Total and Effective Stresses in Backfilled Stopes during the Fill Placement on a Pervious Base for Barricade Design
Abstract
:1. Introduction
2. Proposed Solution
2.1. Solution to Estimate the (Excess) PWP
2.2. Solution to Evaluate the Effective and Total Stresses
3. Validation of the Analytical Results by Numerical Results
4. Sample Application
5. Discussion
6. Conclusions
- One is used to define the excess PWP as the difference between the current PWP and the hydrostatic pressure. This definition is, however, only valid when the initial and final steady PWP are the same, all equaling the hydrostatic pressure. In this study, the final steady PWP is zero due to the pervious base (and barricade) with zero PWP. The PWP and the excess PWP in the backfilled stopes are always equal to each other. No distinction is needed between the PWP and excess PWP.
- The proposed solution has been validated against numerical results obtained by numerical modeling with Plaxis2D. The proposed solution constitutes a simple and useful tool to calculate the pressures and stresses in backfilled stopes for the design of barricades. It can be particularly useful for parametric sensitivity analysis in the preliminary stage of a project.
- The calculated effective and total stresses in the backfilled stopes, during the backfill deposition, are lower than the iso-geostatic overburden pressure, due to the occurrence of the consolidation and arching effects.
- The sample applications of the proposed solution showed that high total stresses along the full height of backfilled stopes can result from low consolidation coefficient, high filling rate, low effective friction angle, or large stope width. Similar results have been reported in previous publications through numerical modeling. This is, however, shown for the first time through pseudo-analytical solutions without numerical modeling.
Author Contributions
Funding
Conflicts of Interest
Appendix A. Development of Equation (27)
Appendix B. MATLAB Program to Solve Equation (31)
References
- Potvin, Y.; Thomas, E.; Fourie, A. Handbook on Mine Fill; Australian Centre for Geomechanics (ACG): Perth, Australia, 2005. [Google Scholar]
- Liu, G.S.; Li, L.; Yao, M.; Landry, D.; Malek, F.; Yang, X.C.; Guo, L.J. An investigation of the uniaxial compressive strength of a cemented hydraulic backfill made of alluvial sand. Minerals 2017, 7, 4. [Google Scholar] [CrossRef]
- Hassani, F.; Archibald, J. Mine Backfill; CD-ROM; Canadian Institute of Mining, Metallurgy and Petroleum (CIM): Montreal, QC, Canada, 1998. [Google Scholar]
- Jung, S.J.; Biswas, K. Review of current high density paste fill and its technology. Miner. Resour. Eng. 2002, 11, 165–182. [Google Scholar] [CrossRef]
- Aubertin, M.; Bussière, B.; Bernier, L. Environnement et Gestion des Rejets Miniers; Manual on CD-ROM; Presses Internationales Polytechnique: Montreal, QC, Canada, 2002. [Google Scholar]
- Simms, P.; Grabinsky, M.; Zhan, G.S. Modelling evaporation of paste tailings from the Bulyanhulu mine. Can. Geotech. J. 2007, 44, 1417–1432. [Google Scholar] [CrossRef]
- Komurlu, E.; Kesimala, A. Sulfide-rich mine tailings usage for short-term support purposes: An experimental study on paste backfill barricades. Geomech. Eng. 2015, 9, 195–205. [Google Scholar] [CrossRef]
- Cui, L.; Fall, M. Mathematical modelling of cemented tailings backfill: A review. Int. J. Min. Reclam. Environ. 2018, 1–20. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Olsen, R.S.; Smith, J.D. Model studies on cemented tailings used in mine backfill. Can. Geotech. J. 1982, 19, 14–28. [Google Scholar] [CrossRef]
- Li, L.; Aubertin, M. A modified solution to assess the required strength of exposed backfill in mine stopes. Can. Geotech. J. 2012, 49, 994–1002. [Google Scholar] [CrossRef]
- Li, L.; Aubertin, M. An improved method to assess the required strength of cemented backfill in underground stopes with an open face. Int. J. Min. Sci. Technol. 2014, 24, 549–558. [Google Scholar] [CrossRef]
- Li, L. Analytical solution for determining the required strength of a side-exposed mine backfill containing a plug. Can. Geotech. J. 2014, 51, 508–519. [Google Scholar] [CrossRef]
- Li, L. Generalized solution for mining backfill design. Int. J. Geomech. 2014, 14, 04014006. [Google Scholar] [CrossRef]
- Yang, P.Y.; Li, L.; Aubertin, M. A new solution to assess the required strength of mine backfill with a vertical exposure. Int. J. Geomech. 2017, 17, 04017084. [Google Scholar] [CrossRef]
- Cao, S.; Yilmaz, E.; Song, W.D. Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill. Minerals 2018, 8, 352. [Google Scholar] [CrossRef]
- Liu, G.S.; Li, L.; Yang, X.; Guo, L.J. Required strength estimation of a cemented backfill with the front wall exposed and back wall pressured. Int. J. Min. Miner. Eng. 2018, 9, 1–20. [Google Scholar] [CrossRef]
- Wu, J.Y.; Feng, M.M.; Chen, Z.Q.; Mao, X.B.; Han, G.S.; Wang, Y.M. Particle size distribution effects on the strength characteristic of cemented paste backfill. Minerals 2018, 8, 322. [Google Scholar] [CrossRef]
- Xu, W.B.; Cao, P.W.; Tian, M.M. Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents. Minerals 2018, 8, 167. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, H.; Taheri, A.; Deng, J.; Ke, B. Effects of superplasticizer on the hydration, consistency, and strength development of cemented paste backfill. Minerals 2018, 8, 381. [Google Scholar] [CrossRef]
- Zhao, Y.; Soltani, A.; Taheri, A.; Karakus, M.; Deng, A. Application of slag-cement and fly ash for strength development in cemented paste backfills. Minerals 2019, 9, 22. [Google Scholar] [CrossRef]
- Sivakugan, N.; Rankine, K.; Rankine, R. Permeability of hydraulic fills and barricade bricks. Geotech. Geol. Eng. 2006, 24, 661–673. [Google Scholar] [CrossRef]
- Sivakugan, N.; Rankine, R.M.; Rankine, K.J.; Rankine, K.S. Geotechnical considerations in mine backfilling in Australia. J. Clean. Prod. 2006, 14, 1168–1175. [Google Scholar] [CrossRef]
- Sivakugan, N.; Rankine, K.; Lovisa, J.; Hall, W. Flow rate computations in hydraulic fill mine stopes. Indian Geotech. J. 2013, 43, 195–202. [Google Scholar] [CrossRef]
- Yumlu, M.; Guresci, M. Paste backfill bulkhead monitoring-A case study from Inmet’s Cayeli mine. In Proceedings of the 9th International Symposium in Mining with Backfill (CD-ROM), Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, QC, Canada, 29 April–2 May 2007. [Google Scholar]
- Revell, M.B.; Sainsbury, D.P. Paste bulkhead failures. In Proceedings of the 9th International Symposium on Mining with Backfill (Minefill’07), Montréal, QC, Canada, 29 April–2 May 2007. [Google Scholar]
- Li, L.; Aubertin, M. Horizontal pressure on barricades for backfilled stopes. Part I: Fully drained conditions. Can. Geotech. J. 2009, 46, 37–46. [Google Scholar] [CrossRef]
- Li, L.; Aubertin, M. Limit equilibrium analysis for the design of backfilled stope barricades made of waste rock. Can. Geotech. J. 2011, 48, 1713–1728. [Google Scholar] [CrossRef]
- Cui, L.; Fall, M. Modeling of pressure on retaining structures for underground fill mass. Tunn. Undergr. Space Technol. 2017, 69, 94–107. [Google Scholar] [CrossRef]
- Yang, P.Y.; Li, L.; Aubertin, M.; Brochu-Baekelmans, M.; Ouellet, S. Stability analyses of waste rock barricades designed to retain paste backfill. Int. J. Geomech. 2017, 17, 04016079. [Google Scholar] [CrossRef]
- Ning, J.; Wang, J.; Tan, Y.; Zhang, L.; Bu, T. In situ investigations into mining-induced overburden failures in close multiple-seam longwall mining: A case study. Geomech. Eng. 2017, 12, 657–673. [Google Scholar] [CrossRef]
- Gibson, R.E. The progress of consolidation in a clay layer increasing in thickness with time. Geotechnique 1958, 8, 171–182. [Google Scholar] [CrossRef]
- Pedroni, L. Étude Expérimentale et Numérique de la Sédimentation et de la Consolidation des Boues de Traitement des Eaux Acides. Ph.D. Thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 2011. [Google Scholar]
- Li, L.; Alvarez, I.C.; Aubertin, J.D. Self-weight consolidation of slurried deposition: Tests and interpretation. Int. J. Geotech. Eng. 2013, 7, 205–213. [Google Scholar] [CrossRef]
- El Mkadmi, N.; Aubertin, M.; Li, L. Effect of drainage and sequential filling on the behavior of backfill in mine stopes. Can. Geotech. J. 2013, 51, 1–15. [Google Scholar] [CrossRef]
- Grabinsky, M.W.; Simms, P.H. Self-desiccation of cemented paste backfill and implications for mine design. In Proceedings of the 9th International Seminar on Paste and Thickened Tailings, Australian Centre for Geomechanics, Crawley, Australia, 3–7 April 2006. [Google Scholar]
- Helinski, M.; Fourie, A.; Fahey, M.; Ismail, M. Assessment of the self-desiccation process in cemented mine backfills. Can. Geotech. J. 2007, 44, 1148–1156. [Google Scholar] [CrossRef]
- Wang, Y.; Fall, M.; Wu, A.X. Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate. Cem. Concr. Compos. 2016, 67, 101–110. [Google Scholar] [CrossRef]
- Belem, T.; Benzaazoua, M. Design and application of underground mine paste backfill technology. Geotech. Geol. Eng. 2008, 26, 147–174. [Google Scholar] [CrossRef]
- Taheri, A.; Tatsuoka, F. Stress–strain relations of cement-mixed gravelly soil from multiple-step triaxial compression test results. Soils Found. 2012, 52, 748–766. [Google Scholar] [CrossRef]
- Taheri, A.; Tatsuoka, F. Small-and large-strain behaviour of a cement-treated soil during various loading histories and testing conditions. Acta Geotech. 2015, 10, 131–155. [Google Scholar] [CrossRef]
- Belem, T.; Benzaazoua, M.; Bussière, B. Mechanical behaviour of cemented paste backfill. In Proceedings of the 53th Canadian Geotechnical Conference, Canadian Geotechnical Society, Montréal, QC, Canada, 15–18 October 2000. [Google Scholar]
- Helinski, M.; Fahey, M.; Fourie, A. Behavior of cemented paste backfill in two mine stopes: Measurements and modeling. J. Geotech. Geoenviron. 2011, 137, 171–182. [Google Scholar] [CrossRef]
- Thompson, B.D.; Bawden, W.F.; Grabinsky, M.W. In situ measurements of cemented paste backfill at the Cayeli Mine. Can. Geotech. J. 2012, 49, 755–772. [Google Scholar] [CrossRef]
- Grabinsky, M.W.; Bawden, W.F.; Simon, D.; Thompson, B.D.; Veenstra, R.L. In situ properties of cemented paste backfill from three mines. In Proceedings of the 66th Canadian Geotechnical Conference, Montreal, QC, Canada, 29 Septermber–3 October 2013. [Google Scholar]
- Grabinsky, M.W.; Simon, D.; Thompson, B.D.; Bawden, W.F.; Veenstra, R.L. Interpretation of as-placed cemented paste backfill properties from three mines. In Proceedings of the 11th International Symposium on Mining with Backfill, Australian Centre for Geomechanics, Perth, Australia, 20–22 May 2014. [Google Scholar]
- Shahsavari, M.; Grabinsky, M.W. Cemented paste backfill consolidation with deposition-dependent boundary conditions. In Proceedings of the 67th Canadian Geotechnical Conference, Regina, SK, Canada, 28 September–1 October 2014. [Google Scholar]
- Fahey, M.; Helinski, M.; Fourie, A. Consolidation in accreting sediments: Gibson’s solution applied to backfilling of mine stopes. Géotechnique 2010, 60, 877–882. [Google Scholar] [CrossRef]
- Shahsavari, M.; Grabinsky, M. Mine backfill porewater pressure dissipation: Numerical predictions and field measurements. In Proceedings of the 68th Canadian geotechnical conference, Quebec City, QC, Canada, 20–23 September 2015. [Google Scholar]
- Wood, M.D.; Doherty, J.P.; Walske, M.L. Deposition and self-weight consolidation of a shrinking fill. Géotech. Lett. 2016, 6, 72–76. [Google Scholar] [CrossRef]
- Walske, M.L.; Doherty, J. Incorporating chemical shrinkage volume into Gibson’s solution. Can. Geotech. J. 2017, 55, 903–908. [Google Scholar] [CrossRef]
- Zheng, J.; Li, L.; Mbonimpa, M.; Pabst, T. An analytical solution of Gibson’s model for estimating the pore water pressures in accreting deposition of slurried material under one-dimensional self-weight consolidation. Part I: Pervious base. Indian Geotech. J. 2018, 48, 72–83. [Google Scholar] [CrossRef]
- Zheng, J.; Li, L.; Mbonimpa, M.; Pabst, T. An Analytical solution of Gibson’s model for estimating pore water pressures in accreting deposition of slurried material under one-dimensional self-weight consolidation. Part II: Impervious base. Indian Geotech. J. 2018, 48, 188–195. [Google Scholar] [CrossRef]
- Aubertin, M.; Li, L.; Arnoldi, S.; Belem, T.; Bussière, B.; Benzaazoua, M.; Simon, R. Interaction between backfill and rock mass in narrow stopes. In Proceedings of the Soil and Rock America, Verlag Glückauf Essen (VGE), Essen, Germany, 22–26 June 2003. [Google Scholar]
- Li, L.; Aubertin, M.; Simon, R.; Bussière, B.; Belem, T. Modeling arching effects in narrow backfilled stopes with FLAC. In Proceedings of the 3rd International Symposium on FLAC and Numerical Modeling in Geomechanics, Sudbury, ON, Canada, 21–24 October 2003; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Li, L.; Aubertin, M.; Belem, T. Formulation of a three dimensional analytical solution to evaluate stress in backfilled vertical narrow openings. Can. Geotech. J. 2005, 42, 1705–1717. [Google Scholar] [CrossRef]
- Pirapakaran, K.; Sivakugan, N. Arching within hydraulic fill stopes. Geotech. Geol. Eng. 2007, 25, 25–35. [Google Scholar] [CrossRef]
- Pirapakaran, K.; Sivakugan, N. A laboratory model to study arching within a hydraulic fill stope. Geotech. Test. J. 2007, 30, 496–503. [Google Scholar]
- Li, L.; Aubertin, M. An improved analytical solution to estimate the stress state in subvertical backfilled stopes. Can. Geotech. J. 2008, 45, 1487–1496. [Google Scholar] [CrossRef]
- Li, L.; Aubertin, M. Horizontal pressure on barricades for backfilled stopes. Part II: Submerged conditions. Can. Geotech. J. 2009, 46, 47–56. [Google Scholar] [CrossRef]
- Jahanbakhshzadeh, A.; Aubertin, M.; Li, L. A new analytical solution for the stress state in inclined backfilled mine stopes. Geotech. Geol. Eng. 2017, 35, 1151–1167. [Google Scholar] [CrossRef]
- Jahanbakhshzadeh, A.; Aubertin, M.; Li, L. Three-dimensional stress state in inclined backfilled stopes obtained from numerical simulations and new closed-form solution. Can. Geotech. J. 2018, 55, 810–828. [Google Scholar] [CrossRef]
- Jahanbakhshzadeh, A.; Aubertin, M.; Li, L. Analysis of the stress distribution in inclined backfilled stopes using closed-form solutions and numerical simulations. Geotech. Geol. Eng. 2018, 36, 1011–1036. [Google Scholar] [CrossRef]
- Li, L.; Aubertin, M. Influence of water pressure on the stress state in stopes with cohesionless backfill. Geotech. Geol. Eng. 2009, 27, 1–11. [Google Scholar] [CrossRef]
- Li, L.; Aubertin, M. A three-dimensional analysis of the total and effective stresses in submerged backfilled stopes. Geotech. Geol. Eng. 2009, 27, 559–569. [Google Scholar] [CrossRef]
- Li, L.; Aubertin, M. An analytical solution for the nonlinear distribution of effective and total stresses in vertical backfilled stopes. Geomech. Geoeng. 2010, 5, 237–245. [Google Scholar] [CrossRef]
- Lambe, T.W.; Whitman, R.V. Soil Mechanics; Wiley: New York, NY, USA, 1969. [Google Scholar]
- Gibson, R.E.; Schiffman, R.L.; Whitman, R.V. On two definitions of excess pore water pressure. Geotechnique 1989, 39, 169–171. [Google Scholar] [CrossRef]
- Goodwin, E.T. The Evaluation of Integrals of the Form . In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University: Cambridge, UK, 1949. [Google Scholar]
- Ting, C.H.; Sivakugan, N.; Shukla, S.K. Laboratory simulation of the stresses within inclined stopes. Geotech. Test. J. 2012, 35, 280–294. [Google Scholar]
- Fahey, M.; Helinski, M.; Fourie, A. Some aspects of the mechanics of arching in backfilled stopes. Can. Geotech. J. 2009, 46, 1322–1336. [Google Scholar] [CrossRef]
- Ting, C.H.; Shukla, S.K.; Sivakugan, N. Arching in soils applied to inclined mine stopes. Int. J. Geomech. 2011, 11, 29–35. [Google Scholar] [CrossRef]
- Sobhi, M.A.; Li, L.; Aubertin, M. Numerical investigation of earth pressure coefficient along central line of backfilled stopes. Can. Geotech. J. 2017, 54, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.Y.; Li, L.; Aubertin, M. Stress ratios in entire mine stopes with cohesionless backfill: A numerical study. Minerals 2017, 7, 201. [Google Scholar] [CrossRef]
- Yang, P.Y.; Li, L.; Aubertin, M. Theoretical and numerical analyses of earth pressure coefficient along the centerline of vertical openings with granular fills. Appl. Sci. 2018, 8, 1721. [Google Scholar] [CrossRef]
- Brinkgreve, R.B.J.; Kumarswamy, S.; Swolfs, W.M. PLAXIS 2014; PLAXIS bv: Delft, Netherlands, 2014. [Google Scholar]
- Zheng, J. Numerical, analytical and experimental studies of the hydro-geotechnical behaviors of slurried materials. Ph.D. Thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 2019. [Google Scholar]
- Terzaghi, K. Theoretical Soil Mechanics; Wiley: New York, NY, USA, 1943. [Google Scholar]
- Holt, R.D.; Kovacs, W.D. Introduction to Geotechnical Engineering; Prentice Hall: Englewood Cliffs, NJ, USA, 1981. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Li, L.; Li, Y. Total and Effective Stresses in Backfilled Stopes during the Fill Placement on a Pervious Base for Barricade Design. Minerals 2019, 9, 38. https://doi.org/10.3390/min9010038
Zheng J, Li L, Li Y. Total and Effective Stresses in Backfilled Stopes during the Fill Placement on a Pervious Base for Barricade Design. Minerals. 2019; 9(1):38. https://doi.org/10.3390/min9010038
Chicago/Turabian StyleZheng, Jian, Li Li, and Yuchao Li. 2019. "Total and Effective Stresses in Backfilled Stopes during the Fill Placement on a Pervious Base for Barricade Design" Minerals 9, no. 1: 38. https://doi.org/10.3390/min9010038
APA StyleZheng, J., Li, L., & Li, Y. (2019). Total and Effective Stresses in Backfilled Stopes during the Fill Placement on a Pervious Base for Barricade Design. Minerals, 9(1), 38. https://doi.org/10.3390/min9010038