Structural Control on Clay Mineral Authigenesis in Faulted Arkosic Sandstone of the Rio do Peixe Basin, Brazil
Abstract
:1. Introduction
2. Geological Background of the Rio do Peixe Basin
3. Methods and Materials
4. Results
4.1. Fault Zone Structure
4.2. Petrography
4.2.1. Host Rock
4.2.2. Fault Rocks
4.3. Clay Minerals
4.4. XRD Data
5. Discussion
5.1. Origin of Clay Minerals
5.2. Timing Between Clay Authigenesis and Faulting
5.3. Evolutionary Model
6. Conclusions
- (1)
- The bulk mineralogy of the Rio do Peixe sandstone does not change significantly between the undeformed and faulted domains, consisting of lithic arkose with feldspar grains generally comprising >50%.
- (2)
- In both undeformed and faulted domains, clay minerals are <1–2% and consist of smectite and illite, and subordinately illite–smectite mixed layers. Despite the similar mineralogy, the amount of clay is systematically less in the faulted domain than in pristine rocks and in some cases is not observed at all.
- (3)
- Clay minerals in the studied arkosic sandstones most likely developed during feldspar weathering processes in a shallow meteoric environment. A detrital origin of clay is excluded in the analyzed sandstones and conglomerates.
- (4)
- Contrary to the results of other fault rock studies in similar lithologies, clay is found to be less abundant in the faulted domains (fault core and damage zone) than in the host rocks. We conclude that this is due to the tight fabric that developed in the faulted porous sandstone, which inhibited meteoric fluid circulation and clay mineral authigenesis.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xi, K.; Cao, Y.; Liu, K.; Jahren, J.; Zhu, R.; Yuan, G.; Hellevang, H. Authigenic minerals related to wettability and their impacts on oil accumulation in tight sandstone reservoirs: An example from the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. J. Asian Earth Sci. 2018. [Google Scholar] [CrossRef]
- Rice, J.R. Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In International Geophysics; Academic Press: Cambridge, MA, USA, 1992; pp. 475–503. [Google Scholar]
- Fisher, Q.J.; Knipe, R.J. Fault sealing processes in siliciclastic sediments. In Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs. Geol. Soc. Spec. Publ. 1998, 147, 117–134. [Google Scholar] [CrossRef]
- Haines, S.H.; Van der Pluijm, B.A.; Ikari, M.J.; Saffer, D.M.; Marone, C. Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution. J. Geophys. Res. 2009, 114, B05406. [Google Scholar] [CrossRef]
- Lander, R.H.; Bonnell, L.M. A model for fibrous illite nucleation and growth in sandstones. AAPG Bull. 2010, 94, 1161–1187. [Google Scholar] [CrossRef]
- Faulkner, D.R.; Jackson, C.A.L.; Lunn, R.J.; Schlische, R.W.; Shipton, Z.K.; Wibberley, C.A.J.; Withjack, M.O. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 2010, 32, 1557–1575. [Google Scholar] [CrossRef]
- Balsamo, F.; Aldega, L.; De Paola, N.; Faoro, I.; Storti, F. The signature and mechanics of earthquake ruptures along shallow creeping faults in sediments. Geology 2014, 42, 435–438. [Google Scholar] [CrossRef]
- Buatier, M.D.; Cavailhes, T.; Charpentier, D.; Lerat, J.; Sizun, J.P.; Labaume, P.; Gout, C. Evidence of multi-stage faulting by clay mineral analysis: Example in a normal fault zone affecting arkosic sandstones (Annot sandstones). J. Struct. Geol. 2015, 75, 101–117. [Google Scholar] [CrossRef]
- Antonellini, M.; Aydin, A. Effect of Faulting on Fluid Flow in Porous Sandstones: Petrophysical Properties. AAPG Bull. 1994, 78, 355–377. [Google Scholar]
- Rawling, G.C.; Goodwin, L.B.; Wilson, J.L. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology 2001, 29, 43–46. [Google Scholar] [CrossRef]
- Eichhbl, P.; Taylor, W.L.; Pollard, D.D.; Aydin, A. Paleo-fluid flow and deformation in the Aztec Sandstone at the Valley of Fire, Nevada—Evidence for the coupling of hidrogeologic, diagenetic, and tectonic process. GSA Bull. 2004, 116, 1120–1136. [Google Scholar] [CrossRef]
- Fossen, H.; Schultz, R.A.; Shipton, Z.K.; Mair, K. Deformation bands in sandstone: A review. J. Geol. Soc. 2007, 164, 755–769. [Google Scholar] [CrossRef]
- Caine, J.S.; Minor, S.A. Structural and geochemical characteristics of faulted sediments and inferences on the role of water in deformation, Rio Grande Rift, New Mexico. GSA Bull. 2009, 121, 1325–1340. [Google Scholar] [CrossRef]
- Vrolijk, P.; Van der Pluijm, B. Clay gouge. J. Struct. Geol. 1999, 21, 1039–1048. [Google Scholar] [CrossRef]
- Gibson, R. Physical character and fluid-flow properties of sandstonederived fault gouge, in Structural Geology in Reservoir Characterization. Geol. Soc. Spec. Publ. 1998, 127, 87–93. [Google Scholar] [CrossRef]
- Fisher, Q.; Knipe, R.J. The permeability of faults within siliclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf. Mar. Pet. Geol. 2001, 18, 1063–1081. [Google Scholar] [CrossRef]
- Fossen, H.; Bale, A. Deformation bands and their influence on fluid flow. AAPG Bull. 2007, 91, 1685–1700. [Google Scholar] [CrossRef]
- Rotevatn, A.; Torabi, A.; Fossen, H.; Braathen, A. Slipped deformation bands: A new type of cataclastic deformation bands in Western Sinai, Suez rift, Egypt. J. Struct. Geol. 2008, 30, 1317–1331. [Google Scholar] [CrossRef]
- Eichhubl, P.; Davatzes, N.C.; Becker, S.P. Structural and diagenetic control of fluid migration and cementation along the Moab Fault, Utah. AAPG Bull. 2009, 93, 653–681. [Google Scholar] [CrossRef]
- Balsamo, F.; Storti, F.; Salvini, F.; Lima, C.C. Structural and petrophysical evolution of extensional fault zones in low-porosity, poorly lithified sandstones of the Barreiras Formation NE Brazil. J. Struct. Geol. 2010, 32, 1806–1826. [Google Scholar] [CrossRef]
- Balsamo, F.; Bezerra, F.H.; Vieira, M.; Storti, F. Structural control on the formation of iron oxide concretions and Liesegang bands in faulted, poorly lithified Cenozoic sandstones of the Paraiba basin, Brazil. Bulletin 2013, 125, 913–931. [Google Scholar] [CrossRef]
- Williams, J.N.; Toy, V.G.; Massiot, C.; McNamara, D.D.; Wang, T. Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand. J. Struct. Geol. 2016, 90, 76–94. [Google Scholar] [CrossRef]
- Hoffman, U.; Endell, K.; Wilm, M.D. Kristallstruktur und Quellung von Montmorillonit. Z. Kristallogr. Cryst. Mater. 1933, 86, 340–348. [Google Scholar] [CrossRef]
- Solum, J.G.; Davatzes, N.C.; Lockner, D.A. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties. J. Struct. Geol. 2010, 32, 1899–1911. [Google Scholar] [CrossRef]
- Van der Pluijm, R. Out-of-Plane Bending of Masonry: Behaviour and Strength Eindhoven. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Neitherlands, 1999. [Google Scholar]
- Solum, J.G.; Van der Pluijm, B.A.; Peacor, D.R. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. J. Struct. Geol. 2005, 27, 1563–1576. [Google Scholar] [CrossRef]
- Sénant, J.; Popoff, M. Early Cretaceous extension in northeast Brazil related to the South Atlantic opening. Tectonophysics 1991, 198, 35–46. [Google Scholar] [CrossRef]
- Matos, R.M.D. The Northeast Brazilian Rift System. Tectonics 1992, 11, 766–791. [Google Scholar] [CrossRef]
- Françolin, J.B.L.; Cobbold, P.R.; Szatmari, P. Faulting in the early Cretaceous Rio do Peixe basin (NE Brazil) and its significance for the opening of the Atlantic. J. Struct. Geol. 1994, 16, 647–661. [Google Scholar] [CrossRef]
- De Castro, D.L.; De Oliveira, D.C.; Gomes Castelo Branco, R.M. On the tectonics of the Neocomian Rio do Peixe Rift Basin, NE Brazil: Lessons from gravity, magnetics, and radiometric data. J. South. Am. Earth Sci. 2007, 24, 184–202. [Google Scholar] [CrossRef]
- Albuquerque, J.P.T. Inventário Hidrogeológico do Nordeste; Folha 15; Sudene, Divisão de Documentação: Recife, Brazil, 1970; p. 187. [Google Scholar]
- Lima, M.R.; Coelho, M.P.C.A. Estudo palinológico da sondagem de Lagoa do Forno Bacia do Rio do Peixe Cretáceo do Nordeste do Brasil. São Paulo. Bol. IG-USP Sci. 1987, 18, 67–83. [Google Scholar]
- Córdoba, V.C.; Antunes, A.F.; Jardim de Sá, E.F.; Nunes da Silva, A.; Sousa, D.C.; Lins, F.A.P.L. Análise estratigráfica e estrutural da Bacia do Rio do Peixe Nordeste do Brasil: Integração de dados a partir do levantamento sísmico pioneiro 0295_rio_do_peixe_2d. Bol. Geoci. Petrobras 2008, 16, 53–68. [Google Scholar]
- Nicchio, M.A.; Nogueira, F.C.C.; Balsamo, F.; Souza, J.A.B.; Carvalho, B.R.B.; Bezerra, F.H.R. Development of cataclastic foliation in deformation bands in feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil. J. Struct. Geol. 2018, 107, 132–141. [Google Scholar] [CrossRef]
- Nogueira, F.C.C.; Marques, F.O.; Bezerra, F.H.R.; de Castro, D.L.; Fuck, R.A. Cretaceous intracontinental rifting and post-rift inversion in NE Brazil: Insights from the Rio do Peixe Basin. Tectonophysics 2015, 644, 92–107. [Google Scholar] [CrossRef]
- Araujo, R.E.B.; Bezerra, F.H.R.; Nogueira, F.C.C.; Balsamo, F.; Carvalho, B.R.B.M.; Souza, J.A.B.; Sanglard, J.C.D.; de Castro, D.L.; Melo, A.C.C. Basement control on fault formation and deformation band damage zone evolution in the Rio do Peixe Basin, Brazil. Tectonophysics 2018, 745, 117–131. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1968; p. 182. [Google Scholar]
- Balsamo, F.; Storti, F.; Grocke, D. Fault-related fluid flow history in shallow marine sediments from carbonate concretions, Crotone Basin, south Italy. J. Geol. Soc. 2012, 169, 613–626. [Google Scholar] [CrossRef]
Sample # | Site | Formation | Structural Domain | Bulk Mineralogy | Clay Mineralogy |
---|---|---|---|---|---|
SCP01 | Site 1 | Antenor Navarro | Host rock (fine conglomerate) | Quartz, feldspars, muscovite, hematite | Illite, smectite |
SCP05 | Site 1 | Antenor Navarro | Host rock (fine sandstone) | Quartz, feldspars, muscovite, hematite | Illite, smectite |
UT01 | Site 2 | Rio Piranhas | Host rock (fine sand) | Quartz, feldspars, muscovite | Illite, smectite, I-S mixed layers |
UT11 | Site 2 | Rio Piranhas | Host rock (Fine sand) | Quartz, feldspars, muscovite | Illite, smectite, I-S mixed layers |
UT13 | Site 2 | Rio Piranhas | Fault core (foliated cataclasite) | Quartz, feldspars, muscovite | Not analyzed (no enough clay) |
UT14 | Site 2 | Rio Piranhas | Fault core (foliated cataclasite) | Quartz, feldspars | Illite, chlorite |
SVEM1 | Site 4 | Antenor Navarro | Host rock (fine sandstone) | Quartz, feldspars, muscovite, hematite | Illite, smectite, I-S mixed layers |
SVEF3 | Site 4 | Antenor Navarro | Damage zone (deformation band) | Quartz, feldspars, muscovite | No clay phase |
SVEA1 | Site 4 | Antenor Navarro | Damage zone (cluster of DB) | Quartz, feldspars | Illite, smectite |
SVEB2 | Site 4 | Antenor Navarro | Damage zone (cluster of DB) | Quartz, feldspars | No clay phase |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel, I.B.; Dettori, A.; Balsamo, F.; Bezerra, F.H.R.; Vieira, M.M.; Nogueira, F.C.C.; Salvioli-Mariani, E.; Sousa, J.A.B. Structural Control on Clay Mineral Authigenesis in Faulted Arkosic Sandstone of the Rio do Peixe Basin, Brazil. Minerals 2018, 8, 408. https://doi.org/10.3390/min8090408
Maciel IB, Dettori A, Balsamo F, Bezerra FHR, Vieira MM, Nogueira FCC, Salvioli-Mariani E, Sousa JAB. Structural Control on Clay Mineral Authigenesis in Faulted Arkosic Sandstone of the Rio do Peixe Basin, Brazil. Minerals. 2018; 8(9):408. https://doi.org/10.3390/min8090408
Chicago/Turabian StyleMaciel, Ingrid B., Angela Dettori, Fabrizio Balsamo, Francisco H.R. Bezerra, Marcela M. Vieira, Francisco C.C. Nogueira, Emma Salvioli-Mariani, and Jorge André B. Sousa. 2018. "Structural Control on Clay Mineral Authigenesis in Faulted Arkosic Sandstone of the Rio do Peixe Basin, Brazil" Minerals 8, no. 9: 408. https://doi.org/10.3390/min8090408
APA StyleMaciel, I. B., Dettori, A., Balsamo, F., Bezerra, F. H. R., Vieira, M. M., Nogueira, F. C. C., Salvioli-Mariani, E., & Sousa, J. A. B. (2018). Structural Control on Clay Mineral Authigenesis in Faulted Arkosic Sandstone of the Rio do Peixe Basin, Brazil. Minerals, 8(9), 408. https://doi.org/10.3390/min8090408