 | 101.17 | 2.00 | 4.00 | - | 0.87 | ||
DGS1-7 | 53.67 | 47.32 | - | - | - | - | - | - | 101.01 | 1.98 | - | - | 0.88 | ||
DGS1-7 | 51.61 | 47.64 | - | 0.04 | - | - | 0.06 | - | 99.36 | 1.89 | - | - | 0.92 | ||
DGS1-7 | 51.82 | 47.39 | - | 0.27 | - | - | 0.09 | - | 99.56 | 1.90 | - | - | 0.91 | ||
DGS1-7 | 51.04 | 47.62 | - | 0.09 | - | - | - | - | 98.75 | 1.87 | - | - | 0.93 | ||
DGS1-7 | 51.14 | 47.27 | - | 0.28 | - | 0.02 | - | - | 98.70 | 1.88 | - | - | 0.92 | ||
DGS1-7 | 50.94 | 47.17 | - | 0.16 | - | - | 0.01 | 0.10 | 98.38 | 1.88 | - | 7.31 | 0.93 | ||
DGS1-7 | 50.52 | 47.48 | - | 0.03 | - | - | 0.01 | 0.07 | 98.10 | 1.85 | - | 5.92 | 0.94 | ||
DGS1-7 | 52.22 | 47.24 | - | 0.16 | 0.01 | 0.01 | 0.03 | 0.10 | 99.69 | 1.92 | 16.00 | 3.40 | 0.90 | 0.10 | |
DGS4-17 | 53.98 | 48.04 | - | - | - | - | - | 0.08 | 102.10 | 1.96 | - | - | 0.89 | ||
DGS4-17 | 54.04 | 47.32 | 0.02 | 0.24 | 0.02 | 0.01 | - | 0.07 | 101.72 | 1.99 | 12.0 | - | 0.88 | 0.29 | 0.14 |
DGS4-17 | 54.01 | 47.68 | - | 0.24 | 0.02 | 0.01 | - | 0.08 | 101.91 | 1.97 | 12.0 | - | 0.88 | 0.13 | |
DGS5-16 | 53.49 | 47.14 | 0.04 | 0.22 | - | - | 0.01 | 0.20 | 100.97 | 1.98 | - | 22.00 | 0.88 | 0.20 | |
DGS5-16 | 53.15 | 46.56 | 0.04 | 0.34 | - | - | 0.01 | 0.20 | 100.29 | 1.99 | - | 33.00 | 0.88 | 0.20 | |
DGS5-16 | 53.83 | 47.72 | - | 0.09 | - | - | 0.01 | - | 101.66 | 1.96 | - | - | 0.89 | ||
DGS7 | 53.22 | 47.73 | - | 0.02 | - | - | - | 0.11 | 101.08 | 1.94 | - | - | 0.90 | ||
DGS7 | 53.89 | 47.27 | - | - | - | 0.03 | - | 0.05 | 101.24 | 1.99 | - | - | 0.88 | 0.60 | |
DGS7 | 53.56 | 47.50 | - | 0.02 | - | 0.03 | - | 0.08 | 101.16 | 1.96 | - | - | 0.89 | 0.38 | |
DGS19-1 | 53.11 | 47.16 | - | 0.05 | 0.01 | - | 0.02 | - | 100.35 | 1.96 | 5.00 | - | 0.89 | ||
DGS19-1 | 53.50 | 47.37 | 0.61 | 0.32 | - | - | - | 0.05 | 101.85 | 1.97 | - | - | 0.88 | 12.20 | |
DGS19-1 | 53.38 | 47.15 | - | - | - | 0.02 | - | - | 100.54 | 1.97 | - | - | 0.88 | ||
DGS19-1 | 53.77 | 47.26 | - | - | 0.01 | - | - | - | 101.05 | 1.98 | - | - | 0.88 | ||
DGS19-1 | 53.44 | 47.23 | 0.61 | 0.13 | 0.01 | 0.02 | 0.02 | 0.03 | 100.95 | 1.97 | 13.00 | 1.32 | 0.87 | 20.33 | 0.67 |
Mean (25) | 52.99 | 47.31 | 0.26 | 0.16 | 0.01 | 0.01 | 0.03 | 0.09 | 100.54 | 1.95 | 16.00 | 10.21 | 0.89 | 2.89 | 0.11 |
“-” below detection limits. |
Appendix B. EPMA Data of Pyrrhotite of the Dongguashan Deposit (wt.%)
Sample | S | Fe | As | Ag | Co | Au | Cu | Zn | Sb | Total | Fe (at.%) | Au/Ag |
Po I | ||||||||||||
DGS17 | 39.96 | 61.66 | 0.07 | 0.02 | 0.06 | - | 0.09 | 0.03 | 0.01 | 101.9 | 46.98 | - |
39.91 | 62.00 | 0.06 | - | 0.07 | 0.03 | 0.12 | 0.09 | - | 102.28 | 47.15 | - | |
DGS3-5 | 38.86 | 59.97 | 0.01 | - | 0.06 | - | - | - | - | 98.9 | 46.98 | - |
38.38 | 60.47 | - | - | 0.22 | - | - | - | - | 99.07 | 47.50 | - | |
38.74 | 59.82 | - | 0.04 | 0.00 | 0.07 | - | - | - | 98.67 | 46.99 | 1.94 | |
38.65 | 60.45 | 0.03 | 0.04 | 0.16 | 0.17 | - | - | - | 99.5 | 47.32 | 4.18 | |
38.79 | 60.53 | - | - | 0.33 | 0.06 | - | - | - | 99.71 | 47.25 | ||
DGS5-9 | 39.08 | 60.73 | - | - | 0.21 | 0.07 | - | - | - | 100.09 | 47.15 | - |
37.19 | 60.64 | 0.10 | 0.01 | - | - | - | - | 0.01 | 97.95 | 48.35 | - | |
38.98 | 60.43 | - | - | - | - | - | - | - | 99.41 | 47.10 | - | |
Mean (10) | 38.85 | 60.71 | 0.05 | 0.02 | 0.16 | 0.08 | 0.10 | 0.06 | 0.01 | 99.748 | 47.28 | 3.06 |
Sample | S | Fe | As | Ag | Co | Au | Cu | Zn | Sb | Total | Fe (at.%) | Au/Ag |
Po II | ||||||||||||
DK3-14 | 38.84 | 57.90 | 0.07 | 0.02 | 0.11 | 0.07 | 0.08 | 0.11 | 0.03 | 97.23 | 46.12 | 4.87 |
39.31 | 58.79 | 0.09 | 0.04 | 0.06 | - | - | - | - | 98.29 | 46.20 | - | |
39.21 | 59.64 | 0.13 | - | 0.13 | - | - | - | - | 99.11 | 46.62 | - | |
38.64 | 59.00 | 0.10 | - | 0.13 | 0.04 | - | 0.05 | - | 97.96 | 46.71 | - | |
39.80 | 60.31 | 0.11 | - | 0.09 | - | - | - | - | 100.31 | 46.53 | - | |
39.80 | 60.16 | 0.16 | - | 0.09 | 0.08 | - | - | 0.02 | 100.31 | 46.46 | - | |
39.41 | 59.52 | 0.08 | - | 0.11 | - | 0.02 | 0.05 | - | 99.19 | 46.44 | - | |
DK3-16 | 39.23 | 60.70 | 0.07 | - | 0.09 | 0.12 | - | 0.07 | - | 100.28 | 47.05 | - |
40.05 | 61.12 | 0.08 | - | 0.12 | - | 0.01 | 0.10 | - | 101.48 | 46.70 | - | |
39.80 | 60.79 | 0.08 | - | 0.12 | - | 0.03 | 0.05 | - | 100.87 | 46.72 | - | |
40.03 | 60.28 | 0.07 | 0.02 | 0.11 | 0.02 | 0.02 | - | - | 100.55 | 46.37 | 1.25 | |
39.94 | 59.47 | 0.06 | - | 0.15 | 0.06 | 0.05 | - | 0.03 | 99.76 | 46.09 | - | |
40.01 | 59.92 | 0.09 | - | 0.10 | - | 0.03 | 0.06 | - | 100.21 | 46.23 | - | |
39.64 | 61.03 | 0.06 | - | 0.14 | - | - | 0.01 | - | 100.88 | 46.92 | - | |
Mean (14) | 39.55 | 59.90 | 0.09 | 0.027 | 0.11 | 0.06 | 0.03 | 0.05 | 0.01 | 99.745 | 46.52 | 3.06 |
“-” below detection limits. |
Appendix C. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Data of Pyrite of the Dongguashan Deposit (ppm)
Sample | W | Sn | Mo | Bi | V | Mn | Cu | Pb | Zn | Se | Sb | Te | Hg | Cd |
Py I | ||||||||||||||
DGS1-9 | - | - | 0.29 | 1.10 | 0.03 | 0.58 | 1.19 | 0.28 | 10.47 | 67.54 | - | - | - | 2.47 |
DGS1-9 | - | - | 2.30 | 0.07 | 0.11 | 0.59 | 0.04 | - | 5.68 | 75.77 | - | - | - | 2.75 |
DGS3 | 0.35 | 0.25 | - | 0.03 | 0.27 | 1.01 | 20.30 | - | 4.25 | 12.40 | - | - | 1.29 | 2.36 |
DGS3 | 0.07 | 0.20 | 0.21 | 0.38 | 0.04 | 0.76 | 0.69 | 0.49 | - | 3.49 | 0.11 | - | 0.60 | 0.40 |
DGS3-4 | 0.14 | 0.54 | - | 1.51 | 0.60 | 12.48 | 6.31 | 2.72 | 15.83 | 62.48 | 0.28 | 4.51 | - | 0.87 |
DGS3-4 | 0.48 | 0.14 | 0.20 | 0.13 | 0.01 | 2.24 | 6.13 | - | 9.10 | 75.39 | - | 2.42 | 0.40 | 0.67 |
DGS3-4 | 0.53 | - | 0.11 | - | 0.02 | 0.46 | 1.55 | 0.59 | 6.60 | 48.07 | 0.05 | 2.16 | - | 0.75 |
DGS3-5 | - | 0.25 | - | 0.61 | 0.04 | 2.83 | 461.81 | 1.16 | 8.19 | 32.02 | - | - | 0.14 | 0.36 |
DGS3-5 | - | - | - | 0.37 | 0.02 | 1.17 | 374.87 | 0.30 | 1.20 | 17.50 | 0.03 | - | - | 0.20 |
DGS3-6 | - | - | - | - | - | - | 1.55 | - | 11.89 | 22.81 | 0.17 | - | - | 1.25 |
DGS3-6 | 0.23 | - | - | 0.26 | 0.15 | - | 1.75 | 0.68 | 1.04 | 42.36 | 0.14 | 2.90 | - | 1.64 |
Mean (11) | 0.30 | 0.27 | 0.62 | 0.49 | 0.13 | 2.46 | 79.65 | 0.78 | 7.42 | 41.80 | 0.11 | 3.00 | 0.61 | 1.25 |
Sample | W | Sn | Mo | Bi | V | Mn | Cu | Pb | Zn | Se | Sb | Te | Hg | Cd |
Py II | ||||||||||||||
DGS1-7 | 0.20 | 0.21 | - | 0.28 | - | 3.49 | 2.89 | - | 12.26 | 87.40 | - | - | 1.08 | 3.04 |
DGS1-7 | - | 0.03 | - | 0.09 | - | - | 4.32 | 0.08 | 7.65 | 47.71 | - | 1.41 | 1.34 | 0.39 |
DGS1-7 | 0.31 | - | - | 0.09 | - | 0.08 | 4.07 | 0.43 | 8.59 | 60.52 | - | 5.80 | 1.12 | 1.97 |
DGS4-17 | - | 0.15 | 0.05 | 0.55 | 0.15 | 53.27 | 2.67 | 1.44 | 14.27 | 14.44 | 0.25 | - | - | 1.98 |
DGS4-17 | - | 0.28 | - | 0.30 | 0.05 | 0.04 | 1.02 | - | 2.60 | 50.05 | 0.09 | 8.43 | 0.17 | 0.20 |
DGS5-16 | - | - | 0.25 | 0.27 | 0.18 | - | 4.07 | - | 7.05 | 57.92 | - | 1.96 | 0.45 | 2.54 |
DGS5-16 | 9.45 | 1.03 | 0.12 | 2.55 | 8.55 | 19.81 | 1311.82 | 1.40 | - | 83.70 | - | 5.48 | - | 2.71 |
DGS5-16 | - | - | 0.33 | 1.03 | 2.57 | 8.88 | 475.25 | - | - | 7.83 | - | 1.10 | - | 1.43 |
DGS7 | 0.45 | 0.18 | 0.12 | 0.45 | 0.06 | 0.06 | 67.04 | 0.86 | 6.80 | 13.07 | 0.70 | 0.69 | 1.05 | - |
DGS7 | 0.02 | 0.06 | - | 0.16 | 0.10 | 0.59 | 23.86 | 1.09 | 4.32 | 11.25 | 0.45 | 1.52 | 0.88 | 0.23 |
DGS7 | 1.00 | - | 0.26 | 0.22 | 0.22 | 129.07 | 26.29 | 0.32 | 1.96 | 8.88 | 15.81 | 0.58 | 0.66 | 0.07 |
DGS7 | 3.03 | 0.14 | 0.32 | 0.08 | - | - | 3.19 | 0.20 | 3.22 | 10.03 | 6.70 | 0.98 | 0.69 | 0.06 |
DGS7 | 0.02 | - | 0.22 | 0.56 | 0.08 | 0.39 | 3.41 | 0.05 | 1.63 | 88.41 | - | 0.22 | 0.30 | 0.05 |
Mean (13) | 1.81 | 0.26 | 0.24 | 0.62 | 1.20 | 21.57 | 191.86 | 0.65 | 6.39 | 34.56 | 4.00 | 2.56 | 0.77 | 1.13 |
“-” below detection limits. |
Appendix D. LA-ICP-MS Data of Pyrrhotite of the Dongguashan Deposit (ppm)
Sample | W | Sn | Mo | Co | Ni | Cu | Pb | Zn | As | Se | Ag | Co/Ni |
Po I | ||||||||||||
DGS2-7 | 1.82 | 1.13 | 0.68 | 32.81 | 20.84 | 15,806.73 | 4.47 | 29.20 | - | 81.71 | 4.03 | 1.57 |
DGS2-8 | - | 1.16 | 0.14 | 0.20 | 0.13 | - | - | - | 1.49 | 47.21 | 0.36 | 1.55 |
DGS2-9 | 1.39 | - | - | 2.05 | 1.21 | 15.43 | 0.71 | - | 1.25 | 6.16 | 1.13 | 1.70 |
DGS2-10 | - | 2.43 | - | 14.44 | 1.00 | 17.07 | 3.54 | 52.04 | - | 59.40 | - | 14.45 |
DGS2-11 | 0.87 | 0.86 | - | 3.91 | 2.13 | 6.30 | 4.72 | 19.52 | 1.51 | 67.62 | 1.97 | 1.84 |
Mean (5) | 1.36 | 1.40 | 0.40 | 10.70 | 5.06 | 3961.38 | 3.36 | 33.58 | 1.42 | 52.42 | 1.87 | 4.22 |
Sample | W | Sn | Mo | Co | Ni | Cu | Pb | Zn | As | Se | Ag | Co/Ni |
Po II | ||||||||||||
DGS7 | 3.22 | - | 0.67 | 1.93 | 1.42 | 29.03 | 1.06 | 56.07 | 7.22 | - | 1.27 | 1.36 |
DGS7 | 4.32 | 2.35 | 0.32 | 1.23 | 1.21 | 3576.91 | 3.62 | 55.98 | 12.03 | 17.66 | 1.61 | 1.02 |
Mean (2) | 3.77 | 2.30 | 0.50 | 1.58 | 1.32 | 1802.97 | 2.34 | 56.03 | 9.63 | 17.70 | 1.44 | 1.19 |
“-” below detection limits. |
References
- Song, X.X.; Zhang, J.K. Minor elements in pyrites of various genetic types from China. Bull. Inst. Miner. Depos. Chin. Acad. Geol. Sci. 1986, 2, 166–175. (In Chinese) [Google Scholar]
- Leng, C.B. Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: Constraints from LA-ICPMS trace elements of pyritie and pyrrhotite. Earth Sci. Front. 2017, 24, 162–175. (In Chinese) [Google Scholar]
- Henley, R.W. Chemical structure of geothermal systems: Fluid mineral equiliria in hydrothermal systems. Rev. Econ. 1984, 1, 9–28. [Google Scholar]
- Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. At. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Large, R.R.; Maslennikov, V.V.; Robert, F.; Danyushevsky, L.V.; Chang, Z. Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Lena gold province. Russ. Econ. Geol. 2007, 102, 1233–1267. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in Orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Zhou, T.F.; Zhang, L.J.; Yuan, F.; Fan, Y.; Cook, D.R. LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui, and its constrains on the ore genesis. Earth Sci. Front. 2010, 2, 306–319. (In Chinese) [Google Scholar]
- Shao, Y.J.; Wang, W.S.; Liu, Q.Q.; Zhang, Y. Trace element analysis of pyrite from the Zhengchong gold deposit, Northeast Hunan Province, China: Implications for the ore-forming process. Minerals 2018, 8, 262. [Google Scholar] [CrossRef]
- Dupuis, C.; Beaudoin, G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner. Depos. 2011, 4, 319–335. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhou, M.F.; Cao, J.F.; Hu, R. Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China. Miner. Depos. 2015, 7, 795–809. [Google Scholar] [CrossRef]
- Chang, Y.F.; Liu, X.G. On strata-bound skam deposits. Miner. Depos. 1983, 2, 11–20. (In Chinese) [Google Scholar]
- Chu, G.Z. Bedding slipping structures control on the “multistory” ore deposits, in the Shizishan oredield of Anhui. Geoscience 1992, 4, 504–513. [Google Scholar]
- Huang, X.C.; Chu, G.Z. Multistory metallogenic model of the Shizishan oredield in Tongling, Anhui Province. Miner. Depos. 1993, 3, 221–230. [Google Scholar]
- Tang, Y.C.; Wu, C.Y.; Chu, G.Z.; Xing, F.M.; Wang, Y.M.; Cao, F.Y.; Chang, Y.F. Geology of Copper-Gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province; Geological Publishing House: Beijing, China, 1998; pp. 1–351. (In Chinese) [Google Scholar]
- Pan, Y.M.; Dong, P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, East China: Intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag de-posits. Ore Geol. Rev. 1999, 15, 177–242. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Duan, C.; Pirajno, F.; Ishiyama, D.; Chen, Y.C. A tectono-genetic model for porphyry-skarn-stratabound Cu–Au-Mo–Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geol. Rev. 2011, 43, 294–314. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Liu, Z.L.; Yang, C.X. Stable isotope studies of the Dongguashan copper deposit in Tongling prefecture, Anhui Province. Bull. Inst. Miner. Depos. Chin. Acad. Geol. Sci. 1984, 1, 70–101. (In Chinese) [Google Scholar]
- Xu, W.Y.; Yang, Z.S.; Meng, Y.F.; Zeng, P.S.; Shi, D.N.; Tian, S.H.; Li, H.Y. Genetic model and dynamic migration of ore-forming fluids in carboniferous exhalation-sedimentary massive sulfide deposits of Tongling district, Anhui Province. Miner. Depos. 2004, 23, 353–364. (In Chinese) [Google Scholar]
- Li, H.Y.; Yang, Q.R.; Li, Y.J.; Hou, Z.Q.; Yang, Z.S.; Meng, Y.F. Geochemical characteristics of the Dongguashan copper deposit in Anhui Province. Acta Geosci. Sin. 2006, 27, 551–556. (In Chinese) [Google Scholar]
- Xu, Z.W.; Lu, X.C.; Gao, G.; Fang, C.Q.; Wang, Y.J.; Yang, X.N.; Jiang, S.Y.; Chen, B.G. Isotope geochemistry and mineralization in the Dongguashan diplogenetic stratified copper deposit, Tongling area. Geol. Rev. 2007, 53, 44–51. (In Chinese) [Google Scholar]
- Lu, J.J.; Guo, W.M.; Chen, W.F.; Jiang, S.Y.; Li, J.; Yan, X.R.; Xu, Z.W. A metallogenic model for the Dongguashan Cu-Au deposit of Tongling, Anhui Province. Acta Petrol. Sin. 2008, 24, 1857–1864. (In Chinese) [Google Scholar]
- Guo, W.M.; Lu, J.J.; Zhang, R.Q.; Xu, Z.W. Ore textures and genetic significance of pyrrhotite from Dongguashan ore deposit in Tongling area, Anhui Province. Miner. Depos. 2010, 29, 405–414. (In Chinese) [Google Scholar]
- Xu, X.C.; Yin, T.; Lou, J.W.; Lu, S.M.; Xie, Q.Q.; Zhu, P.L. Origin of Dongguashan stratabound Cu-Au skarn deposit in Tongling: Restraints of sulfur isotope. Acta Petrol. Sin. 2010, 26, 2739–2750. (In Chinese) [Google Scholar]
- Liu, Z.F.; Shao, Y.J.; Zhou, X.; Zhang, Y.; Zhou, G.B. Characteristics of ore-forming fluids and metallogenic process of Dongguashan copper (gold) deposit in Anhui Province. Miner. Depos. 2014, 33, 639–650. (In Chinese) [Google Scholar]
- Liu, Z.F.; Shao, Y.J.; Zhou, X.; Zhang, Y.; Zhou, G.B. Hydrogen, oxygen, sulfur and lead isotope composition tracing for the ore-forming material source of Dongguashan copper (gold) deposit in Tongling, Anhui Province. Acta Petrol. Sin. 2014, 30, 199–208. (In Chinese) [Google Scholar]
- Cao, Y.; Du, Y.S.; Pang, Z.S.; Ren, C.L.; Du, Y.L.; Xiao, F.Q.; Zhou, G.B.; Chen, L.J. Sulfide zonal texture and its geological significance of ores from the Dongguashan copper (gold) deposit in Tongling, Anhui Province, China. Acta Petrol. Sin. 2016, 32, 334–335. (In Chinese) [Google Scholar]
- Chang, Y.F.; Liu, X.P.; Wu, C.Y. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River; Geological Publishing House: Beijing, China, 1991; pp. 1–379. (In Chinese) [Google Scholar]
- Mao, J.W.; Shao, Y.J.; Xie, G.Q.; Zhang, J.D.; Chen, Y.C. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Miner. Depos. 2009, 28, 209–219. (In Chinese) [Google Scholar]
- Xu, X.C.; Lu, S.M.; Xie, Q.Q.; Lou, J.W.; Chu, P.L. Trace element geochemical characteristics of fluid inclusions of Anhui Province, and their geological implications. Acta Petrol. Sin. 2008, 8, 1865–1874. (In Chinese) [Google Scholar]
- Guo, W.M.; Lu, J.J.; Jiang, S.Y.; Zhang, R.Q.; Zhao, Z.J. Chronology, Hf isotopes, geochemistry, and petrogenesis of the magmatic rocks in the Shizishan ore field of Tongling, Anhui Province. Sci. China Earth Sci. 2013, 6, 993–1013. [Google Scholar] [CrossRef]
- Gu, L.X.; Zaw, K.; Hu, W.X.; Zhang, K.J.; Ni, P.; He, J.X.; Xu, Y.T.; Lu, J.J.; Lin, C.M. Distinctive features of Late Palaeozoic massive sulphide deposits in South China. Ore Geol. Rev. 2007, 31, 107–138. [Google Scholar] [CrossRef]
- Zeng, P.S.; Pei, R.F.; Hou, Z.Q.; Meng, Y.F.; Yang, Z.S.; Tian, S.H.; Xu, W.Y.; Wang, X.C. The Dongguashan deposit in the Tongling mineralization cluster Area, Anhui: A large-sized superimposition type copper deposit. Acta Geol. Sin. 2005, 79, 106–131. (In Chinese) [Google Scholar]
- Liu, J.H.; Li, H.; Xu, Z.W.; Lu, X.C.; Liu, S.M.; Nie, G.P. Metallogenic geological settings and genesis of Dongguashan stratified cooper deposit. J. Geol. 2009, 3, 133–137. (In Chinese) [Google Scholar]
- Guo, W.M.; Lu, J.J.; Zhang, R.Q.; Zhao, Z.J.; Xu, Z.W. The superimposed mineralization of the Dongguashan Cu deposit in Tongling Area, Anhui Province: Evidence from the ore texture. Acta Geol. Sin. 2011, 85, 1223–1232. (In Chinese) [Google Scholar]
- Hou, Z.Q.; Yang, Z.S.; Lü, Q.T.; Zeng, P.S.; Xie, Y.L.; Meng, Y.F.; Tain, S.H.; Xu, W.Y.; Li, H.Y.; Jiang, Z.P.; et al. The large-scale Dongguashan deposit, Shizishan district in East China: Carboniferous sedex-type massive sulfides overprinted by late Jurassic skarn Cu mineralization. Acta Geol. Sin. 2011, 5, 659–686. (In Chinese) [Google Scholar]
- Jiang, S.Y.; Ding, Q.F.; Yang, S.Y.; Zhu, Z.Y.; Sun, M.Z.; Sun, Y.; Bian, L.Z. Discovery and significance of carbonate mud mounds from Cu-polymetallic deposits in the Middle and Lower Yangtze Metallogenic Belt: Examples from the Wushan and Dongguashan deposits. Acta Geol. Sin. 2011, 85, 744–756. (In Chinese) [Google Scholar]
- Gu, L.X.; Chen, P.Y.; Ni, P.; Xu, Z.W.; Xiao, J.X.; Qiu, J.S.; Zhang, Z.Z.; Zhang, G.H. Comparative research on ore-forming fluids for the main types of hydrothermal copper-gold deposits in the Middle and Lower Reaches of the Yangtze River. J. Nanjing Univ. (Nat. Sci.) 2002, 38, 392–407. (In Chinese) [Google Scholar]
- Xu, J.H.; Xie, Y.L.; Yang, Z.S.; Meng, Y.F.; Zeng, P.S. Trace elements in fluid inclusions of submarine exhalation-sedimentation system in Tongling metallogenic province. Miner. Depos. 2004, 23, 344–352. (In Chinese) [Google Scholar]
- Xu, W.Y.; Hou, Z.Q.; Yang, Z.S.; Shi, D.N.; Meng, Y.F.; Zeng, P.S. Numerical simulation of fluid migration during ore formation of Carboniferous exhalation-sedimentary massive sulfide deposits in the Tongling District, Anhui Province. Acta Geol. Sin. 2005, 79, 98–105. [Google Scholar]
- Zhang, Y.; Shao, Y.J.; Wu, C.D.; Chen, H.Y. LA-ICP-MS trace element geochemistry of garnets: Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu–S–Fe–Au deposit, eastern China. Ore Geol. Rev. 2017, 86, 426–439. [Google Scholar] [CrossRef]
- Ma, X.; Ge, H. Precambrian crustal evolution of eastern Asia. J. Asia Earth Sci. 1989, 3, 9–15. [Google Scholar]
- Zhai, Y.S.; Yao, S.Z.; Lin, X.D.; Zhou, X.N.; Wan, T.F.; Jin, F.Q.; Zhou, Z.G. Fe-Cu-Au Metallogeny of the Middle-Lower Changjiang Region; Geological Publishing House: Beijing, China, 1992; pp. 1–235. (In Chinese) [Google Scholar]
- Liu, W.C.; Gao, D.Z.; Chu, G.Z. Analysis of Tectonic Deformation and Metallogenic Prognosis in Tongling Area, Anhui Province; Geological Publishing House: Beijing, China, 1996; pp. 1–130. (In Chinese) [Google Scholar]
- Peng, S.L.; Lai, J.Q.; Mao, X.C.; Shao, Y.J.; Yang, M.; Yang, B. Theories and Technologies for Large-Scale Location and Quantification Prediction of Concealed Ore Bodies in the Depths of Crisis Mines; Geological Publishing House: Beijing, China, 2012; pp. 1–352. (In Chinese) [Google Scholar]
- Wu, C.L.; Guo, X.Y.; Wang, C.S.; Wu, X.P.; Gao, Y.H.; Lei, M.; Qin, H.P.; Liu, C.H.; Li, M.Z.; Chen, Q.L. Zircon U-Pb dating of high-K calc-alkaline intrusive rocks from Tongling: Implications for the tectonic setting. Geochimica 2013, 42, 11–28. (In Chinese) [Google Scholar]
- Xu, X.C.; Bai, R.Y.; Xie, Q.Q.; Lou, J.W.; Zhang, Z.Z.; Liu, Q.N.; Chen, L.W. Re-understanding of the geological and geochemical characteristics of the Mesozoic intrusive rocks from Tongling area of Anhui Province, and discussions on their genesis. Acta Petrol. Sin. 2012, 28, 3139–3169. (In Chinese) [Google Scholar]
- Xu, X.C.; Zhang, Z.Z.; Liu, Q.N.; Lou, J.W.; Xie, Q.Q.; Chu, P.L.; Frost, R.L. Thermodynamic study of the association and separation of copper and gold in the Shizishan orefi eld, Tongling, Anhui Province, China. Ore Geol. Rev. 2011, 43, 347–358. [Google Scholar] [CrossRef]
- Liu, J.P.; Rong, Y.N.; Zhang, S.G.; Liu, Z.F.; Chen, W.K. Indium Mineralization in the Xianghualing Sn-Polymetallic Orefield in Southern Hunan, Southern China. Minerals 2017, 7, 173. [Google Scholar] [CrossRef]
- Carpenter, R.H.; Desborough, G.A. Range insolution and structure of natural occurring troilite and pyrrhotite. Am. Mineral. 1964, 49, 1350–1365. [Google Scholar]
- Xi, A.H.; Ren, H.M.; Zhang, B.F.; Wang, Y.X.; Zhi, X.J. Characteristics on ore minerals in Hongqiling Cu-Ni sulfide deposit, Jilin Province. J. Jilin Univ. 2004, 3, 338–343. (In Chinese) [Google Scholar]
- Arnold, R.G. Pyrrhotite phase relations below 304 ± 6 °C at <1 atom total pressure. Econ. Geol. 1969, 64, 405–419. [Google Scholar] [CrossRef]
- Mei, J.M. Chemical typomorphic characteristic of pyrites from Zhilingtou gold deposit, Suichang, Zhejiang. Geoscience 2000, 14, 51–55. [Google Scholar]
- Li, J.L.; Zhang, Y.M.; Gu, X.X.; Meng, F.J.; Gao, H.J.; Wang, L. Geological characteristics of the Xiyi MVT-type Pb-Zn ore deposit in Yunnan and EPMA analysis of the sulfides. Geol. Explor. 2017, 53, 23–34. (In Chinese) [Google Scholar]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Lounejeva, E.B.; Lyons, T.W.; Wu, S.; Danyushevsky, L.V.; Sack, P.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Song, H.B. Application of pyrite in gold deposit geology. Geol. Explor. 1989, 25, 31–37. (In Chinese) [Google Scholar]
- Zhou, X.W.; Li, S.R.; Lu, L.; Li, J.J.; Wang, J.Z. Study of Pyrite typomorphic characteristics of Wulong quartz-vein-type gold deposit in Dandong, Liaoning Province, China. Geoscience 2005, 19, 231–238. [Google Scholar]
- Cromie, P.; Makoundi, C.; Zaw, K.; Cook, D.R.; White, N.; Ryan, C. Geochemistry of Au-bearing pyrite from the Sepon Mineral District, Laos DPR, Southeast Asia: Implications for ore genesis. J. Asian Earth Sci. 2018, 164, 194–218. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, L.Q.; Liu, J.T.; Meng, J.Y.; Lü, L.; Sun, N.; Zhang, G.N.; Long, F. Mineralogy typomorphic characteristics of pyrrhotite and mineralization significance of Yangla copper deposit Yunnan China. Acta Petrol. Sin. 2014, 30, 2669–2680. [Google Scholar]
- Xu, X.C.; Fan, Z.L.; He, J.; Liu, X.; Liu, X.Y.; Xie, Q.Q.; Lu, S.M.; Lou, J.W. Metallogenic model for copper-gold-polymetallic deposits in Shizishan ore-field, Tongling, Anhui Province. Acta Petrol. Sin. 2014, 4, 1054–1074. [Google Scholar]
- Lu, J.J.; Hua, R.M.; Xu, Z.W.; Gao, J.F.; Li, J. A two-stage model for formation of the Dongguahsan Cu-Au deposit. Geol. J. China Univ. 2003, 4, 678–690. (In Chinese) [Google Scholar]
- Keith, M.; Hackel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Li, H.Y.; Li, Y.J.; Yuan, W.M.; Yang, Q.R.; Kang, G.L.; Cao, J.F. Mineral geochemistry in the Dashui diorite-type gold deposit, Gansu Province. Geol. Prospect. 2007, 43, 41–45. (In Chinese) [Google Scholar]
- Li, Z.J.; Huang, Y.; Tang, J.X.; Zhang, L.; Lang, X.H. Typomorphic characteristics and significance of pyrrhotite in Xiongcun Cu-Au deposit. Acta Miner. Sin. 2012, 32, 205–210. (In Chinese) [Google Scholar]
- Vinogradov, A.P. Average content of chemical elements in the chief types of igneous rocks of the crust of the Earth. Geokhimia 1962, 7, 555–571. [Google Scholar]
- Xu, G.F.; Shao, J.L. Typomorphic characteristics of pyrite and its significance. Geol. Rev. 1980, 26, 541–546. (In Chinese) [Google Scholar]
- Doyle, F.M.; Mirza, A.H. Electrochemical oxidation of pyrite samples with known composition and electrical properties. Electrochem. Proc. 1996, 96, 203–214. [Google Scholar]
- Oberthur, T.; Cabri, L.J.; Weiser, T.W.; McMahon, G.; Muller, P. Pt, Pd and other trace elements in sulfides of the mainsulfide zone, Great Dyke, Zimbabwe: A reconnaissance study. Can. Miner. 1997, 35, 597–609. [Google Scholar]
- Li, H.B.; Zeng, F.Z. The pyrite’s typomorphic characteristics in gold deposit. Contrib. Geol. Miner. Resour. Res. 2005, 20, 199–203. [Google Scholar]
- Bralia, A.; Sabatini, G.; Troja, F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Miner. Depos. 1979, 14, 353–374. [Google Scholar] [CrossRef]
- Chen, D.F. Characteristics of main metallic minerals in some copper-nickel sulfide deposits of China. Acta Petrol. Miner. 1995, 14, 345–354. (In Chinese) [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Mao, J. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem. Geol. 2009, 264, 101–121. [Google Scholar] [CrossRef]
- Bajwah, Z.U.; Seccombe, P.K.; Offler, R. Trace element distribution, Co/Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Miner. Depos. 1987, 22, 292–300. [Google Scholar] [CrossRef]
- Gregory, D.D.; Lyons, T.W.; Large, R.R.; Jiang, G.P.; Stepanov, A.S.; Diamond, C.W.; Figueros, M.C.; Olin, P. Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China. Geochim. Cosmochim. Acta 2017, 216, 201–220. [Google Scholar] [CrossRef]
- Koglin, N.; Frimmel, H.E.; Lawrie Minter, W.E.; Bratz, H. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner. Depos. 2010, 45, 259–280. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Shao, Y.; Zhou, H.; Liu, N.; Huang, K.; Liu, Q.; Zhang, J.; Wang, C. Major and Trace Element Geochemistry of Pyrite and Pyrrhotite from Stratiform and Lamellar Orebodies: Implications for the Ore Genesis of the Dongguashan Copper (Gold) Deposit, Eastern China. Minerals 2018, 8, 380. https://doi.org/10.3390/min8090380
Liu Z, Shao Y, Zhou H, Liu N, Huang K, Liu Q, Zhang J, Wang C. Major and Trace Element Geochemistry of Pyrite and Pyrrhotite from Stratiform and Lamellar Orebodies: Implications for the Ore Genesis of the Dongguashan Copper (Gold) Deposit, Eastern China. Minerals. 2018; 8(9):380. https://doi.org/10.3390/min8090380
Chicago/Turabian StyleLiu, Zhongfa, Yongjun Shao, Haodi Zhou, Nan Liu, Kuanxin Huang, Qingquan Liu, Jiandong Zhang, and Cheng Wang. 2018. "Major and Trace Element Geochemistry of Pyrite and Pyrrhotite from Stratiform and Lamellar Orebodies: Implications for the Ore Genesis of the Dongguashan Copper (Gold) Deposit, Eastern China" Minerals 8, no. 9: 380. https://doi.org/10.3390/min8090380
APA StyleLiu, Z., Shao, Y., Zhou, H., Liu, N., Huang, K., Liu, Q., Zhang, J., & Wang, C. (2018). Major and Trace Element Geochemistry of Pyrite and Pyrrhotite from Stratiform and Lamellar Orebodies: Implications for the Ore Genesis of the Dongguashan Copper (Gold) Deposit, Eastern China. Minerals, 8(9), 380. https://doi.org/10.3390/min8090380