Giant Fluorite Mineralization in Central Mexico by Means of Exceptionally Low Salinity Fluids: An Unusual Style among MVT Deposits
Abstract
:1. Introduction
2. Local Geology and Fluorite Deposits
2.1. Las Cuevas Mineralized Area
2.2. The Río Verde Mineralized Area
3. Methodology
4. Results
5. Discussion
5.1. Sources for Mineralizing Fluids, Their Evolution, and Likely Mechanisms of Fluorite Precipitation
- (A)
- Mineralizing fluids were initially dominantly constituted by meteoric water with a relatively prolonged residence time within the local sedimentary basins (deeply evolved meteoric water). These fluids would have become isotopically and compositionally equilibrated with (and buffered by) the host limestones at high water–rock interaction ratios;
- (B)
- CO2-rich fresh meteoric water interacted with the sedimentary brines, further diluting them. It is likely that fresh meteoric water carried fluorine in solution by means of its interaction with the local hypabyssal and volcanic rhyolites, which were F-rich [2,20,21,22,23,24,25]. Although no relevant concentrations of fluorine have been detected in rhyolites of the study area (see the data for Río Verde in Reference [20], but these refer to a sole sample that is not representative of the broad extent of Oligocene volcanism in the region (see Figure 2)), such contents can be over 0.3% in Oligocene topaz rhyolites in central Mexico [20,21].
5.2. Type of Deposits
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Camprubí, A. Major metallogenic provinces and epochs of Mexico. SGA News 2009, 25, 1–21. [Google Scholar]
- Camprubí, A. Tectonic and metallogenic history of Mexico. Soc. Econ. Geol. Spec. Publ. 2013, 17, 201–243. [Google Scholar]
- Anonymous. La fluorita en el mundo; un presente difícil y un futuro complejo. Bol. Téc. COREMI 1998, 20–23. [Google Scholar]
- Levresse, G.; González-Partida, E.; Tritlla, J.; Camprubí, A.; Cienfuegos-Alvarado, E.; Morales-Puente, P. Fluid origin of the world-class, carbonate-hosted Las Cuevas fluorite deposit (San Luis Potosí, Mexico). J. Geochem. Explor. 2003, 78–79, 537–543. [Google Scholar] [CrossRef]
- Tuta, Z.H.; Sutter, J.F.; Kesler, S.E.; Ruiz, J. Geochronology of mercury, tin, and fluorite mineralization in northern Mexico. Econ. Geol. 1988, 83, 1931–1942. [Google Scholar] [CrossRef]
- Ruiz, J.; Kesler, S.E.; Jones, L.M.; Sutter, J.F. Geology and geochemistry of the Las Cuevas fluorite deposit, San Luis Potosí, México. Econ. Geol. 1980, 75, 1200–1209. [Google Scholar] [CrossRef]
- González-Partida, E.; Carrillo-Chavez, A.; Grimmer, J.; Pironon, J. Petroleum-rich fluid inclusions in fluorite, Purisima mine, Coahuila, Mexico. Int. Geol. Rev. 2002, 44, 755–764. [Google Scholar] [CrossRef]
- González-Partida, E.; Carrillo-Chavez, A.; Grimmer, J.; Pironon, J.; Mutterer, J.; Levresse, G. Geochemical evolution of mineralizing fluids at the fluorite La Encantada—Buenavista district: A Mississippi Valley Type deposit. Ore Geol. Rev. 2003, 4, 107–124. [Google Scholar] [CrossRef]
- González-Sánchez, F.; Puente-Solís, R.; González-Partida, E.; Camprubí, A. Estratigrafía del Noreste de México y su relación con los yacimientos estratoligados de fluorita, barita, celestina y Zn-Pb. Bol. Soc. Geol. Mex. 2007, 59, 43–62. [Google Scholar]
- González-Partida, E.; Camprubí, A.; Canet, C.; González-Sánchez, F. Fisicoquímica de salmueras e hidrocarburos en cuencas petroleras y en depósitos minerales tipo Mississippi Valley y asociados. Parte II: Ejemplos de la Cuenca de Sabinas y la Cuenca del Sureste, México. Bol. Soc. Geol. Mex. 2008, 60, 23–42. [Google Scholar]
- González-Sánchez, F.; Camprubí, A.; González-Partida, E.; Puente-Solís, R.; Canet, C.; Centeno-García, E.; Atudorei, V. Regional stratigraphy and distribution of epigenetic stratabound celestine, fluorite, barite, and Zn-Pb deposits in the MVT province of Northeastern Mexico. Miner. Depos. 2009, 44, 343–361. [Google Scholar] [CrossRef]
- González-Partida, E.; Camprubí, A.; Pironon, J.; Alfonso, M.P.; Cienfuegos-Alvarado, E.; Morales-Puente, P.A.; Canet, C.; González-Ruiz, L.E.; Díaz-Carreño, E.H. Modelo de formación de los yacimientos estratoligados de Cu en lechos rojos de Las Vigas (Chihuahua, México). Bol. Soc. Geol. Mex. 2017, 69, 611–635. [Google Scholar] [CrossRef]
- Carrillo-Bravo, J. La plataforma Valles-San Luis Potosí. Bol. Asoc. Mex. Geol. Pet. 1971, 23, 61–102. [Google Scholar]
- Carrillo-Martínez, M. Contribución al estudio geológico del macizo calcáreo El Doctor, Qro. Rev. Inst. Geol. UNAM 1981, 5, 25–29. [Google Scholar]
- Suter, M. Cordilleran deformation along the eastern edge of the Valles-San Luis Potosi carbonate platform, Sierra Madre Oriental fold-thrust belt, east-central Mexico. Geol. Soc. Am. Bull. 1984, 95, 1387–1397. [Google Scholar] [CrossRef]
- Fitz-Díaz, E.; Hudleston, P.; Siebenaller, L.; Kirschner, D.; Camprubí, A.; Tolson, G.; Pi Puig, T. Insights into fluid flow and water-rock interaction during deformation of carbonate sequences in the Mexican Fold-Thrust Belt. J. Struct. Geol. 2011, 33, 1237–1253. [Google Scholar] [CrossRef]
- Omaña, L.; Alencaster, G.; Buitrón, B.E. Mid-early late Albian foraminiferal assemblage from the El Abra Formation in the El Madroño locality, eastern Valles–San Luis Potosí Platform, Mexico: Paleoenvironmental and paleobiogeographical significance. Bol. Soc. Geol. Mex. 2016, 68, 477–496. [Google Scholar] [CrossRef]
- White, R.L. Los yacimientos de antimonio de la región de Soyatal, Estado de Querétaro. Bol. Inst. Nac. Investig. Recur. Miner. 1968, 21. [Google Scholar]
- Wilson, B.W.; Hernández, J.P.; Meave, T.E. Un banco de calizo del Cretácico en la parte oriental del Estado de Querétaro. Bol. Soc. Geol. Mex. 1955, 18, 1–15. [Google Scholar]
- Huspeni, J.R.; Kesler, S.E.; Ruiz, J.; Tuta, Z.; Sutter, J.F.; Jones, L.M. Petrology and geochemistry of rhyolites associated with tin mineralization in northern Mexico. Econ. Geol. 1984, 79, 87–105. [Google Scholar] [CrossRef]
- Leroy, J.L.; Rodríguez-Ríos, R.; Dewonck, S. The topaz-bearing rhyolites from the San Luis Potosi area (Mexico): Characteristics of the lava and growth conditions of topaz. Bull. Soc. Géol. Fr. 2002, 173, 579–588. [Google Scholar] [CrossRef]
- Nieto-Samaniego, Á.F.; Alaniz-Álvarez, S.A.; Camprubí, A. La Mesa Central: Estratigrafía, estructura y evolución tectónica cenozoica. Bol. Soc. Geol. Mex. 2005, 57, 285–318. [Google Scholar] [CrossRef]
- Nieto-Samaniego, Á.F.; Alaniz-Álvarez, S.A.; Camprubí, A. The Central Mesa of México: Stratigraphy, structure and tectonic evolution during the Cenozoic. In Geology of México: Celebrating the Centenary of the Geological Society of México; Alaniz-Álvarez, S.A., Nieto-Samaniego, A.F., Eds.; The Geological Society of America Special Paper: Boulder, CO, USA, 2007; Volume 422, pp. 41–70. [Google Scholar]
- Tristán-González, M.; Aguillón-Robles, A.; Barboza-Gudiño, J.R.; Torres-Hernández, J.R.; Bellon, H.; López-Doncel, R.; Rodríguez-Ríos, R.; Labarthe-Hernández, G. Geocronología y distribución espacial del vulcanismo en el Campo Volcánico de San Luis Potosí. Bol. Soc. Geol. Mex. 2009, 61, 287–303. [Google Scholar] [CrossRef]
- Torres-Hernández, J.R.; Siebe-Grabach, C.; Aguillón-Robles, A.; Rodríguez-Ríos, R. Geocronología y características geoquímicas de un conjunto de domos riolíticos terciarios en el Campo Volcánico de San Luis Potosí, México. Bol. Soc. Geol. Mex. 2014, 66, 183–197. [Google Scholar]
- Centeno-García, E. Mesozoic tectono-magmatic evolution of Mexico: An overview. Ore Geol. Rev. 2017, 81, 1035–1052. [Google Scholar] [CrossRef]
- Grasel, P.C. The Reconnaissance Geology of the Salitrera Mining District, San Luis Potosí, Mexico. Master’s Thesis, University of Houston, Houston, TX, USA, 1979; 251p. [Google Scholar]
- Servicio Geológico Mexicano. Monografía Geológico-Minera del Estado de San Luis Potosí; Servicio Geológico Mexicano: Pachuca de Soto, Mexico, 2008; 273p.
- Olalde-Rodríguez, G. Exploración directa para la búsqueda de la continuación del cuerpo “G” tanto longitudinal N-NW como a profundidad en mina Las Cuevas, S.L.P. In Geología Económica de México: Servicio Geológico Mexicano & Asociación de Ingenieros de Minas Metalurgistas y Geólogos de México; Clark, K.F., Salas-Pizá, G., Cubillas-Estrada, R., Eds.; Servicio Geológico Mexicano: Pachuca, Mexico, 2009; pp. 333–337. [Google Scholar]
- Sánchez-Hernández, J.M.; Soberanes-Fragoso, B.A. Carta Geológico–Minera La Salitrera F14-C15, 1:50,000; Servicio Geológico Mexicano: Pachuca de Soto, Mexico, 2001.
- Kemiac, M.; Cookson, J. Evolución de Paleocarst y su Relación con la Mineralización en las Minas de Fluorita El Realito y El Refugio; Unpublished Internal Report; Río Verde, S.L.P., Ed.; Servicios Industriales Peñoles: Torreon, Mexico, 1973; 30p.
- Consejo de Recursos Minerales. Monografía Geológico-Minera del Estado de Guanajuato; Publ. M-6e; Consejo de Recursos Minerales: Guadalajara, Mexico, 1992; 136p.
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- McCrea, J.M. On the isotopic chemistry of carbonates and paleotemperature scale. J. Chem. Phys. 1950, 18, 849–857. [Google Scholar] [CrossRef]
- Revész, K.M.; Landwehr, J.M.; Keybl, J. Measurement of δ13C and δ18O Isotopic Ratios of CaCO3 Using a ThermoQuest Finnigan Gas Bench II Delta Plus XL Continuous Flow Isotope Ratio Mass Spectrometer with Application to Devils Hole Core DH-11 Calcite; Open-File Report; United States Geological Survey: Reston, VA, USA, 2001; pp. 1–257.
- Revész, J.M.; Landwehr, J.M. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry statistical evaluation and verification by application to Devils Hole Core DH-11 Calcite. Rapid Commun. Mass Spectrom. 2002, 16, 2102–2114. [Google Scholar] [CrossRef]
- Minero, C.J. Sedimentation and diagenesis along an island-sheltered platform margin, El Abra Formation, Cretaceous of Mexico. In Paleokarst; James, N.P., Choquette, P.W., Eds.; Springer: New York, NY, USA, 1988; pp. 385–405. [Google Scholar]
- Armstrong-Altrin, J.S.; Madhavaraju, J.; Sial, A.N.; Kasper-Zubillaga, J.J.; Nagarajan, R.; Flores-Castro, K.; Luna Rodríguez, J. Petrography and stable isotope geochemistry of the Cretaceous El Abra limestones (Actopan), Mexico: Implication on diagenesis. J. Geol. Soc. India 2011, 77, 349–359. [Google Scholar] [CrossRef]
- Ferket, H. Sedimentology, Diagenesis and Fluid Flow Reconstruction in the Laramide Fold-and-Thrust Belt of Eastern Mexico (Cordoba Platform): Implications for Petroleum Exploration. Ph.D. Thesis, Katholieke Universiteit Leuveen, Leuven, Belgium, 2004; p. 309. [Google Scholar]
- Ferket, H.; Guilhaumou, N.; Roure, F.; Swennen, R. Insights from fluid inclusions, thermal and PVT modeling for paleo-burial and thermal reconstruction of the Córdoba petroleum system (NE Mexico). Mar. Pet. Geol. 2011, 28, 936–958. [Google Scholar] [CrossRef]
- Bordese, S.; Lira, R.; López Pinto, M.; Dalmau, J.F.; Viñas, N.A. Geología y aspectos metalogenéticos de la mineralización de fluorita-baritina del distrito Chus-Chus–Pircas Coloradas, provincias de La Rioja y Catamarca. Rev. Asoc. Geol. Argent. 2016, 73, 37–49. [Google Scholar]
- Jemmali, N.; Carranza, E.J.M.; Zemmel, B. Isotope geochemistry of Mississippi Valley Type stratabound F-Ba-(Pb-Zn) ores of Hammam Zriba (Province of Zaghouan, NE Tunisia). Chem. Erde Geochem. 2017, 77, 477–486. [Google Scholar] [CrossRef]
- Keim, M.F.; Walter, B.F.; Neumann, U.; Kreissl, S.; Bayerl, R.; Markl, G. Polyphase enrichment and redistribution processes in silver-rich mineral associations of the hydrothermal fluorite-barite-(Ag-Cu) Clara deposit, SW Germany. Miner. Depos. 2018, 1–20. [Google Scholar] [CrossRef]
- Consejo de Recursos Minerales. Monografía Geológico-Minera del Estado de San Luis Potosí; Publ. M-7e; Consejo de Recursos Minerales: Guadalajara, Mexico, 1996; 219p.
- Armienta, M.A.; Segovia, N. Arsenic and fluoride in the groundwater of Mexico. Environ. Geochem. Health 2008, 30, 345–353. [Google Scholar] [CrossRef]
- López-Álvarez, B.; Ramos-Leal, J.A.; Moran-Ramírez, J.; Cardona Benavides, A.; Hernández García, G. Origen de la calidad del agua del acuífero colgado y su relación con los cambios de uso de suelo en el Valle de San Luis Potosí. Bol. Soc. Geol. Mex. 2013, 65, 9–26. [Google Scholar] [CrossRef]
- Meza-Lozano, B.; Ortiz-Pérez, M.D.; Ponce-Palomares, M.; Castillo-Gutiérrez, S.G.; Flores-Ramírez, R.; Cubillas-Tejada, A.C. Implementación y evaluación de un programa de comunicación de riesgos por exposición a flúor en la comunidad de El Fuerte, Santa María del Río, San Luis Potosí, México. Rev. Int. Contam. Ambient. 2016, 32, 87–100. [Google Scholar]
- Grimaldo, M.; Borja-Aburto, V.H.; Ramírez, A.L.; Ponce, M.; Rosas, M.; Díaz-Barriga, F. Endemic fluorosis in San-Luis-Potosi, Mexico. I. Identification of risk-factors associated with human exposure to fluoride. Environ. Res. 1995, 68, 25–30. [Google Scholar] [CrossRef]
- Loyola-Rodríguez, J.P.; Pozos-Guillén, A.J.; Hernández-Guerrero, J.C.; Hernández-Sierra, J.F. Fluorosis en dentición temporal en un área con hidrofluorosis endémica. Salud Pública Méx. 2000, 42, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhou, L.; Tang, H.; Li, H.; Song, W.; Xie, G. The solubility of fluorite in Na-K-Cl solutions at temperatures up to 260 °C and ionic strengths up to 4 mol/kg H2O. Appl. Geochem. 2017, 82, 79–88. [Google Scholar] [CrossRef]
- Pi, T.; Solé, J.; Morton-Bermea, O.; Taran, Y.; Hernández-Álvarez, E. Geoquímica de lantánidos de los yacimientos de fluorita de los distritos mineros de Taxco y Zacualpan, sur de México: Implicaciones sobre el origen y la evolución de los fluidos. Rev. Mex. Cienc. Geol. 2017, 34, 199–211. [Google Scholar] [CrossRef]
- Magotra, R.; Namga, S.; Singh, P.; Arora, N.; Srivastava, P.K. A New Classification Scheme of Fluorite Deposits. Int. J. Geosci. 2017, 8, 599–610. [Google Scholar] [CrossRef]
- Rodríguez-Ríos, R.; Tristán-González, M.; Aguillón-Robles, A. Estructura y geoquímica de un grupo de domos dacíticos del norponiente del campo volcánico de San Luis Potosí, México. Bol. Soc. Geol. Mex. 2013, 65, 109–122. [Google Scholar] [CrossRef]
Th (°C) | Tmi (°C) | Salinity (wt % NaCl Equiv) | ||||
---|---|---|---|---|---|---|
Deposit | Sample | Mineral | n | m/a/M | M/a/m | m/a/M |
Las Cuevas | LC-220-30 | fluorite | 29 | 60/69/73 | 0 | 0 |
calcite | 40 | 55/62/70 | −0.1 | 0.2 | ||
LC-220-36 | fluorite | 22 | 94/110/125 | −0.1 | 0.2 | |
LC-220-37 | fluorite | 17 | 75/77/79 | −0.1 | 0.2 | |
fluorite | 16 | 77/82/85 | −0.1 | 0.2 | ||
LC-220-38 | fluorite | 33 | 73/78/85 | −0.1 | 0.2 | |
calcite | 24 | 55/59/61 | −0.1 | 0.2 | ||
LC-220-40 | fluorite | 38 | 67/75/80 | −0.1 | 0.2 | |
fluorite | 19 | 75/83/99 | −0.1 | 0.2 | ||
LC-220-41 | fluorite | 20 | 93/106/124 | −0.1 | 0.2 | |
LC-220-42 | fluorite | 18 | 75/86/95 | −0.1 | 0.2 | |
LC-220-43 | fluorite | 13 | 65/81/98 | −0.1 | 0.2 | |
calcite | 20 | 61/65/70 | −0.1 | 0.2 | ||
LC-220-43B | fluorite | 12 | 72/86/108 | −0.1 | 0.2 | |
calcite | 20 | 65/68/70 | −0.1 | 0.2 | ||
LC-180-1 | fluorite | 45 | 66/72/79 | −0.1 | 0.2 | |
calcite | 26 | 49/61/65 | −0.1 | 0.2 | ||
LC-180-2 | fluorite | 25 | 70/75/84 | −0.1 | 0.2 | |
LC-180-6 | fluorite | 12 | 103/105/111 | −0.1 | 0.2 | |
calcite | 10 | 72/76/88 | −0.1 | 0.2 | ||
LC-180-7D | fluorite | 11 | 104/106/113 | −0.1 | 0.2 | |
LC-180-9 | calcite | 24 | 49/61/66 | −0.1 | 0.2 | |
LC-180-11 | fluorite | 25 | 70/73/77 | −0.1 | 0.2 | |
LC-180-12 | quartz | 8 | 101/109/120 | −0.1 | 0.2 | |
fluorite | 26 | 69/71/76 | −0.1 | 0.2 | ||
LC-180-13 | fluorite | 16 | 72/83/105 | −0.1 | 0.2 | |
LC-180-14 | fluorite | 17 | 89/99/109 | −0.2 | 0.4 | |
LC-180-14B | fluorite | 21 | 72/84/100 | −0.1 | 0.2 | |
LC-180-15 | fluorite | 32 | 76/89/115 | −0.1 | 0.2 | |
LC-180-16 | fluorite | 17 | 70/76/97 | −0.1 | 0.2 | |
LC-180-17 | fluorite | 16 | 55/63/75 | −0.1 | 0.2 | |
LC-180-18 | fluorite | 9 | 78/83/92 | −0.1 | 0.2 | |
LC-180-19 | fluorite | 16 | 60/63/70 | −0.1 | 0.2 | |
LC-180-20 | fluorite | 6 | 78/88/100 | −0.1 | 0.2 | |
LC-180-21 | fluorite | 23 | 60/62/70 | −0.1 | 0.2 | |
LC-180-22 | fluorite | 30 | 65/76/84 | −0.1 | 0.2 | |
LC-180-23 | fluorite | 14 | 85/90/95 | −0.1 | 0.2 | |
fluorite | 26 | 71/75 /82 | −0.1 | 0.2 | ||
LC-180-24 | fluorite | 14 | 79/82/85 | −0.1 | 0.2 | |
LC-180-25 | fluorite | 52 | 75/84/105 | −0.1 | 0.2 | |
LC-180-26 | fluorite | 16 | 76/87/90 | −0.1 | 0.2 | |
LC-180-27 | fluorite | 40 | 75/87/92 | −0.1 | 0.2 | |
LC-180-29A | fluorite | 31 | 61/66/69 | −0.1 | 0.2 | |
LC-180-46 | fluorite | 20 | 68/72/78 | −0.1 | 0.2 | |
LC-SUP-50A | quartz | 11 | 148/163/177 | −0.1 | 0.2 | |
LC-SUP-45 | fluorite | 11 | 80/84/95 | −0.1 | 0.2 | |
LC-SUP-49 | calcite | 19 | 64/66/68 | −0.1 | 0.2 | |
LC-SUP-47 | fluorite | 21 | 64/67/78 | −0.1 | 0.2 | |
LC-SUP-46A | fluorite | 38 | 80/89/100 | −0.1 | 0.2 | |
LC-SUP-46B | fluorite | 34 | 90/96/102 | −0.1 | 0.2 | |
Las Cuevas | quartz | 101 to 177 | −0.1 | 0.2 | ||
(All samples) | fluorite | 55 to 125 | 0 to −0.2 | 0 to 0.4 | ||
calcite | 49 to 88 | −0.1 | 0.2 | |||
all minerals | 49 to 177 | −0.1 to −0.2 | 0.2 to 0.4 | |||
El Refugio | REF-1 | fluorite | 16 | 77/79/79 | −0.9/−0.9/−1 | 1.6/1.6/1.7 |
REF-2 | calcite | 30 | 125/127/130 | −0.1 | 0.2 | |
REF-3 | fluorite | 50 | 89/98/114 | −0.8/−0.9/−1.1 | 1.4/1.6/1.9 | |
La Constancia | CONST-1 | quartz | 10 | 98/100/102 | −0.9/−0.9/−1 | 1.6/1.6/1.7 |
fluorite | 24 | 80/85/98 | −0.3 | 0.5 | ||
CONST-2 | fluorite | 44 | 85/100/118 | −0.3/−0.5/−0.8 | 0.5/0.9/1.4 | |
CONST-3 | calcite | 49 | 76/80/86 | −0.1/−0.1/−0.2 | 0.2/0.2/0.4 | |
El Refugio- | quartz | 98 to 102 | −0.9 to −1 | 1.6 to 1.7 | ||
La Constancia | fluorite | 77 to 118 | −0.8 to −1.1 | 1.4 to 1.9 | ||
group | calcite | 76 to 130 | −0.1 to −0.2 | 0.2 to 0.4 | ||
(All samples) | all minerals | 76 to 130 | −0.1 to −1.1 | 0.2 to 1.9 | ||
El Realito | REAL-1 | calcite | 7 | 56/57/58 | −0.1 | 0.2 |
REAL-2 | calcite | 23 | 65/69/89 | −0.2 | 0.4 | |
REAL-3 | calcite | 11 | 64/65/67 | −0.2 | 0.4 |
Sample | Material | δ 13CVPDB | δ 18OVPDB | δ 18OVSMOW |
---|---|---|---|---|
LC-SUP-49 | Calcite | −3.19 | −14.81 | 15.64 |
LC-180-3 | Calcite | −5.67 | −14.01 | 16.47 |
LC-180-7 | Calcite | −4.26 | −14.45 | 16.01 |
LC-180-8 | Calcite | −5.54 | −12.76 | 17.76 |
LC-180-9 | Calcite | −3.82 | −14.28 | 16.19 |
LC-180-15 | Calcite | −2.27 | −15.42 | 15.01 |
LC-180-17 | Calcite | −3.09 | −12.99 | 17.52 |
LC-180-23 | Calcite | −5.41 | −15.60 | 14.82 |
LC-180-25 | Calcite | −4.93 | −13.89 | 16.59 |
LC-180-26 | Calcite | −3.58 | −14.60 | 15.86 |
LC-180-28 | Calcite | −3.83 | −14.48 | 15.98 |
LC-220-34 | Calcite | −3.77 | −14.17 | 16.30 |
LC-220-37 | Calcite | −4.29 | −13.98 | 16.50 |
LC-220-38 | Calcite | −2.27 | −16.74 | 13.65 |
LC-220-43 | Calcite | −1.84 | −16.45 | 13.95 |
LC-SUP-45A | Limestone | 0.16 | −7.37 | 23.31 |
LC-SUP-45B | Limestone | −2.39 | −14.03 | 16.45 |
LC-SUP-48 | Limestone | −1.61 | −9.57 | 21.04 |
LC-180-18 | Limestone | 1.10 | −7.67 | 23.01 |
LC-220-30 | Limestone | −2.16 | −13.93 | 16.55 |
LC-220-35 | Limestone | 0.20 | −10.10 | 20.49 |
LC-220-43 | Limestone | −0.12 | −10.93 | 19.64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Partida, E.; Camprubí, A.; Carrillo-Chávez, A.; Díaz-Carreño, E.H.; González-Ruiz, L.E.; Farfán-Panamá, J.L.; Cienfuegos-Alvarado, E.; Morales-Puente, P.; Vázquez-Ramírez, J.T. Giant Fluorite Mineralization in Central Mexico by Means of Exceptionally Low Salinity Fluids: An Unusual Style among MVT Deposits. Minerals 2019, 9, 35. https://doi.org/10.3390/min9010035
González-Partida E, Camprubí A, Carrillo-Chávez A, Díaz-Carreño EH, González-Ruiz LE, Farfán-Panamá JL, Cienfuegos-Alvarado E, Morales-Puente P, Vázquez-Ramírez JT. Giant Fluorite Mineralization in Central Mexico by Means of Exceptionally Low Salinity Fluids: An Unusual Style among MVT Deposits. Minerals. 2019; 9(1):35. https://doi.org/10.3390/min9010035
Chicago/Turabian StyleGonzález-Partida, Eduardo, Antoni Camprubí, Alejandro Carrillo-Chávez, Erik H. Díaz-Carreño, Luis E. González-Ruiz, José L. Farfán-Panamá, Edith Cienfuegos-Alvarado, Pedro Morales-Puente, and Juan T. Vázquez-Ramírez. 2019. "Giant Fluorite Mineralization in Central Mexico by Means of Exceptionally Low Salinity Fluids: An Unusual Style among MVT Deposits" Minerals 9, no. 1: 35. https://doi.org/10.3390/min9010035
APA StyleGonzález-Partida, E., Camprubí, A., Carrillo-Chávez, A., Díaz-Carreño, E. H., González-Ruiz, L. E., Farfán-Panamá, J. L., Cienfuegos-Alvarado, E., Morales-Puente, P., & Vázquez-Ramírez, J. T. (2019). Giant Fluorite Mineralization in Central Mexico by Means of Exceptionally Low Salinity Fluids: An Unusual Style among MVT Deposits. Minerals, 9(1), 35. https://doi.org/10.3390/min9010035