Nature and Evolution of Paleoproterozoic Sn and Rare Metal Albitites from Central Brazil: Constraints Based on Textural, Geochemical, Ar-Ar, and Oxygen Isotopes
Abstract
:1. Introduction
Geological Context
2. Materials and Methods
3. Geological Setting and Textural Relationships of Albitites
4. Results
4.1. 40Ar/39Ar Age
4.2. Lithogeochemistry
4.3. Mineral Chemistry
4.4. Oxygen Isotopes
5. Discussion
5.1. Tectonic Setting and Regional Geological Context
5.2. Genesis and Evolution of Albitites and Associated Granitic Rocks
5.3. Tin Transport and Concentration
6. Conclusions
- The studied albitites have a snowball texture in quartz, apatite, and cassiterite and flow texture, with alignment of albite laths in the matrix, interpreted as magmatic texture. These rocks are interpreted as magmatic and occur as dikes or lenses in monzogranite, peraluminous tonalite, and graphite schist.
- Albitites have high Na2O, Al2O3, P2O5, Sn, Ta, and Nb (Ta > Nb) contents and represent cumulates separated from evolved Na-rich peraluminous magmas related to the Aurumina suite tourmaline-bearing rocks. The albite granite represents a residual liquid from the late stages of magmatism.
- Biotite from monzogranite and tonalite have compositions similar to those from peraluminous granitic suites. Tin in cassiterite is replaced by Fe, Ta, and Nb, with Ta > Nb contents. The chemical composition of the studied rocks acted as a control factor on the composition of primary muscovite, especially in Na2O and TiO2 contents. Primary muscovite from tonalite has higher Al, Mg, and Na, and lower Fe and Si contents than secondary ones. While secondary muscovite always has low TiO2 (0.0–0.07%) contents, magmatic muscovite of tonalite has variable Ti contents. Both primary and secondary muscovite from albitites and albite granites have virtually no Ti and are high in Na, Al, and Si.
- The isotopic fluid composition in equilibrium with albitites varies from 8.68‰ to 9.72‰ and is consistent with the interpretation of magmatic origin. Although the calculated isotopic equilibrium temperatures are elevated for the evolved peraluminous granite system in place, they also demonstrate the absence of hydrothermal influence on albitite crystallization.
- 40Ar/39Ar data in muscovite suggest that albitites crystallized around 1996 ± 13 Ma and they can be correlated to the final stages of the Aurumina Suite (2.12–2.17 Ga). Argon loss in 618.0 ± 36.2 Ma is interpreted as related to the Brasiliano (Pan-African) tectono-metamorphic event.
- In addition to containing hydrothermal tin mineralization hosted in greisens and within-plate granite magmatism, of approximately 1.7 Ga, the Goiás Tin Province has magmatic tin economic concentrations hosted in igneous albitite of about 2.0 Ga. These results, therefore, extend the possibilities of a tin source in the Goiás Tin Province. They have implications for the province’s economic potential and also help understand solubility and tin concentration in peraluminous granitic systems highly evolved and very rich in sodium.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Charoy, B.; Pollard, P.J. Albite-rich, silica-depleted metasomatic rocks at Emuford, Northeast Queensland: Mineralogical, geochemical and fluid inclusion constraints on hydrothermal evolution and tin mineralization. Econ. Geol. 1989, 84, 1850–1874. [Google Scholar] [CrossRef]
- Castorina, F.; Masi, U.; Padalino, G.; Palomba, M. Constraints from geochemistry and Sr–Nd isotopes for the origin of albitite deposits from central Sardinia (Italy). Miner. Depos. 2006, 41, 323–338. [Google Scholar] [CrossRef]
- Mohammad, Y.O.; Maekawa, H.; Lawa, F.A. Mineralogy and origin of Mlakawaalbitite from Kurdistan region, Northeastern Iraq. Geosphere 2007, 3, 624–645. [Google Scholar] [CrossRef]
- Kovalenko, V.I. The genesis of rare metal granitoids and related ore deposits. In Metallization Associated with Acid Magmatism Czech Geological Survey; Stemprok, M., Burnol, L., Tischendorf, G., Eds.; Geological Survey: Prague, Czech Republic, 1978; Volume 3, pp. 235–247. [Google Scholar]
- Moura, M.A.; Botelho, N.F.; Olivo, G.R.; Kyser, K.; Pontes, R.M. Genesis of the Proterozoic Mangabeira tin–indium mineralization, central Brazil: Evidence from geology, petrology, fluid inclusion and stable isotope data. Ore Geol. Rev. 2014, 60, 36–49. [Google Scholar] [CrossRef]
- Cuney, M.; Marignac, C.; Weisbrod, A. The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ. Geol. 1992, 87, 1766–1794. [Google Scholar] [CrossRef]
- Schwartz, M.O. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids: Examples from the Ta–Li granite Yichun (China) and the Sn–W deposit Tikus (Indonesia). Miner. Depos. 1992, 27, 101–108. [Google Scholar] [CrossRef]
- Costi, H.T.; Dall’Agnol, R.; Pichavant, M.; Rämö, O.T. The peralkaline tin-mineralized Madeira cryolite albite-rich granite of Pitinga, Amazonian craton, Brazil: Petrography, mineralogy and crystallization processes. Can. Miner. 2009, 47, 1301–1327. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Z.; Zhang, Y.; Wang, K. Zircon geochronology and trace element geochemistry from the Xiaozhen Copper Deposit, North Daba Mountain: Constraints on albitites petrogenesis. Acta Geol. Sin. Engl. 2014, 88, 113–127. [Google Scholar] [CrossRef]
- Lenharo, S.L.R.; Moura, M.A.; Botelho, N.F. Petrogenetic and mineralization processes in Paleo-to Mesoproterozoic rapakivi granites: Example from Pitinga and Goiás, Brazil. Precambr. Res. 2002, 119, 277–299. [Google Scholar] [CrossRef]
- Lenharo, S.L.R.; Pollard, P.J.; Born, H. Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga mine, Amazonas, Brazil. Lithos 2003, 66, 37–61. [Google Scholar] [CrossRef]
- Marini, O.J.; Botelho, N.F. A Província de Granitos Estaníferos de Goiás. Rev. Bras. Geociênc. 1986, 16, 119–131. [Google Scholar]
- Cuadros, F.; Botelho, N.F.; Fuck, R.A.; Dantas, E.L. The Ticunzal Formation in central Brazil: Record of Rhyacian sedimentation and metamorphism in the western border of the São Francisco Craton. J. S. Am. Earth Sci. 2017, 79, 307–325. [Google Scholar] [CrossRef]
- Cuadros, F.; Botelho, N.F.; Fuck, R.A.; Dantas, E.L. The peraluminous Aurumina Granite Suite in central Brazil: An example of mantle-continental crust interaction in a Paleoproterozoic cordilleran hinterland setting? Precambr. Res. 2017, 299, 75–100. [Google Scholar] [CrossRef]
- Alvarenga, C.J.S.; Botelho, N.F.; Dardenne, M.A.; Lima, O.N.B.; Machado, M.A. Monte Alegre de Goiás—SD.23-V-C-III, Escala 1:100,000: Nota Explicativa Integrada com Nova Roma e Cavalcante; CPRM: Brasília/Goiás, Brazil, 2007; 67p. [Google Scholar]
- Botelho, N.F.; Alvarenga, C.J.S.; Menezes, P.R.; D’El Rey Silva, L.J.H. Suíte Aurumina: Uma suíte de granitos paleoproterozóicos, peraluminosos e sin-tectônicos na Faixa Brasília. In Proceedings of the 7th Simpósio de Geologia do Centro-Oeste, Brasília, Brasil, 14–19 November 1999; p. 17. [Google Scholar]
- Sparrenberger, I.; Tassinari, C.C.G. Subprovíncia do Rio Paranã (GO): Um exemplo de aplicação dos métodos de datação U-Pb e Pb-Pb em cassiterita. Rev. Bras. Geociênc. 1999, 29, 405–414. [Google Scholar] [CrossRef]
- Pimentel, M.M.; Fuck, R.A.; Botelho, N.F. Granites and the geodynamic evolution of the Neoproterozoic Brasilia belt, central Brazil. Lithos 1999, 46, 463–483. [Google Scholar] [CrossRef]
- Dardenne, M.A. The Brasília fold belt. In Proceedings of the 31st International Geological Congress, Rio de Janeiro, Brazil, 6–17 August 2000; pp. 231–236. [Google Scholar]
- Marini, O.J. Nova unidade litostratigráfica do Pré-Cambriano do estado de Goiás. In Proceedings of the 30th Congresso Brasileiro de Geologia, Recife, Brazil, November 1978; pp. 126–127. [Google Scholar]
- Pimentel, M.M.; Jost, H.; Fuck, R.A. O embasamento da Faixa Brasília e o Arco Magmático de Goiás. In Geologia do Continente sul Americano: Evolução da Obra de Fernando Flávio Marques de Almeida; Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R., Brito-Neves, B.B., Eds.; Beca: São Paulo, Brazil, 2004; pp. 356–368. [Google Scholar]
- Botelho, N.F.; Fuck, R.A.; Dantas, E.L.; Laux, J.H.; Junges, S.L. The Paleoproterozoic peraluminous Aurumina Granite Suite, Goiás and Tocantins, Brazil: Geological, whole rock geochemistry and U-Pb and Sm-Nd isotopic constraints. In The Paleoproterozoic Record of the São Francisco Craton, Proceedings of the IGCP 509 Annual Meeting, Bahia/Minas Gerais, Brazil, 9–21 September 2006; p. 92. Available online: https://earth.yale.edu/sites/default/files/files/IGCP/IGCP%20Brazil.pdf (accessed on 3 August 2018).
- Instituto de Geociências/UnB. Mapa Geológico do Projeto Nova Roma—Porto Real. Bachelor’s Thesis, University of Brasilia, Brasília, Brazil, 2005.
- Roddick, J.C. High precision intercalibration of 40Ar/39Ar standards. Geochim. Cosmochim. Acta 1983, 47, 887–898. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Dalrymple, G.B.; Alexander, E.C., Jr.; Lanphere, M.A.; Kraker, G.P. Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey TRIGA Reactor; U.S. Geological Survey Professional Paper 1176; U.S. Government Printing Office: Washington, DC, USA, 1981; p. 1176.
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Zheng, Y.F. Calculation of oxygen isotope fractionation in metal oxides. Geochim. Cosmochim. Acta 1991, 55, 2299–2307. [Google Scholar]
- Bottinga, Y.; Javoy, M. Comments on oxygen isotope geothermometry. Earth Planet. Sci. Lett. 1973, 20, 250–265. [Google Scholar] [CrossRef]
- Streckeisen, A. To each plutonic rocks its proper name. Earth Sci. Rev. 1976, 12, 1–33. [Google Scholar] [CrossRef]
- Schwartz, M.O.; Rajah, S.S.; Askury, A.K.; Putthapiban, P.; Djaswadi, S. The Southeast Asian Tin Belt. Earth Sci. Rev. 1995, 38, 95–293. [Google Scholar] [CrossRef]
- Corsini, M.; Figueiredo, L.L.; Caby, R.; Feraud, G.; Ruffet, G.; Vauchez, A. Thermal history of the Pan-African/Brasiliano Borborema Province of northeast Brazil deduced from 40Ar/39Ar analysis. Tectonophysics 1997, 285, 103–117. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Nakamura, N. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 1974, 38, 757–775. [Google Scholar] [CrossRef]
- Nachit, H.; Ibhi, A.; Abia, E.H.; Ohoud, M.B. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. C. R. Geosci. 2005, 337, 1415–1420. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock Forming Minerals: Sheet Silicates; Longman Green and Co.: London, UK, 1963. [Google Scholar]
- Abdel-Rahman, A.M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J. Petrol. 1994, 35, 525–541. [Google Scholar] [CrossRef]
- Miller, C.F.; Stoddard, E.F.; Bradfish, L.J. Composition of plutonic muscovite: Genetic implications. Can. Miner. 1981, 19, 25–34. [Google Scholar]
- Koh, J.S.; Yun, S.H. The compositions of biotite and muscovite in the Yuksipryong two-mica granite and its petrological meaning. Geosci. J. 1999, 3, 77–86. [Google Scholar] [CrossRef]
- Zane, A.; Rizzo, G. The compositional space of muscovite in granitic rocks. Can. Mineral. 1999, 37, 1229–1238. [Google Scholar]
- Tao, J.; Li, W.; Cai, Y.; Cen, T. Mineralogical feature and geological significance of muscovites from the Longyuanba Indosinian and Yanshannian two-mica granites in the eastern Nanling Range. Sci. China Ser. D 2014, 57, 1150–1157. [Google Scholar] [CrossRef] [Green Version]
- Möller, P.; Dulski, P.; Szacki, W.; Malow, G.; Riedel, E. Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese. Geochim. Cosmochim. Acta 1988, 52, 1497–1503. [Google Scholar] [CrossRef]
- Costi, H.T.; Horbe, A.M.C.; Borges, R.M.K.; Dall’agnol, R.; Rossi, O.R.R.; Sighnolfi, G.P. Mineral chemistry of cassiterites from Pitinga Province, Amazonian Craton, Brazil. Rev. Bras. Geociênc. 2000, 30, 775–782. [Google Scholar] [CrossRef]
- Pereira, A.B. Caracterização dos Granitos e Pegmatitos Peraluminosos, Mineralizados em Sn-Ta, de Monte Alegre de Goiás. Master’s Thesis, Instituto de Geociências, Universidade de Brasília, Brasília, Brazil, 2002. [Google Scholar]
- Taylor, H.P., Jr. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Kalamarides, R.I. High-temperature oxygen isotope fractionation among the phases of the Kiglapait Intrusion, Labrador, Canada. Chem. Geol. 1986, 58, 303–310. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pimentel, M.M.; Heaman, L.; Fuck, R.A.; Marini, O.J. U/Pb zircon geochronology of Precambrian tin-bearing continental type acid magmatism in central Brazil. Preccambr. Res. 1991, 52, 321–335. [Google Scholar] [CrossRef]
- Pimentel, M.M.; Botelho, N.F. Sr and Nd isotopic characteristics of 1.77–71.58 Ga rift-related granites and volcanics of the Goiás Tin Province, central Brazil. Anais Acad. Bras. Ciênc. 2001, 73, 263–276. [Google Scholar] [CrossRef]
- London, D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments. Am. Miner. 1986, 71, 376–395. [Google Scholar]
- Müller, A.; van den Kerkhof, A.M.; Behr, H.-J.; Kronz, A.; Koch-Müller, M. The evolution of late-Hercynian granites and rhyolites documented by quartz—A review. Earth Environ. Sci. Trans. R. Soc. Edinb. 2009, 100, 185–204. [Google Scholar] [CrossRef]
- Breiter, K.; Broska, I.; Uher, P. Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: A case study from the Dlhá dolina valley (Gemericum, Slovakia). Geol. Carpath. 2015, 66, 19–36. [Google Scholar] [CrossRef]
- Linnen, R.L. Depth of emplacement, fluid provenance and metallogeny in granitic terranes: A comparison of western Thailand with other tin belts. Miner. Depos. 1998, 33, 461–476. [Google Scholar] [CrossRef]
- Linnen, R.L.; Pichavant, M.; Holtz, F. The combined effects of ƒO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochim. Cosmoch. Acta 1996, 60, 4965–4976. [Google Scholar] [CrossRef]
- Bhalla, P.; Holtza, F.; Linnen, R.L.; Behrens, H. Solubility of cassiterite in evolved granitic melts: Effect of T, fO2, and additional volatiles. Lithos 2005, 80, 387–400. [Google Scholar] [CrossRef]
- Linnen, R.L.; Pichavant, M.; Holtz, F.; Burgess, S. The effect of ƒO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 °C and 2 kbar. Geochim. Cosmoch. Acta 1995, 59, 1579–1588. [Google Scholar] [CrossRef] [Green Version]
- Bea, F.; Fershlater, G.; Corretgé, L.G. The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos 1992, 29, 43–56. [Google Scholar] [CrossRef]
- Thomas, R.; Förster, H.-J.; Heinrich, W. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: A melt and fluid-inclusion study. Contrib. Mineral. Petrol. 2003, 144, 457–472. [Google Scholar] [CrossRef]
- Černý, P. Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies. Precambr. Res. 1991, 51, 429–468. [Google Scholar] [CrossRef]
Rock | Albitite | Tonalite | Schist | Monzogranite | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | |||||||||||||||
SiO2 | 70.5 | 71.25 | 75.9 | 70.5 | 74.38 | 74.9 | 49.83 | 75.3 | 73.6 | 74.4 | 75.9 | 73.5 | 70.9 | 75.2 | 74.1 |
TiO2 | <0.01 | <0.01 | 0.04 | 0.01 | 0.02 | 0.02 | 0.8 | 0.14 | 0.12 | 0.13 | 0.14 | 0.15 | 0.3 | 0.05 | 0.11 |
Al2O3 | 17.1 | 16.83 | 14.3 | 15 | 16.25 | 15.5 | 23.58 | 14.3 | 14.5 | 14.3 | 13.5 | 14.6 | 14.4 | 14.1 | 14.4 |
Fe2O3 | 0.1 | 0.15 | 0.27 | 0.22 | 0.36 | 0.35 | 9.19 | 0.79 | 1.15 | 1.21 | 1.09 | 1.51 | 2.45 | 0.62 | 1.22 |
MnO | 0.01 | 0.06 | 0.01 | 0.05 | <0.01 | <0.01 | 0.27 | <0.01 | <0.01 | 0.01 | <0.01 | 0.02 | 0.02 | <0.01 | 0.01 |
MgO | <0.01 | <0.01 | 0.06 | 0.04 | 0.08 | 0.1 | 2.21 | 0.25 | 0.24 | 0.27 | 0.28 | 0.34 | 0.81 | 0.13 | 0.26 |
CaO | 1.07 | 0.53 | 0.36 | 2.46 | 0.71 | 0.6 | 2.35 | 0.46 | 1.35 | 1.56 | 0.89 | 1.54 | 1.13 | 1.12 | 1.47 |
Na2O | 9.59 | 9.86 | 6.6 | 8.08 | 4.79 | 5.12 | 2.49 | 3.76 | 4.29 | 3.95 | 4.03 | 3.68 | 3.23 | 3.66 | 3.89 |
K2O | 0.06 | 0.1 | 0.88 | 0.54 | 2.04 | 1.73 | 4.55 | 3.78 | 3.58 | 3.06 | 2.98 | 3.43 | 5.09 | 4.18 | 3.29 |
P2O5 | 0.78 | 0.43 | 0.26 | 1.82 | 0.07 | 0.06 | 0.11 | 0.07 | 0.06 | 0.88 | 0.09 | 0.1 | 0.3 | 0.09 | 0.07 |
LOI | 0.7 | 0.6 | 0.9 | 0.8 | 1.2 | 1.5 | 4.3 | 1.1 | 0.9 | 1.0 | 1.0 | 1.0 | 1.1 | 0.7 | 1.0 |
TOTAL | 99.9 | 99.83 | 99.5 | 99.6 | 99.85 | 99.9 | 99.72 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.8 | 99.9 | 99.9 |
ppb | |||||||||||||||
Au | <0.5 | 0.5 | <0.5 | 0.6 | 1.1 | 0.8 | 0.7 | <0.5 | <0.5 | <0.5 | 1.3 | <0.5 | 0.8 | 1 | 1.3 |
ppm | |||||||||||||||
Be | 31 | 148 | 4 | 4 | 4 | <1 | 14 | 4 | 11 | 15 | 4 | 8 | 8 | <1 | 8 |
Rb | 1.5 | 2.5 | 282 | 33.4 | 63.8 | 57.1 | 219 | 157 | 101 | 96 | 115 | 124 | 142 | 114 | 107 |
Cs | 0.2 | 2.8 | 84.6 | 1.9 | 10.4 | 9.5 | 28.7 | 9.3 | 6.4 | 6.8 | 9.9 | 6.8 | 13.4 | 2.9 | 7.7 |
Ba | 3 | 7 | 49 | 31 | 602 | 526 | 701 | 311 | 352 | 259 | 353 | 352 | 1022 | 394 | 321 |
Sr | 115 | 75.3 | 33.4 | 139 | 289.7 | 265 | 378.6 | 78.6 | 187 | 152 | 183 | 169 | 145 | 152 | 198 |
Ga | 15.7 | 13.4 | 15.4 | 14 | 13.3 | 111 | 28.7 | 15.7 | 15.3 | 17 | 13 | 16.8 | 17 | 14.9 | 14.1 |
V | 21 | 27 | 21 | 23 | 32 | 33 | 146 | 41 | 36 | 27 | 30 | 31 | 57 | 46 | 46 |
Sn | 8 | 398 | 3218 | 2851 | 11 | 11 | 4 | 5 | 2 | 1 | 3 | 5 | 4 | 2 | 1 |
W | <0.5 | <0.5 | 2 | 0.9 | 1.5 | 1.4 | 4.1 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | 0.7 | <0.5 | <0.5 |
Ta | 1.7 | 18.7 | 24.2 | 111 | 0.1 | <0.1 | 0.9 | 0.5 | 0.2 | 0.2 | 0.2 | 0.8 | 0.6 | 0.2 | 0.3 |
Nb | 1.3 | 12.9 | 12 | 72.2 | 0.6 | 0.7 | 11.9 | 3.8 | 3.1 | 3.3 | 2.2 | 4.6 | 5 | 1.7 | 3.1 |
Th | 0.5 | <0.2 | 0.9 | 0.2 | 2.8 | 0.4 | 17.5 | 8 | 6.3 | 7.4 | 10.5 | 5.5 | 6.1 | 2.8 | 5.2 |
U | 2.8 | 0.8 | 1.5 | 6.2 | <0.1 | 0.2 | 4.3 | 2.4 | 4 | 6.3 | 3.9 | 5.5 | 4.4 | 2.1 | 2.3 |
Zr | 15.5 | 21.5 | 36.3 | 16.1 | 1.2 | 5.5 | 189.1 | 70.7 | 68.6 | 82.1 | 114 | 76.7 | 90.6 | 32 | 58.4 |
Hf | 1.4 | 2.9 | 3.3 | 2.6 | <0.1 | <0.1 | 4.6 | 2.1 | 2.1 | 1.9 | 3.4 | 2 | 2.3 | 1.1 | 1.4 |
Y | 2 | 0.1 | 1.6 | 4 | 0.4 | 0.9 | 34.9 | 2.1 | 2.2 | 4 | 3.7 | 3.4 | 6.9 | 3.8 | 3.1 |
Sc | <1 | <1 | <1 | <1 | <1 | <1 | 23 | 1 | 1 | 2 | 2 | 2 | 3 | 1 | 1 |
La | 0.9 | 0.2 | 2.7 | 2.3 | 3.4 | 2.7 | 57.9 | 16.5 | 14.9 | 15.5 | 22.5 | 13.4 | 22 | 8.2 | 12.8 |
Ce | 1.7 | 0.2 | 4.3 | 4.5 | 4.9 | 5.3 | 117.7 | 28.7 | 26.2 | 27.1 | 39 | 27.2 | 42.4 | 15.8 | 23.7 |
Pr | 0.16 | <0.02 | 0.44 | 0.46 | 0.52 | 0.52 | 12.96 | 2.79 | 2.38 | 2.51 | 3.91 | 2.68 | 4.36 | 1.55 | 2.31 |
Nd | 1.2 | <0.3 | 1.6 | 0.9 | 1.2 | 1.6 | 46.4 | 9.2 | 7.6 | 8.3 | 13.3 | 8.1 | 15.4 | 5.6 | 7.1 |
Sm | 0.21 | <0.05 | 0.26 | 0.69 | 0.19 | 0.24 | 9.03 | 1.55 | 1.42 | 1.6 | 2.48 | 1.81 | 2.85 | 1.32 | 1.41 |
Eu | 0.12 | <0.02 | 0.09 | 0.27 | 0.9 | 0.87 | 1.72 | 0.44 | 0.54 | 0.44 | 0.55 | 0.56 | 0.74 | 0.53 | 0.57 |
Gd | 0.22 | <0.05 | 0.3 | 0.97 | 0.2 | 0.32 | 7.43 | 1.23 | 0.98 | 1.25 | 1.8 | 1.67 | 2.39 | 1.1 | 1.27 |
Tb | 0.06 | <0.01 | 0.05 | 0.28 | 0.03 | 0.03 | 1.11 | 0.14 | 0.14 | 0.18 | 0.23 | 0.21 | 0.33 | 0.18 | 0.16 |
Dy | 0.19 | <0.05 | 0.3 | 1.11 | 0.09 | 0.11 | 7.08 | 0.6 | 0.42 | 0.83 | 0.98 | 0.97 | 1.37 | 0.93 | 0.63 |
Ho | <0.02 | <0.02 | 0.05 | 0.09 | 0.03 | 0.02 | 1.37 | 0.08 | 0.08 | 0.21 | 0.13 | 0.13 | 0.28 | 0.18 | 0.16 |
Er | 0.05 | <0.03 | 0.06 | 0.07 | <0.03 | <0.03 | 4.09 | 0.1 | 0.16 | 0.27 | 0.23 | 0.22 | 0.44 | 0.35 | 0.26 |
Tm | 0.02 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | 0.61 | 0.01 | 0.03 | 0.03 | 0.03 | 0.03 | 0.08 | 0.05 | 0.03 |
Yb | 0.07 | <0.05 | <0.05 | <0.05 | <0.05 | 0.09 | 3.96 | 0.1 | 0.09 | 0.12 | 0.35 | 0.24 | 0.51 | 0.13 | 0.17 |
Lu | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 | 0.02 | 0.59 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.06 | 0.05 | 0.02 |
Ni | 0.1 | 0.5 | <0.1 | <0.1 | 0.2 | 0.3 | 42.1 | <0.1 | 0.6 | 0.9 | 0.9 | 0.6 | 6.8 | <0.1 | 0.6 |
Cr | <20 | <20 | <20 | <20 | <20 | <20 | 116.3 | <20 | <20 | <20 | 27.4 | <20 | 20.5 | <20 | <20 |
Co | <0.2 | <0.2 | 0.4 | 0.3 | 0.7 | 0.5 | 21.6 | 1.1 | 1.4 | 1.8 | 2 | 2.3 | 5 | 1.1 | 1.4 |
Cu | 1.3 | 1.7 | 0.5 | 1.2 | 1.2 | 1.4 | 73.2 | 1.7 | 2.7 | 0.9 | 1.9 | 1.3 | 9.2 | 1.4 | 1.7 |
Cd | <0.1 | <0.1 | 0.1 | 2.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Zn | 10 | 3 | 4 | 14 | <1 | <1 | 97 | 6 | 19 | 20 | 18 | 18 | 63 | 3 | 13 |
Pb | 4 | 0.6 | 3.8 | 8.5 | 22.7 | 25.8 | 5.5 | 6.6 | 9.6 | 6.3 | 11.8 | 29.9 | 37.8 | 6.6 | 5.1 |
Mo | <0.1 | 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.7 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.4 | <0.1 | <0.1 |
Ag | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.2 | 0.1 | <0.1 | <0.1 |
As | <0.5 | <0.5 | <0.5 | <0.5 | 0.6 | <0.5 | 3 | <0.5 | <0.5 | <0.5 | 1.3 | 0.6 | 1.4 | <0.5 | <0.5 |
Sb | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.01 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Bi | <0.1 | <0.1 | <0.1 | <0.1 | 1.9 | 0.8 | 0.1 | <0.1 | <0.1 | 0.1 | 0.1 | 0.3 | 0.3 | <0.1 | <0.1 |
Se | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 0 | <0.5 |
Hg | 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.0 |
Tl | <0.1 | <0.1 | 0.2 | <0.1 | <0.1 | <0.1 | 0.2 | <0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.4 | <0.1 | 0.2 |
Muscovite | Biotite | Cassiterite | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Albitite | Tonalite | Tonalite | Monzogranite | Boa Vista Albitite | Pelotas Albitite | ||||||||
S | P | S | P | N | B | N | B | ||||||
SiO2 | 47.70 | 48.40 | 48.77 | 47.36 | 36.04 | 35.61 | 35.84 | 36.05 | SiO2 | 0.03 | 0.00 | 0.00 | 0.10 |
TiO2 | 0.02 | 0.07 | 0.15 | 0.28 | 1.10 | 1.20 | 1.41 | 0.96 | Al2O3 | 0.00 | 0.00 | 0.00 | 0.02 |
Al2O3 | 33.79 | 33.67 | 33.60 | 34.67 | 17.65 | 17.47 | 17.91 | 17.76 | FeO | 0.10 | 0.25 | 0.12 | 0.24 |
FeO | 0.93 | 0.86 | 2.50 | 1.85 | 23.04 | 23.45 | 22.92 | 22.51 | MnO | 0.02 | 0.03 | 0.00 | 0.03 |
MnO | 0.06 | 0.02 | 1.19 | 0.12 | 0.29 | 0.10 | 0.15 | 0.25 | WO3 | 0.00 | 0.00 | 0.00 | 0.00 |
MgO | 0.02 | 0.11 | 0.05 | 1.06 | 7.48 | 8.11 | 8.08 | 8.08 | As2O5 | 0.00 | 0.00 | 0.00 | 0.00 |
CaO | 0.06 | 0.00 | 0.04 | 0.00 | 0.02 | 0.07 | 0.30 | 0.05 | Ta2O5 | 0.45 | 0.96 | 0.48 | 0.73 |
Na2O | 0.88 | 0.68 | 0.27 | 0.30 | 0.05 | 0.08 | 0.04 | 0.21 | Sb2O5 | 0.38 | 0.46 | 0.35 | 0.36 |
K2O | 10.56 | 10.23 | 10.67 | 10.60 | 9.65 | 9.56 | 9.28 | 9.47 | SO3 | 0.00 | 0.01 | 0.00 | 0.00 |
SrO | 0.11 | 0.00 | 0.00 | 0.05 | 0.03 | 0.00 | 0.02 | 0.00 | Bi2O3 | 0.00 | 0.00 | 0.00 | 0.00 |
BaO | 0.02 | 0.00 | 0.06 | 0.00 | 0.26 | 0.00 | 0.01 | 0.00 | Nb2O5 | 0.11 | 0.38 | 0.22 | 0.66 |
F | 0.00 | 0.00 | 0.38 | 0.32 | 0.62 | 0.27 | 0.30 | 0.29 | In2O3 | 0.17 | 0.13 | 0.12 | 0.17 |
Cl | 0.00 | 0.00 | 0.01 | 0.00 | 0.03 | 0.03 | 0.03 | 0.04 | SnO2 | 99.32 | 98.30 | 99.31 | 97.74 |
H2O * | 4.46 | 4.49 | 4.38 | 4.39 | 3.61 | 3.77 | 3.79 | 3.78 | UO2 | 0.00 | 0.02 | 0.00 | 0.00 |
Total | 98.61 | 98.58 | 101.90 | 100.86 | 99.66 | 99.65 | 99.98 | 99.40 | CuO | 0.00 | 0.01 | 0.02 | 0.00 |
FORMULE ON THE BASIS OF 22O | ZnO | 0.00 | 0.00 | 0.00 | 0.01 | ||||||||
Si | 6.409 | 6.470 | 6.406 | 6.249 | 5.524 | 5.466 | 5.453 | 5.510 | TOTAL | 100.57 | 100.55 | 100.63 | 100.05 |
Aliv | 1.591 | 1.530 | 1.594 | 1.751 | 2.476 | 2.534 | 2.547 | 2.490 | FORMULE ON THE BASIS OF 2O | ||||
Site T | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | Si | 0.001 | 0.000 | 0.000 | 0.002 |
Alvi | 3.760 | 3.775 | 3.609 | 3.640 | 0.712 | 0.628 | 0.666 | 0.710 | Al | 0.000 | 0.000 | 0.000 | 0.000 |
Ti | 0.002 | 0.007 | 0.015 | 0.028 | 0.126 | 0.138 | 0.162 | 0.110 | Fe | 0.002 | 0.005 | 0.003 | 0.005 |
Fe | 0.105 | 0.096 | 0.274 | 0.204 | 2.953 | 3.011 | 2.916 | 2.878 | Mn | 0.001 | 0.001 | 0.000 | 0.001 |
Mn | 0.003 | 0.003 | 0.132 | 0.014 | 0.038 | 0.013 | 0.019 | 0.032 | W | 0.000 | 0.000 | 0.000 | 0.000 |
Mg | 0.007 | 0.021 | 0.011 | 0.208 | 1.708 | 1.857 | 1.832 | 1.840 | As | 0.000 | 0.000 | 0.000 | 0.000 |
Site M | 3.876 | 3.907 | 4.040 | 4.094 | 5.538 | 5.647 | 5.594 | 5.570 | Ta | 0.003 | 0.007 | 0.003 | 0.005 |
Ca | 0.008 | 0.001 | 0.006 | 0.000 | 0.003 | 0.012 | 0.049 | 0.007 | Sb | 0.003 | 0.004 | 0.003 | 0.003 |
Na | 0.229 | 0.176 | 0.068 | 0.076 | 0.016 | 0.024 | 0.013 | 0.063 | Nb | 0.001 | 0.004 | 0.003 | 0.008 |
K | 1.810 | 1.744 | 1.788 | 1.784 | 1.886 | 1.872 | 1.802 | 1.847 | In | 0.002 | 0.001 | 0.001 | 0.002 |
Sr | 0.009 | 0.000 | 0.000 | 0.004 | 0.003 | 0.000 | 0.001 | 0.000 | Sn | 0.987 | 0.977 | 0.986 | 0.973 |
Ba | 0.001 | 0.000 | 0.003 | 0.000 | 0.015 | 0.000 | 0.001 | 0.000 | U | 0.000 | 0.000 | 0.000 | 0.000 |
Site I | 2.057 | 1.921 | 1.866 | 1.864 | 1.926 | 1.911 | 1.867 | 1.924 | Cu | 0.000 | 0.000 | 0.000 | 0.000 |
OH * | 4.000 | 4.000 | 3.842 | 3.866 | 3.691 | 3.862 | 3.851 | 3.853 | Zn | 0.000 | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.157 | 0.134 | 0.301 | 0.130 | 0.142 | 0.138 | TOTAL | 1.000 | 0.999 | 1.000 | 1.000 |
Cl | 0.000 | 0.000 | 0.001 | 0.000 | 0.009 | 0.008 | 0.006 | 0.009 | |||||
Site A | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |||||
TOTAL | 31.867 | 31.656 | 31.812 | 31.915 | 35.905 | 35.940 | 35.823 | 35.964 |
Mineral (V-SMOW) | Isotopic Equilibrium Temperature (°C) a | Isotopic Composition of the Fluid (‰) | ||
---|---|---|---|---|
Deposit | Albite (‰) | Cassiterite (‰) | ||
Pelotas | 9.3 | 5.3 | 653 °C | 9.35 |
Pelotas | 6.7 | 6.6 | 1163–1319 °C | 9.17 |
Boa Vista | 7.7 | - | 9.40 b | |
Boa Vista | 7.8 | 6.0 | 943 °C | 9.39 |
Boa Vista | 7.9 | 6.5 | 1016 °C | 9.72 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirqueira, A.R.F.; Moura, M.A.; Botelho, N.F.; Kyser, T.K. Nature and Evolution of Paleoproterozoic Sn and Rare Metal Albitites from Central Brazil: Constraints Based on Textural, Geochemical, Ar-Ar, and Oxygen Isotopes. Minerals 2018, 8, 396. https://doi.org/10.3390/min8090396
Sirqueira ARF, Moura MA, Botelho NF, Kyser TK. Nature and Evolution of Paleoproterozoic Sn and Rare Metal Albitites from Central Brazil: Constraints Based on Textural, Geochemical, Ar-Ar, and Oxygen Isotopes. Minerals. 2018; 8(9):396. https://doi.org/10.3390/min8090396
Chicago/Turabian StyleSirqueira, Ana Rita F., Márcia A. Moura, Nilson F. Botelho, and T. Kurt Kyser. 2018. "Nature and Evolution of Paleoproterozoic Sn and Rare Metal Albitites from Central Brazil: Constraints Based on Textural, Geochemical, Ar-Ar, and Oxygen Isotopes" Minerals 8, no. 9: 396. https://doi.org/10.3390/min8090396
APA StyleSirqueira, A. R. F., Moura, M. A., Botelho, N. F., & Kyser, T. K. (2018). Nature and Evolution of Paleoproterozoic Sn and Rare Metal Albitites from Central Brazil: Constraints Based on Textural, Geochemical, Ar-Ar, and Oxygen Isotopes. Minerals, 8(9), 396. https://doi.org/10.3390/min8090396