Potential for the Geological Storage of CO2 in the Croatian Part of the Adriatic Offshore
Abstract
:1. Introduction
2. Geology and Petroleum Exploration of the Adriatic Offshore in Croatia
3. First Estimates of Theoretical CO2 Geological Storage Capacity in Gas Fields and Deep Saline Aquifers
3.1. Potential Storage Objects in Depleted Gas Reservoirs
3.2. Potential CO2 Storage Objects in Deep Saline Aquifers
- Q—Top Pliocene;
- A—Top Miocene;
- B—Top Eocene;
- C—Top Cretaceous;
- D—Top Triassic;
- E—“Base Carbonates”, Top of Permian clastic sediments.
3.2.1. CO2 Storage Potential in the Regional Deep Saline Aquifer Dugi otok (DSA Dugi otok)
3.2.2. CO2 Storage Potential in Anticline Structures of the Carbonate Complex
- Area to the WSW of the Premuda, Susak and Lošinj islands, together with the offshore west of Istrian peninsula. In this part of the Adriatic offshore, the top of the carbonate complex horizon gently dips in the WSW direction in a form of monocline (named the North-Adriatic monocline by [30]); in offshore Istria, it represents the gently WSW-dipping limb of the so called Istrian anticline [60,61] or the Istrian swell, sensu [30]. This wide and gentle anticline is bounded to the east-northeast by the frontal thrust of the External Dinarides exposed along the SW margin of the Ćićarija mountain (Figure 3), while its submerged WSW limb practically continues all the way underneath the submerged thrust front of the Northern Apennines (see in cross-section number 5 in [30]). Thus, the Istrian anticline represents a gently deformed foreland at first for the Dinarides fold-thrust belt during Middle to Late Eocene, and then for the Northern Apennines fold-thrust belt during Late Miocene to Quaternary. In the North-Adriatic monocline, at about 50 km offshore Rovinj where the core of the anticline crops out, a paleogeographic boundary between the AdCP and the Adriatic basin is nicely preserved. According to [30,62], this boundary is interpreted as the W-dipping Early Jurassic to Paleogene normal fault that is covered by undeformed Plio-Quaternary marls and sands, that, in addition to an absence of instrumentally recorded seismicity along this boundary, suggest that it is at present, tectonically inactive. The same is true of a set of conjugate normal faults found some 20 km east of this boundary and close to the Ivana gas-field (Figure 3).
- The area in the northern central Adriatic between the Premuda, Kornati and Žirje islands. Structurally this part of the Adriatic offshore represents presently submerged frontal part of the External Dinarides fold-thrust belt. Most, if not all, of islands in this area are fault-related anticlines formed in hangingwalls of the NE-dipping and SW verging thrust system, active during Mid-Late Eocene and Oligocene; i.e., during the main tectonic phase in the External Dinarides (see in the text above). According to interpreted reflection seismic sections available in literature (e.g., [30,62]), NE-dipping thrusts have listric geometry and sole out from two major decollement horizons: the one at approximately 5 km depth formed in Jurassic carbonates, and the other at circa 10 km depth formed in the Permo-Triassic evaporitic (salt) deposits (Figure 6). Characteristic structural styles, the morphology of reverse faults, fault-related anticlines and synclines, are nicely depicted on the transversal cross section SW of the Dugi otok island shown in Figure 6, which also shows the location of the deep well Kate-1 drilled through an anticline formed at the SW front of the Dinarides thrust system. Occasionally, NE-dipping forethrusts are associated with SW-dipping backthrusts, thus forming local pop-up structures.
- The area in the central and southern Adriatic west of Kornati islands, and the offshore Split and Dubrovnik. Structurally, this part of the Adriatic offshore is strongly affected by salt tectonics and is comprised of numerous halokinetic structures, partly in form of salt diapirs, salt walls and salt-cored anticlines of variable size and time of formation, some of them found in cores of small and large islands like Jabuka, Brusnik, Vis, Palagruža, etc. At least in part, this area corresponds with the belt of halokinetic structures know in the Italian Adriatic offshore as the Central or Mid Adriatic Ridge (e.g., [63,64]) that we presume to extend in a SE direction all the way to the offshore Dubrovnik area and even further to offshore Montenego and Albania. A part of this belt across the Jabuka island is shown in Figure 6 and interpreted by [30] as a strike-slip corridor strongly affected by salt diapirism. In case of the Jabuka island, however, Herak et al. [65] analysed a recently recorded earthquake sequence around this island and found excellent agreement between their calculated focal mechanism and the distribution of earthquake hypocentres with the NE-dipping, Jabuka-Andrija thrust fault system. Accordingly, it is included into the list of seismogenic sources of the Adriatic offshore by Kastelic et al. [66], described there as a moderately NNE-dipping seismogenic source capable of generating earthquakes with magnitudes of 5.5. Based on this data, we have partly modified a part of the cross-section, shown in Figure 6, by proposing the NE-dipping thrust fault underneath the Jabuka island, that is supposed to splay off either from the Permo-Triassic evaporite decollement, or from an even deeper decollement within the crystalline basement, as suggested by the distribution of the Jabuka earthquake sequence. The offshore area between the Vis island and Dubrovnik shows similar structural style with a prevalence of fault-related folds associated with salt tectonics. The only difference observed there is in the prevailingly E–W strike of major faults and fault-related folds that could be controlled by variable presence of evaporites. As in case of the Jabuka island, seismic activity around major structures there is instrumentally and historically well known. Actually, in addition to the catastrophic 1667 Dubrovnik earthquake (I0 = IX − X° EMS98; [67,68]), the most recent seismic activity here was recorded in an offshore area between the islands of Brač and Hvar (ML = 6.1; [69]), close to the coastline in the Ston area (ML = 6.0; [70]), and in off-shore Montenegro (MW = 7.1; [71]). Accordingly, the ongoing tectonic activity and seismicity in this area significantly reduces its potential for CO2 geological storage.
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Markušić, S.; Herak, M. Seismic zoning of Croatia. Nat. Hazards 1999, 18, 269–285. [Google Scholar] [CrossRef]
- Herak, M.; Živčić, M.; Sović, I.; Cecić, I.; Dasović, I.; Stipčević, J.; Herak, D. Historical Seismicity of the Rijeka Region (Northwest External Dinarides, Croatia)—Part II: The Klana Earthquakes of 1870. Seismol. Res. Lett. 2018, 89, 1524–1536. [Google Scholar]
- HAOP Croatian Environmental Pollution Register. Available online: http://roo-preglednik.azo.hr/Default.aspx (accessed on 7 June 2019).
- Plinacro Ltd—Gas Transport System Operator. Available online: http://www.plinacro.hr/default.aspx?id=162 (accessed on 26 August 2019).
- Hercecg, H.; Krpan, H. Optimizacija sustava dehidracije plina na platformi Ivana K. Gas dehydration optimization in the Ivana K platform. Naft. Plin 2019, 39, 84–94. [Google Scholar]
- Herak, M. Karta Potresnih Područja. Available online: http://seizkarta.gfz.hr/karta.php (accessed on 25 August 2019).
- Vangkilde-Pedersen, T.; Anthonsen, K.L.; Smith, N.; Kirk, K.; Neele, F.; van der Meer, B.; Le Gallo, Y.; Bossie-Codreanu, D.; Wojcicki, A.; Le Nindre, Y.-M.; et al. Assessing European capacity for geological storage of carbon dioxide–the EU GeoCapacity project. Energy Proced. 2009, 1, 2663–2670. [Google Scholar] [CrossRef]
- Poulsen, N.; Holloway, S.; Neele, F.; Smith, N.A.; Kirk, K. Assessment of CO2 Storage Potential in Europe. European Commission Contract No ENER/C1/154-2011-SI2.611598. CO2StoP Final Report. 2014. Available online: http://energyx.com.au/files/56-2014%20Final%20report.pdf (accessed on 31 July 2019).
- Cota, L.; Dalić, N.; Šikonja, Ž. INA’s Experience in Hydrocarbon Exploration in Croatia. Nafta 2014, 65, 142–146. [Google Scholar]
- Malvić, T.; Đureković, M.; Čogelja, Z.; Šikonja, Ž.; Ilijaš, T.; Kruljac, I. Exploration and production activities in northern Adriatic Sea (Croatia), successful joint venture INA (Croatia) and ENI (Italy). Nafta 2011, 62, 287–292. [Google Scholar]
- Đureković, M.; Krpan, M.; Pontiggia, M.; Ruvo, L.; Savino, R.; Volpi, B. Geological modelling and petrophysical characterisation of turbiditic reservoirs of the Ivana gas field-R. Croatia. Nafta 1998, 49, 241–258. [Google Scholar]
- Đureković, M.; Jovović, S.; Krpan, M.; Jelić-Balta, J. Ika gas field characterization and modeling. Nafta 2002, 53, 273–282. [Google Scholar]
- Marić Đureković, Ž. Litofacijesne i stratigrafske značajke pleistocenskih naslaga podmorja sjevernoga Jadrana na temelju visokorazlučivih karotažnih mjerenja. In Lithofacies and Stratigraphy of Pleistocene Deposits in North Adriatic Offshore by Using High-Resolution Well Logs; University of Zagreb: Zagreb, Croatia, 2011. [Google Scholar]
- Zelić, M.; Mlinarić, Ž.; Jelić-Balta, J. Croatian Northern Adriatic Ivana gas field ready for development (Reservoir characteristics and gas inflow conditions into the well). Nafta 1999, 50, 19–37. [Google Scholar]
- Velić, J.; Malvić, T.; Cvetković, M.; Velić, I. Stratigraphy and petroleum geology of the Croatian part of the Adriatic basin. J. Pet. Geol. 2015, 38, 281–300. [Google Scholar] [CrossRef]
- Busetti, M.; Volpi, V.; Barison, E.; Giustiniani, M.; Marchi, M.; Ramella, R.; Wardell, N.; Zanolla, C. Meso-Cenozoic seismic stratigraphy and the tectonic setting of the Gulf of Trieste (northern Adriatic). GeoActa 2010, 3, 1–14. [Google Scholar]
- Grandić, S.; Krakatović, I.; Rusan, I. Hydrocarbon potential assesment of the slope deposits along the SW Dinarides carbonate platform edge. Nafta 2010, 61, 325–338. [Google Scholar]
- Tišljar, J. Origin and Depositional Environments of the Evaporite and Carbonate Complex (Upper Permian) from the Central Part of the Dinarides (Southern Croatia and Western Bosnia). Geol. Croat. 1992, 45, 116–126. [Google Scholar]
- Spaić, V. Oil and gas bearingness and structural elements of Adriatic islands and peninsulas (Outer Dinarides) with special review of anhydrite—Carbonate Mesozoic complex and diapiric belt. Nafta 2012, 63, 29–37. [Google Scholar]
- Bahun, S. Geološki odnosi okolice Donjeg Pazarisšta u Lici (trijas i tercijarne Jelar naslage). Geological relations of the surroundings of Donje Pazarište in Lika, Croatia. Geološki Vjesn. 1963, 16, 161–170. [Google Scholar]
- Pamić, J. Triassic magmatism of the Dinarides in Yugoslavia. Tectonophysics 1984, 109, 273–307. [Google Scholar] [CrossRef]
- Vlahović, I.; Tišljar, J.; Velić, I.; Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 333–360. [Google Scholar] [CrossRef]
- Smirčić, D.; Kolar-Jurkovšek, T.; Aljinović, D.; Barudžija, U.; Jurkovšek, B.; Hrvatović, H. Stratigraphic Definition and Correlation of Middle Triassic Volcaniclastic Facies in the External Dinarides: Croatia and Bosnia and Herzegovina. J. Earth Sci. 2018, 29, 864–878. [Google Scholar]
- Babić, K. Tektonska Kretanja i Solne Strukture u Području Vis-Biševo-Sušac. Tectonic Momvements and Salt Structures in Vis-Biševo-Sušac Area. Master’s Thesis, University of Zagreb, Zagreb, Croatia, 1990. [Google Scholar]
- Scisciani, V.; Esestime, P. The Triassic Evaporites in the Evolution of the Adriatic Basin. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins; Soto, J.I., Flinch, J., Tari, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 499–516. [Google Scholar]
- Prelogović, E.; Kranjec, V. Geological development of the Adriatic area (Geološki razvitak područja Jadranskog mora—In Croatian). Pomor. Zb. 1983, 21, 387–405. [Google Scholar]
- Veseli, V.; Tišljar, J.; Tadej, J.; Premec-Fuček, V. Lithofacies and Biofacies of the Cretaceous and Paleogene Carbonate Sediments in Kate-1 offshore well (Kornati Area, Croatia, Adriatic Sea). In Proceedings of the second International Symposium on the Adriatic Carbonate Platform, Zagreb, Croatia, 12–18 May 1991; p. 115. [Google Scholar]
- Veseli, V. Facijesi karbonatnih sedimenata mlađeg mezozoika i paleogena u pučinskim bušotinama Sjevernoga Jadrana. Late Mesosoic and Paleogene Carbonate Facies in the off-Shore Wells in the Northen Adria; University of Zagreb: Zagreb, Croatia, 1999. [Google Scholar]
- Grandić, S.; Veseli, V. Hydrocarbon potential of Dugi Otok basin in offshore Croatia. Nafta 2002, 53, 215–224. [Google Scholar]
- Fantoni, R.; Franciosi, R. Mesozoic extension and Cenozoic compression in Po Plain and Adriatic foreland. Rend. Online Soc. Geol. Ital. 2010, 9, 181–196. [Google Scholar]
- Kolbah, S.; Grandić, S. New Commercial Oil Discovery at Rovesti Structure in South Adriatic and its Importance for Croatian Part of Adriatic Basin. Nafta 2009, 60, 68–82. [Google Scholar]
- Cazzini, F.; Zotto, O.D.; Fantoni, R.; Ghielmi, M.; Ronchi, P.; Scotti, P. Oil and gas in the adriatic foreland, Italy. J. Pet. Geol. 2015, 38, 255–279. [Google Scholar] [CrossRef]
- Wrigley, R.; Hodgson, N.; Esestime, P. Petroleum geology and hydrocarbon potential of the adriatic basin, offshore Croatia. J. Pet. Geol. 2015, 38, 301–316. [Google Scholar] [CrossRef]
- Grandić, S.; Boromisa-Balaš, E.; Šušterić, M. Exploration concept and characteristics of the stratigraphic and structural models of the Dinarides in Croatian offshore area PART II. Hydrocarbon Consideration. Nafta 1997, 48, 249–266. [Google Scholar]
- Korbar, T. Orogenic evolution of the External Dinarides in the NE Adriatic region: A model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth-Sci. Rev. 2009, 96, 296–312. [Google Scholar] [CrossRef]
- Babić, L.; Zupanič, J. Laterally variable development of a basin-wide transgressive unit of the North Dalmatian Foreland Basin (Eocene, Dinarides, Croatia). Geol. Croat. 2012, 65, 1–27. [Google Scholar] [CrossRef]
- Mrinjek, E.; Nemec, W.; Pecinger, V.; Mikša, G.; Vlahović, I.; Ćosović, V.; Velić, I.; Bergant, S.; Matičec, D. The Eocene-Oligocene Promina Beds of the Dinaric Foreland Basin in Northern Dalmatia. J. Alp. Geol. 2012, 55, 409–451. [Google Scholar]
- Jiménez-Moreno, G.; de Leeuw, A.; Mandic, O.; Harzhauser, M.; Pavelić, D.; Krijgsman, W.; Vranjković, A. Integrated stratigraphy of the Early Miocene lacustrine deposits of Pag Island (SW Croatia): Palaeovegetation and environmental changes in the Dinaride Lake System. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 280, 193–206. [Google Scholar] [CrossRef]
- De Leeuw, A.; Mandic, O.; Vranjković, A.; Pavelić, D.; Harzhauser, M.; Krijgsman, W.; Kuiper, K.F. Chronology and integrated stratigraphy of the Miocene Sinj Basin (Dinaride Lake System, Croatia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 292, 155–167. [Google Scholar] [CrossRef]
- Amadori, C.; Garcia-Castellanos, D.; Toscani, G.; Sternai, P.; Fantoni, R.; Ghielmi, M.; Di Giulio, A. Restored topography of the Po Plain-Northern Adriatic region during the Messinian base-Level drop—Implications for the physiography and compartmentalization of the palaeo-Mediterranean basin. Basin Res. 2018, 30, 1247–1263. [Google Scholar] [CrossRef]
- Ghielmi, M.; Minervini, M.; Nini, C.; Rogledi, S.; Rossi, M. Late Miocene-Middle Pleistocene sequences in the Po Plain—Northern Adriatic Sea (Italy): The stratigraphic record of modification phases affecting a complex foreland basin. Mar. Pet. Geol. 2013, 42, 50–81. [Google Scholar] [CrossRef]
- EMODnet Bathimetry—Understanding the Topography of the European Seas. Available online: https://portal.emodnet-bathymetry.eu/help/help.html (accessed on 2 June 2019).
- McCabe, P.J. Energy resources—Cornucopia or empty barrel? Am. Assoc. Pet. Geol. Bull. 1998, 82, 2110–2134. [Google Scholar]
- Velić, J. Geologija nafte Petroleum Geology; University of Zagreb: Zagreb, Croatia, 2007. [Google Scholar]
- Živković, V. Proizvodne platforme eksploatacijskog polja Sjeverni Jadran. In Production Platforms of Exploitation Field North Adriatic; University of Zagreb: Zagreb, Croatia, 2015. [Google Scholar]
- Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-Point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Pavlovec, R.; Drobne, K.; Sikic, L. Upper Eocene and Oligocene in Yugoslavia. In Developments in Palaeontology and Stratigraphy; Pomerol, C., Premoli-Silva, I., Eds.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 109–111. [Google Scholar]
- Frixa, A.; Gorla, L.; Liverani, G.; Nini, C.; Parlov, B.; Pompadoro, G. Eocene-Miocene Calcareous Turbiditic Play in a Dinaric Foredeep: The Dugi Otok Basin, Offshore Croatia; AAPG: Barcelona, Spain, 2003; pp. 21–24. [Google Scholar]
- Goodman, A.; Hakala, A.; Bromhal, G.; Deel, D.; Rodosta, T.; Frailey, S.; Small, M.; Allen, D.; Romanov, V.; Fazio, J.; et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int. J. Greenh. Gas Control 2011, 5, 952–965. [Google Scholar] [CrossRef]
- van der Meer, L.; Egberts, P.J.P. A General Method for Subsurface CO2 Storage Capacity Calculations. In Proceedings of the Offshore Technology Conference, Huston, TX, USA, 5–8 May 2008; pp. 889–895. [Google Scholar]
- Vulin, D.; Kurevija, T.; Kolenkovic, I. The effect of mechanical rock properties on CO2 storage capacity. Energy 2012, 45, 512–518. [Google Scholar] [CrossRef]
- Zimmerman, R.W. Chapter 8. Tubular Pores Part Two: Compressibility and Pore Structure; Elsevier Science: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Osif, T.L. The Effects of Salt, Gas, Temperature, and Pressure on the Compressibility of Water. SPE Reserv. Eng. 1988, 3, 175–181. [Google Scholar] [CrossRef]
- Russo, A.; Carniel, S.; Sclavo, M.; Krzelj, M. Climatology of the Northern-Central Adriatic Sea. In Modern Climatology; Wang, S., Gillies, R., Eds.; IntechOpen: Rijeka, Croatia, 2012; pp. 177–212. [Google Scholar]
- Bakić, H. Strukturne značajke Jadranskog podmorja jugozapadno od Istarskog poluotoka. Structural features of Adriatic offshore Southeast of Istira Peninsula. Master’s Thesis, University of Zagreb, Zagreb, Croatia, 2007. [Google Scholar]
- Križanić, D. Strukturno-Stratigrafski odnosi i “bright-spot” anomalije u ležištima sjeverno od polja Ivana. In Structural-Strtigraphic Relations and Bright Spor Anomalies North of IVANA Gas Field; University of Zagreb: Zagreb, Croatia, 1999. [Google Scholar]
- Grandić, S.; Boromisa-Balaš, E.; Šušterić, M.; Kolbah, S. Hydrocarbon possibilites in the Eastern offshore Adriatic Slope zone of Croatian area. Nafta 1999, 50, 51–73. [Google Scholar]
- Prelogović, E.; Pribičević, B.; Ivković, Ž.; Dragičević, I.; Buljan, R.; Tomljenovic, B. Recent structural fabric of the Dinarides and tectonically active zones important for petroleum-Geological exploration. Nafta 2004, 55, 155–161. [Google Scholar]
- Tomljenovic, B.; Herak, M.; Kralj, K.; Prelogović, E.; Bostjančić, I.; Matoš, B. Active tectonics, sismicity and seismogenic sources of the Adriatic coastal and offshore region of Croatia. In Proceedings of the Riassunti Estesi delle Comunicazioni, Trieste, Italy, 16–19 November 2009; pp. 133–136. [Google Scholar]
- Marinčić, S.; Matičec, D. Tektonika i kinematika deformacija na primjeru Istre [Tectonics and kinematics of deformations, an Istrian Model]. Geološki Vjesn. 1991, 44, 257–268. [Google Scholar]
- Matičec, D. Neotectonic deformations in western Istria, Croatia. Geol. Croat. 1994, 47, 199–204. [Google Scholar]
- Grandić, S. Periplatform clastics of Croatian offshore and their petroleum geological significance. Nafta 2009, 60, 503–511. [Google Scholar]
- Geletti, R.; Del Ben, A.; Busetti, M.; Ramella, R.; Volpi, V. Gas seeps linked to salt structures in the central adriatic sea. Basin Res. 2008, 20, 473–487. [Google Scholar] [CrossRef]
- Casero, P.; Bigi, S. Structural setting of the Adriatic basin and the main related petroleum exploration plays. Mar. Pet. Geol. 2013, 42, 135–147. [Google Scholar] [CrossRef]
- Herak, D.; Herak, M.; Prelogović, E.; Markušić, S.; Markulin, Ž. Jabuka island (Central Adriatic Sea) earthquakes of 2003. Tectonophysics 2005, 398, 167–180. [Google Scholar] [CrossRef]
- Kastelic, V.; Vannoli, P.; Burrato, P.; Fracassi, U.; Tiberti, M.M.; Velensise, G. Seismogenic sources in the Adriatic Domain. Mar. Pet. Geol. 2013, 42, 191–213. [Google Scholar] [CrossRef] [Green Version]
- Herak, D.; Herak, M.; Brkić, I. Great tremor, sismicity and seismic hazard of wider Dubrovnik area [Velika trešnja, seizmičnost i potresna opasnost na širem Dubrovačkom području]. Dubrov. Čas. Književ. Znan. 2017, 28, 5–18. [Google Scholar]
- Albini, P. The great 1667 Dalmatia Earthquake: An in-Depth Case Studdy; Springer: New York, NY, USA, 2015. [Google Scholar]
- Herak, M.; Orlić, M.; Kunovec-Varga, M. Did the Makarska earthquake of 1962 generate a tsunami in the central Adriatic archipelago? J. Geodyn. 2001, 31, 71–86. [Google Scholar] [CrossRef]
- Markušić, S.; Herak, D.; Ivančić, I.; Sović, I.; Herak, M.; Prelogović, E. Seismicity of Croatia in the period 1993-1996 and the Ston-Slano earthquake of 1996. Geofizika 1998, 15, 83–102. [Google Scholar]
- Benetatos, C.; Kiratzi, A. Finite-fault slip models for the 15 April 1979 (Mw 7.1) Montenegro earthquake and its strongest aftershock of 24 May 1979 (Mw 6.2). Tectonophysics 2006, 421, 129–143. [Google Scholar] [CrossRef]
- Chilingarian, G.V.; Torabazdeh, J.; Robertson, J.O.; Rieke, H.H.; Mazzullo, S.J. Carbonate Reservoir Characterization: A Geologic-Engineering Analysis. In Developments in Petroleum Science; Chilingarian, G.V., Mazzullo, S.J., Rieke, H.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Knutson, C.F.; Bohor, B.F. Reservoir rock behavior under moderate confining pressure. In Rock Mechanics; Fairhurst, C., Ed.; Pergamon: New York, NY, USA, 1963; pp. 627–658. [Google Scholar]
- Pooladi-Darvish, M.; Moghdam, S.; Xu, D. Multiwell injectivity for storage of CO2 in aquifers. Energy Procedia 2011, 4, 4252–4259. [Google Scholar] [CrossRef]
- Griffith, C.A. Physical Characteristics of Caprock Formations used for Geological Storage of CO2 and the Impact of Uncertainty in Fracture Properties in CO2 Transport through Fractured Caprocks; Carnegie Mellon University: Pittsburgh, PA, USA, 2012. [Google Scholar]
- Zhou, Q.; Birkholzer, J.T.; Tsang, C.F.; Rutqvist, J. A method for quick assessment of CO2 storage capacity in closed and semi-Closed saline formations. Int. J. Greenh. Gas Control 2008, 2, 626–639. [Google Scholar] [CrossRef]
- Jelić, K.; Kevrić, I.; Krasić, O. Temperatura i toplinski tok u tlu Hrvatske [Temperature and heat flow in the soil of Croatia]. In Proceedings of the First Croatian Geological Congress, Opatija, Croatia, 18–21 October 1995; pp. 245–249. [Google Scholar]
- Vilarrasa, V.; Silva, O.; Carrera, J.; Olivella, S. Liquid CO2 injection for geological storage in deep saline aquifers. Int. J. Greenh. Gas Control 2013, 14, 84–96. [Google Scholar] [CrossRef]
- Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 storage capacity estimation: Issues and development of standards. Int. J. Greenh. Gas Control 2007, 1, 62–68. [Google Scholar] [CrossRef]
Field Name | Stratigraphic Unit | Lithology | Depth (m) | Proven Total Recoverable Gas | Bg | CO2 Density (t/m3) | Estimated CO2 Storage Capacity (Mt) |
---|---|---|---|---|---|---|---|
Ida | Pliocene-Pleistocene | sandstone | 870 | 2.407 | 0.0051 | 0.3812 | 10.502 |
Ika | Pliocene-Pleistocene | sandstone/carbonates | 1300 | 2.520 | 0.0045 | 0.5977 | 11.903 |
Marica | Pliocene-Pleistocene | sandstone | 1010 | 1.816 | 0.0038 | 0.5396 | 9.707 |
Total estimated CO2 storage capacity (Mt) | 32.112 |
Potential Storage Object | Average Depth (m) | Net-to-Gross | Average Porosity (%) | Pore Volume (m3) | Initial Pore Pressure (bar) | Initial Temp. (°C) |
---|---|---|---|---|---|---|
DSA Dugi otok | 2923.5 | 0.2 | 15 | 16.7579 × 109 | 293.97 | 57.01 |
Pore pressure increase (%) | Pore compressibility (bar−1) | Pore water compressibility (bar−1) | CO2 density at maximum pore pressure (kg/m3) | Storage efficiency coefficient (-) | Total CO2 storage capacity (Mt) | |
10 | 3.5 × 10−5 | 5.87 × 10−5 | 857.75 | 0.02 | 327.075 |
Potential Storage Object | Top Depth (m) | Average Depth (m) | Average Sea Depth (m) | Average Porosity (%) | Pore Volume (106 m3) | Average Initial Pore Pressure (bar) | Average Temperature (°C) |
---|---|---|---|---|---|---|---|
Structure 1 | 891 | 945.5 | 65 | 18.85 | 209.64 | 95.1 | 26.99 |
Structure 2 | 843 | 921.5 | 65 | 18.85 | 467.14 | 92.7 | 26.61 |
Structure 3 | 1670 | 2085 | 113 | 18.85 | 4473.84 | 209.7 | 43.96 |
Structure 4 | 1772 | 2136 | 133 | 18.85 | 2066.99 | 214.8 | 44.45 |
Structure 5 | 780 | 890 | 121 | 18.85 | 778.51 | 89.5 | 23.23 |
Potential Storage Object | Storage Efficiency Coefficient (-) | Pore Pressure Increase (%) | Pore Compressibility (bar−1) | Water Compressibility (10−5 bar−1) | CO2 Density * (kg/m3) | Total Storage Capacity (Mt) |
---|---|---|---|---|---|---|
Structure 1 | 0.05 | 50 | 10.15 × 10−5 | 5.55 × 10−5 | 857.68 | 8.99 |
Structure 2 | 0.05 | 50 | 10.15 × 10−5 | 5.54 × 10−5 | 856.27 | 20.00 |
Structure 3 | 0.05 | 50 | 6.96 × 10−5 | 5.73 × 10−5 | 902.58 | 201.90 |
Structure 4 | 0.05 | 50 | 6.96 × 10−5 | 5.74 × 10−5 | 904.89 | 93.52 |
Structure 5 | 0.05 | 50 | 11.17 × 10−5 | 5.51 × 10−5 | 872.18 | 33.95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saftić, B.; Kolenković Močilac, I.; Cvetković, M.; Vulin, D.; Velić, J.; Tomljenović, B. Potential for the Geological Storage of CO2 in the Croatian Part of the Adriatic Offshore. Minerals 2019, 9, 577. https://doi.org/10.3390/min9100577
Saftić B, Kolenković Močilac I, Cvetković M, Vulin D, Velić J, Tomljenović B. Potential for the Geological Storage of CO2 in the Croatian Part of the Adriatic Offshore. Minerals. 2019; 9(10):577. https://doi.org/10.3390/min9100577
Chicago/Turabian StyleSaftić, Bruno, Iva Kolenković Močilac, Marko Cvetković, Domagoj Vulin, Josipa Velić, and Bruno Tomljenović. 2019. "Potential for the Geological Storage of CO2 in the Croatian Part of the Adriatic Offshore" Minerals 9, no. 10: 577. https://doi.org/10.3390/min9100577
APA StyleSaftić, B., Kolenković Močilac, I., Cvetković, M., Vulin, D., Velić, J., & Tomljenović, B. (2019). Potential for the Geological Storage of CO2 in the Croatian Part of the Adriatic Offshore. Minerals, 9(10), 577. https://doi.org/10.3390/min9100577