Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buseck, P.R.; Beyssac, O. From organic matter to graphite: Graphitization. Elements 2014, 10, 421–426. [Google Scholar] [CrossRef]
- Rouzaud, J.-N.; Oberlin, A. Structure, microtexture, and optical properties of anthracene and saccharose-based carbons. Carbon 1989, 27, 517–529. [Google Scholar] [CrossRef]
- Ross, J.V.; Bustin, R.M. The role of strain energy in creep graphitization of anthracite. Nature 1990, 343, 58–60. [Google Scholar] [CrossRef]
- Bustin, R.M.; Ross, J.V.; Rouzaud, J.-N. Mechanisms of graphite formation from kerogen: Experimental evidence. Int. J. Coal Geol. 1995, 28, 1–36. [Google Scholar] [CrossRef]
- Beyssac, O.; Rouzaud, J.N.; Goffé, B.; Brunet, F.; Chopin, C. Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman microspectroscopy and HRTEM study. Contrib. Mineral. Petrol. 2002, 143, 19–31. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Petitet, J.P.; Froigneux, E.; Moreau, M.; Rouzaud, J.N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectroc. Acta Part A 2003, 59, 2267–2276. [Google Scholar] [CrossRef]
- Thomas, P.; Delbe, K.; Himmel, D.; Mansot, J.L.; Cadore, F.; Guerin, K. Tribological properties of low-temperature graphite fluorides. Influence of the structure on the lubricating performances. J. Phys. Chem. Solids 2006, 67, 1095–1099. [Google Scholar] [CrossRef] [Green Version]
- Barker, C.E.; Goldstein, R.H. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology 1990, 18, 1003–1006. [Google Scholar] [CrossRef]
- Oohashi, K.; Hirose, T.; Kobayashi, K.; Shimamoto, T. The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep. J. Struct. Geol. 2012, 38, 39–50. [Google Scholar] [CrossRef]
- Xu, X.; Wen, W.; Yu, G.; Klinger, Y.; Hubbard, J.; Shaw, J. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw7.9 Wenchuan earthquake, China. Geology 2009, 37, 515–518. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Xu, Z.; Si, J.; Pei, J.; Li, T.; Huang, Y.; Song, S.-R.; Kuo, L.-W.; Sun, Z.; et al. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan earthquake Fault Scientific Drilling Hole-1 (WFSD-1). Tectonophysics 2013, 584, 23–42. [Google Scholar] [CrossRef]
- Si, J.; Li, H.; Kuo, L.-W.; Pei, J.; Song, S.-R.; Wang, H. Clay mineral anomalies in the Yingxiu-Beichuan fault zone from the WFSD-1 drilling core and its implication for the faulting mechanism during the 2008 Wenchuan earthquake (Mw 7.9). Tectonophysics 2014, 619–620, 171–178. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Si, J.; Sun, Z.; Huan, Y. Internal structures of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics 2014, 619–620, 101–114. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, S.; Shimamoto, T.; Yao, L.; Chen, J.; Yang, X.; He, H.; Dang, J.; Hou, L.; Togo, T. Internal structures and high-velocity frictional properties of Longmenshan fault zone at Shenxigou activated during the 2008 Wenchuan earthquake. Earth Sci. 2014, 27, 499–528. [Google Scholar] [CrossRef]
- Kouketsu, Y.; Shimizu, I.; Wang, Y.; Yao, L.; Ma, S.; Shimamoto, T. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisonswith those of sedimentary and metamorphic rocks. Tectonophysics 2017, 699, 129–145. [Google Scholar] [CrossRef]
- Kuo, L.-W.; Li, H.; Smith, S.A.F.; Di Toro, G.; Suppe, J.; Song, S.-R.; Nielsen, S.; Sheu, H.-S.; Si, J. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology 2014, 42, 47–50. [Google Scholar] [CrossRef]
- Kuo, L.-W.; Di Felice, F.; Spagnuolo, E.; Di Toro, G.; Song, S.-R.; Aretusini, S.; Li, H.; Suppe, J.; Si, J.; Wen, C.-Y. Fault gouge graphitization as evidence of past seismic slip. Geology 2017, 45, 979–982. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, Z.; Niu, Y.; Kong, G.; Huang, Y.; Wang, H.; Si, J.; Sun, Z.; Pei, Z.; Gong, Z.; et al. Structural and physical property characterization in the Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1). Tectonophysics 2014, 619–620, 86–100. [Google Scholar] [CrossRef]
- Xue, L.; Li, H.; Brodsky, E.E.; Xu, Z.; Kano, Y.; Wang, H.; Mori, J.J.; Si, J.; Pei, J.; Zhang, W.; et al. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science 2013, 340, 1555–1559. [Google Scholar] [CrossRef] [PubMed]
- Salver-Disma, F.; Tarascon, J.M.; Clinard, C.; Rouzaud, J.N. Transmission electron microscopy studies on carbon materials prepared by mechanical milling. Carbon 1995, 37, 1941–1959. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Poschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Furuichi, H.; Ujiie, K.; Kouketsu, Y.; Saito, T.; Tsutsumi, A.; Wallis, S. Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments. Earth Planet. Sci. Lett. 2015, 424, 191–200. [Google Scholar] [CrossRef]
- Lunsdorf, N.K.; Dunkl, I.; Schmidt, B.; Rantitsch, G.; von Eynatten, H. Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part 1: Evaluation of biasing factors. Geostand. Geoanal. Res. 2014, 38, 73–94. [Google Scholar] [CrossRef]
- Lunsdorf, N.K.; Dunkl, I.; Schmidt, B.; Rantitsch, G.; von Eynatten, H. Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part 2: A revised geothermometer. Geostand. Geoanal. Res. 2017, 41, 593–612. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Pastewka, L.; Moser, S.; Gumbsch, P.; Moseler, M. Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 2011, 10, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Niemeijer, A.; Yao, L.; Ma, S. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophys. Res. Lett. 2017, 44, 2177–2185. [Google Scholar] [CrossRef]
- Heermance, R.; Shipton, Z.K.; Evans, J.P. Fault structure control on fault slip and ground motion during the 1999 rupture of the Chelungpu Fault, Taiwan. Seismol. Soc. 2003, 93, 1034–1050. [Google Scholar] [CrossRef]
- Isaacs, A.J.; Evans, J.P.; Song, S.-R.; Kolesar, P.T. Structural, mineralogical, and geochemical characterization of the Chelungpu Thrust Fault, Taiwan. Terr. Atmos. Ocean. Sci. 2007, 18, 183–221. [Google Scholar] [CrossRef]
- Hirono, T.; Ikehara, M.; Otsuki, K.; Mishima, T.; Sakaguchi, M.; Soh, W.; Omori, M.; Lin, W.; Yeh, E.-C.; Tanikawa, W.; et al. Evidence of frictional melting within disk-shaped black materials discovered from the Taiwan Chelungpu fault system. Geophys. Res. Lett. 2006, 33, L19311. [Google Scholar] [CrossRef]
- Kano, Y.; Mori, J.; Fujio, R.; Ito, H.; Yanagidani, T.; Nakao, S.; Ma, K.F. Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett. 2006, 33, L14306. [Google Scholar] [CrossRef]
- Kuo, L.-W.; Song, S.-R.; Yeh, E.-C.; Chen, H.-F. Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophys. Res. Lett. 2009, 36, L18306. [Google Scholar] [CrossRef]
- Kuo, L.-W.; Song, Y.F.; Yang, C.M.; Song, S.-R.; Wang, C.C.; Dong, J.J.; Suppe, J.; Shimamoto, T. Ultrafine spherical quartz formation during seismic fault slip: Natural and experimental evidence and its implications. Tectonophysics 2015, 664, 98–108. [Google Scholar] [CrossRef]
- Chou, Y.-M.; Song, S.-R.; Aubourg, C.; Lee, T.-Q.; Boullier, A.-M.; Song, Y.-F.; Yeh, E.C.; Kuo, L.-W.; Wang, C.-Y. An earthquake slip zone is a magnetic recorder. Geology 2012, 40, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Rumble, D. Hydrothermal graphitic carbon. Element 2014, 10, 427–433. [Google Scholar] [CrossRef]
- Kirilova, M.; Toy, V.; Rooney, J.S.; Giorgetti, C.; Gordon, K.C.; Collettini, C.; Takeshita, T. Structural disorder of graphite and implications for graphite thermometry. Solid Earth 2017, 9, 223–231. [Google Scholar] [CrossRef]
- Sibson, R.H. Thickness of the seismic slip zone. Seismol. Soc. 2003, 93, 1169–1178. [Google Scholar] [CrossRef]
- Di Toro, G.; Han, R.; Hirose, T.; De Paola, N.; Nielsen, S.; Mizoguchi, K.; Ferri, F.; Cocco, M.; Shimamoto, T. Fault lubrication during earthquakes. Nature 2011, 471, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Dash, S.; Tyagi, A.K.; Raj, B. Super low to high friction of turbostratic graphite under various atmospheric test conditions. Tribol. Int. 2011, 22, 1969–1978. [Google Scholar] [CrossRef]
- Oohashi, K.; Hirose, T.; Shimamoto, T. Graphite as a lubricating agent in fault zones: An insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge. J. Geophys. Res. 2013, 118, 2067–2084. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.-B.; Wang, L.-F.; Hu, Y.-Z.; Li, X.; Wang, H. A shear localization mechanism for lubricity of amorphous carbon materials. Sci. Rep. 2014, 4, 3662. [Google Scholar] [CrossRef] [PubMed]
- Ikari, M.J. Principle slip zone: Precursors but not recorders of earthquake slip. Geology 2015, 43, 955–958. [Google Scholar] [CrossRef]
Type | Depth (m) | D1/G intensity (Error Estimate ±0.06) | D1/G Width Ratio (Error Estimate ±0.09) | Peak Position (cm−1) | Gouge or Breccia/ Average Breccia | ||
---|---|---|---|---|---|---|---|
D1 | G | D1 | G | ||||
Breccia | 588.66 | 0.92 | 1.48 | 1336 | 1578 | 1.1 | 1.1 |
Breccia | 588.67 | 0.91 | 1.41 | 1335 | 1580 | 1.0 | 1.0 |
Breccia | 588.68 | 0.95 | 1.28 | 1335 | 1582 | 0.9 | 1.0 |
Breccia | 588.70 | 0.89 | 1.49 | 1337 | 1581 | 1.0 | 1.0 |
Breccia | 588.71 | 0.89 | 1.37 | 1336 | 1579 | 1.0 | 1.0 |
Breccia | 588.72 | 0.91 | 1.39 | 1336 | 1579 | 1.0 | 1.0 |
Breccia | 588.73 | 0.87 | 1.39 | 1335 | 1580 | 0.9 | 1.0 |
Breccia | 588.74 | 0.91 | 1.54 | 1335 | 1580 | 1.1 | 1.0 |
Breccia | 588.75 | 0.87 | 1.55 | 1336 | 1581 | 1.1 | 1.0 |
Breccia | 588.76 | 0.87 | 1.39 | 1334 | 1579 | 1.0 | 1.0 |
Breccia | 588.77 | 0.94 | 1.44 | 1335 | 1579 | 1.0 | 1.0 |
Breccia | 588.79 | 0.90 | 1.46 | 1336 | 1581 | 1.0 | 1.0 |
Breccia | 588.80 | 0.94 | 1.44 | 1336 | 1578 | 1.0 | 1.0 |
Breccia | 588.81 | 0.89 | 1.36 | 1334 | 1576 | 1.0 | 1.0 |
Gouge | 588.83 | 0.83 | 1.59 | 1334 | 1590 | 0.95 | 0.85 |
Gouge | 588.84 | 0.85 | 1.48 | 1333 | 1590 | 0.85 | 0.82 |
Gouge | 588.85 | 0.92 | 1.5 | 1334 | 1588 | 0.94 | 0.89 |
Gouge | 588.86 | 0.81 | 1.7 | 1331 | 1590 | 0.92 | 0.77 |
Gouge | 588.87 | 0.80 | 1.63 | 1333 | 1591 | 0.89 | 0.79 |
Gouge | 588.89 | 0.74 | 1.5 | 1332 | 1591 | 0.83 | 0.79 |
Gouge | 588.90 | 0.79 | 1.52 | 1333 | 1590 | 0.87 | 0.82 |
Gouge | 588.91 | 0.77 | 1.69 | 1333 | 1593 | 0.91 | 0.77 |
Gouge | 588.92 | 0.81 | 1.62 | 1333 | 1590 | 0.93 | 0.82 |
Gouge | 588.93 | 0.81 | 1.72 | 1331 | 1591 | 0.91 | 0.76 |
Gouge | 588.94 | 0.74 | 1.55 | 1332 | 1591 | 0.85 | 0.79 |
Gouge | 588.95 | 0.81 | 1.64 | 1333 | 1590 | 0.93 | 0.81 |
Gouge | 588.96 | 0.86 | 1.61 | 1334 | 1589 | 0.92 | 0.82 |
Gouge | 588.97 | 0.97 | 1.56 | 1336 | 1587 | 1.00 | 0.91 |
Gouge | 588.99 | 0.81 | 1.42 | 1333 | 1589 | 0.84 | 0.85 |
Gouge | 589.00 | 0.80 | 1.72 | 1334 | 1594 | 0.91 | 0.76 |
Gouge | 589.01 | 0.81 | 1.74 | 1332 | 1590 | 0.93 | 0.77 |
Gouge | 589.02 | 0.79 | 1.56 | 1333 | 1590 | 0.90 | 0.82 |
Gouge | 589.03 | 0.77 | 1.57 | 1332 | 1590 | 0.88 | 0.80 |
Gouge | 589.04 | 0.89 | 1.6 | 1333 | 1591 | 0.90 | 0.80 |
Gouge | 589.06 | 0.90 | 1.65 | 1335 | 1590 | 0.96 | 0.83 |
Gouge | 589.07 | 0.88 | 1.53 | 1335 | 1587 | 0.97 | 0.91 |
Gouge | 589.08 | 0.92 | 1.53 | 1334 | 1585 | 1.00 | 0.93 |
Gouge | 589.09 | 0.89 | 1.46 | 1334 | 1586 | 0.91 | 0.90 |
Gouge | 589.10 | 0.98 | 1.61 | 1334 | 1586 | 1.04 | 0.92 |
Gouge | 589.11 | 0.85 | 1.55 | 1333 | 1588 | 0.93 | 0.85 |
Gouge | 589.13 | 0.75 | 1.48 | 1333 | 1589 | 0.86 | 0.84 |
Gouge | 589.14 | 0.82 | 1.59 | 1332 | 1587 | 0.95 | 0.86 |
Gouge | 589.15 | 0.81 | 1.55 | 1332 | 1591 | 0.84 | 0.78 |
Gouge | 589.16 | 0.87 | 1.4 | 1333 | 1581 | 0.96 | 0.98 |
Gouge | 589.17 | 0.87 | 1.49 | 1334 | 1585 | 0.96 | 0.92 |
Gouge | 589.18 | 0.80 | 1.55 | 1334 | 1589 | 0.93 | 0.86 |
Gouge | 589.20 | 0.76 | 1.53 | 1333 | 1588 | 0.90 | 0.84 |
Gouge | 589.21 | 0.76 | 1.41 | 1334 | 1588 | 0.86 | 0.88 |
Gouge | 589.23 | 0.89 | 1.71 | 1334 | 1589 | 1.00 | 0.84 |
Gouge | 589.24 | 0.91 | 1.58 | 1335 | 1588 | 0.97 | 0.88 |
Breccia | 589.26 | 0.92 | 1.59 | 1334 | 1584 | 1.06 | 1.0 |
Breccia | 589.27 | 0.86 | 1.47 | 1335 | 1580 | 1.03 | 1.0 |
Breccia | 589.28 | 0.94 | 1.45 | 1334 | 1579 | 1.01 | 1.0 |
Breccia | 589.29 | 0.90 | 1.53 | 1336 | 1582 | 1.05 | 1.0 |
Breccia | 589.30 | 0.93 | 1.58 | 1334 | 1585 | 1.02 | 0.9 |
Breccia | 589.31 | 0.86 | 1.48 | 1334 | 1579 | 1.02 | 1.0 |
Breccia | 589.33 | 0.88 | 1.43 | 1335 | 1578 | 1.01 | 1.0 |
Breccia | 589.34 | 0.87 | 1.41 | 1334 | 1578 | 0.99 | 1.0 |
Breccia | 589.35 | 0.89 | 1.41 | 1334 | 1578 | 0.99 | 1.0 |
Breccia | 589.36 | 0.87 | 1.38 | 1335 | 1577 | 0.99 | 1.0 |
Breccia | 589.37 | 0.89 | 1.39 | 1335 | 1577 | 1.02 | 1.0 |
Breccia | 589.38 | 0.90 | 1.35 | 1333 | 1575 | 1.00 | 1.1 |
Breccia | 589.39 | 0.89 | 1.41 | 1333 | 1575 | 1.02 | 1.0 |
Breccia | 589.40 | 0.90 | 1.41 | 1334 | 1576 | 1.02 | 1.0 |
Breccia | 589.41 | 0.90 | 1.48 | 1336 | 1579 | 1.07 | 1.0 |
Breccia | 589.43 | 0.85 | 1.41 | 1334 | 1576 | 1.01 | 1.0 |
Breccia | 589.44 | 0.86 | 1.38 | 1333 | 1574 | 1.01 | 1.0 |
Breccia | 589.45 | 0.85 | 1.39 | 1333 | 1576 | 0.99 | 1.0 |
Breccia | 589.46 | 0.89 | 1.45 | 1334 | 1577 | 1.05 | 1.0 |
Breccia | 589.47 | 0.89 | 1.44 | 1334 | 1577 | 1.03 | 1.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, L.-W.; Huang, J.-R.; Fang, J.-N.; Si, J.; Li, H.; Song, S.-R. Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications. Minerals 2018, 8, 385. https://doi.org/10.3390/min8090385
Kuo L-W, Huang J-R, Fang J-N, Si J, Li H, Song S-R. Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications. Minerals. 2018; 8(9):385. https://doi.org/10.3390/min8090385
Chicago/Turabian StyleKuo, Li-Wei, Jyh-Rou Huang, Jiann-Neng Fang, Jialiang Si, Haibing Li, and Sheng-Rong Song. 2018. "Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications" Minerals 8, no. 9: 385. https://doi.org/10.3390/min8090385
APA StyleKuo, L. -W., Huang, J. -R., Fang, J. -N., Si, J., Li, H., & Song, S. -R. (2018). Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications. Minerals, 8(9), 385. https://doi.org/10.3390/min8090385