The Albitization of K-Feldspar in Organic- and Silt-Rich Fine-Grained Rocks of the Lower Cambrian Qiongzhusi Formation in the Southwestern Upper Yangtze Region, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Mineral Assemblage
4.2. General Diagenesis
4.3. Texture of Albitized K-Feldspar
5. Discussion
5.1. Diagenetic Origin of the Albitization of K-Feldspar
5.2. Origin of Microcrystal Albite Replacement
5.3. Coupled Illitization of Smectite/Kaolinite and Albitization of K-Feldspar in Fine-Grained Rocks and Its Implication
5.4. Mechanisms of K-Feldspar Albitization
5.5. Differences between Fine-Grained Rocks and Sandstones in the Albitization of K-Feldspar
5.6. The Effect of the Albitization of K-Feldspar on Fine-Grained Reservoirs
5.6.1. The Effect of the Albitization of K-Feldspar on the Porosity of Fine-Grained Rocks
5.6.2. The Effect of the Albitization of K-feldspar on Shale Gas Reservoir Quality
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Picard, M.D. Classification of Fine-grained Sedimentary Rocks. J. Sediment. Res. 1971, 41, 179–195. [Google Scholar]
- Peltonen, C.; Marcussen, Ø.; Bjørlykke, K.; Jahren, J. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties. Mar. Pet. Geol. 2009, 26, 887–898. [Google Scholar] [CrossRef]
- Day-Stirrat, R.J.; Milliken, K.L.; Dutton, S.P.; Loucks, R.G.; Hillier, S.; Aplin, A.C.; Schleicher, A.M. Open-system chemical behavior in deep Wilcox Group mudstones, Texas Gulf Coast, USA. Mar. Pet. Geol. 2010, 27, 1184–1818. [Google Scholar] [CrossRef]
- Thyberg, B.; Jahren, J. Quartz cementation in mudstones: Sheet-like quartz cement from clay mineral reactions during burial. Petrol. Geosci. 2011, 17, 53–63. [Google Scholar] [CrossRef]
- Taylor, K.G.; Macquaker, J.H.S. Diagenetic alterations in a silt- and clay-rich mudstone succession: An example from the upper Cretaceous Mancos shale of Utah, USA. Clay Min. 2014, 49, 213–227. [Google Scholar] [CrossRef]
- Dowey, P.J.; Taylor, K.G. Extensive authigenic quartz overgrowths in the gas-bearing Haynesville-Bossier Shale, USA. Sediment. Geol. 2017, 356, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Milliken, K.L.; Olson, T. Silica diagenesis, porosity evolution, and mechanical behavior in siliceous mudstones, Mowry shale (Cretaceous), Rocky Mountains, U.S.A. J. Sediment. Res. 2017, 87, 366–387. [Google Scholar] [CrossRef]
- Delle Piane, C.; Almqvist, B.S.G.; Macrae, C.M.; Torpy, A.; Mory, A.J.; Dewhurst, D.N. Texture and diagenesis of Ordovician shale from the canning basin, Western Australia: Implications for elastic anisotropy and geomechanical properties. Mar. Pet. Geol. 2015, 59, 56–71. [Google Scholar] [CrossRef]
- Chowdhury, A.H.; Noble, J.P.A. Feldspar albitization and feldspar cementation in the Albert formation reservoir sandstones, New Brunswick, Canada. Mar. Pet. Geol. 1993, 10, 394–402. [Google Scholar] [CrossRef]
- Saigal, G.C.; Morad, S.; Bjørlykke, K.; Egeberg, P.K.; Aagaard, P. Diagenetic albitization of detrital k-feldspar in jurassic, lower cretaceous, and tertiary clastic reservoir rocks from offshore Norway, I. textures and origin. J. Sediment. Res. 1988, 58, 1003–1013. [Google Scholar]
- Norberg, N.; Neusser, G.; Wirth, R.; Harlov, D. Microstructural evolution during experimental albitization of k-rich alkali feldspar. Contrib. Mineral. Petrol. 2011, 162, 531–546. [Google Scholar] [CrossRef]
- Middleton, G.V. Albite of secondary origin in charny sandstones Quebec. J. Sediment. Res. 1972, 42, 341–349. [Google Scholar] [CrossRef]
- Walker, T.R. Diagenetic albitization of potassium feldspar in arkosic sandstones. J. Sediment. Res. 1984, 54, 3–16. [Google Scholar]
- Milliken, K.L. Chemical behavior of detrital feldspars in mudrocks versus sandstones, Frio formation (Oligocene), South Texas. J. Sediment. Res. 1992, 62, 790–801. [Google Scholar]
- Lee, J.I.; Lee, Y.I. Feldspar albitization in Cretaceous non-marine mudrocks, Gyeongsang Basin, Korea. Sedimentology 1998, 45, 745–754. [Google Scholar] [CrossRef]
- Hower, J.; Eslinger, E.V.; Hower, M.E.; Perry, E.A. Mechanism of burial metamorphism of argillaceous sediment: 1. mineralogical and chemical evidence. Geol. Soc. Am. Bull. 1976, 87, 725–737. [Google Scholar] [CrossRef]
- Morad, S. Albitization of K-feldspar grains in Proterozoic arkoses and greywackes from southern Sweden. N. Jahrb. Mineral. Monatsh 1986, 4, 145–156. [Google Scholar]
- González-Acebrón, L.; Arribas, J.; Mas, R. Role of sandstone provenance in the diagenetic albitization of feldspars: A case study of the Jurassic Tera Group sandstones (Cameros Basin, NE Spain). Sediment. Geol. 2010, 229, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.-J.; Chen, Z.; Bian, X.-B. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications. Nat. Gas Ind. 2016, 36, 61–67. [Google Scholar] [CrossRef]
- Zhu, C.-Q.; Rao, S.; Yuan, Y.-S.; Wang, Q.; Qiu, N.-S.; Hu, S.-B. Thermal evolution of the main Paleozoic shale rocks in the southeastern Sichuan basin. J. China Coal Soc. 2013, 38, 834–839. [Google Scholar]
- Li, J.; Wang, Y.-F.; Ma, W.; Wang, D.-L.; Ma, C.-H.; Li, Z.-S. Evaluation on occluded hydrocarbon in deep-ultra deep ancient source. Nat. Gas Ind. 2015, 35, 9–15. [Google Scholar]
- Wei, G.-Q.; Yang, W.; Xie, W.-R.; Jin, H.; Su, N.; Sun, A.; Shen, J.-H.; Hao, C.-G. Accumulation modes and exploration domains of Sinian-Cambrian natural gas in Sichuan Basin. Acta Petrol. Sin. 2018, 39, 1317–1327. [Google Scholar]
- Zhang, A.-Y.; Wu, D.-M.; Guo, L.-N.; Wang, Y.-L. Geochemistry of Marine Black Shale Formation and its Metallogenic Implication; Science Press: Beijing, China, 1987; pp. 13–30. [Google Scholar]
- Wu, S.-J.; Wei, G.-Q.; Yang, W.; Xie, W.-R.; Zeng, F.-Y. Tongwan Movement and its geologic significances in Sichuan Basin. Nat. Gas Geosci. 2016, 27, 60–70. [Google Scholar]
- Liu, Z.-B.; Gao, B.; Zhang, Y.-Y.; Du, W.; Feng, D.-J.; Nie, H.-K. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China. Petrol. Explor. Dev. 2017, 44, 21–31. [Google Scholar] [CrossRef]
- Liu, B.-J.; Xu, X.-S. Lithofacies Palaeogeography Atlas of Southern China (Sinian-Triassic); Science Press: Beijing, China, 1994; pp. 42–43. [Google Scholar]
- Wang, P.-W.; Zhang, L.; Zou, C.; Song, H.-Q.; Chen, Z.-L.; Wang, G.-C.; Li, J.-J.; Li, Q.-F. Exploration direction of highly mature shale gas from Qiongzhusi Formation in Zhenxiong- Hezhang area of Southwest China. J. Chengdu Univ. Technol. 2015, 42, 530–538. [Google Scholar]
- Chalmers, G.R.L.; Bustin, R.M. Lower Cretaceous gas shales in northeastern British Columbia, part I: Geological controls on methane sorption capacity. Bull. Can. Petroleum Geol. 2008, 56, 1–21. [Google Scholar] [CrossRef]
- China National Energy Administration. Analysis Method for Clay Minerals and Ordinary Non- Clay Minerals in Sedimentary Rocks by the X- Ray Diffraction; Petroleum Industry Press: Beijing, China, 2018; pp. 1–47. [Google Scholar]
- Boles, J.R.; Franks, S.G. Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. J. Sediment. Res. 1979, 49, 55–70. [Google Scholar]
- Bjørlykke, K.; Aagaard, P.; Dypvik, H.; Hastings, D.S.; Harper, A.S. Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore mid-Norway. In Habitat of Hydrocarbons on the Norwegian Continental Shelf; Spencer, A.M., Ed.; Norwegian Petroleum Society (Graham & Trotman): Oslo, Norway, 1986; pp. 275–286. [Google Scholar]
- Chuhan, F.A.; Bjørlykke, K.; Lowrey, C.J. Closed-System Burial Diagenesis in Reservoir Sandstones: Examples from the Garn Formation at Haltenbanken Area, Offshore Mid-Norway. J. Sediment. Res. 2001, 71, 15–26. [Google Scholar] [CrossRef]
- Milliken, K.L.; Ergene, S.M.; Ozkan, A. Quartz types, authigenic and detrital, in the upper cretaceous eagle ford formation, south Texas, USA. Sediment. Geol. 2016, 339, 273–288. [Google Scholar] [CrossRef]
- Zhao, S.-Z.; Li, Y.; Min, H.-J.; Wang, T.; Nie, Z.; Zhao, Z.-Z.; Qi, J.-Z.; Wang, J.-C.; Wu, J.-P. Development of Upwelling during the Sedimentary Period of the Organic-Rich Shales in the Wufeng and Longmaxi Formations of the Upper Yangtze Region and Its Impact on Organic Matter Enrichment. J. Mar. Sci. Eng. 2019, 7, 99. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L.; Brantley, S.L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. Cosmochim. Acta 1996, 60, 3897–3912. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 1997, 61, 323–339. [Google Scholar] [CrossRef]
- Bond, D.P.G.; Wignall, P.B. Pyrite framboid study of marine permian-triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Bull. Geol. Soc. Am. 2010, 122, 1265–1279. [Google Scholar] [CrossRef]
- Potter, P.E.; Maynard, J.M.; Depetris, P.J. Mud and Mudstones; Springer: Berlin, Germany, 2005; p. 150. [Google Scholar]
- Worden, R.H.; Oxtoby, N.H.; Smalley, P.C. Can oil emplacement prevent quartz cementation in sandstones? Petrol. Geosci. 1998, 4, 129–137. [Google Scholar] [CrossRef]
- Milliken, K.L. Late diagenesis and mass transfer in sandstone—Shale sequences. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 159–190. [Google Scholar]
- Bjørlykke, K.; Jahren, J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bull. 2012, 96, 2193–2214. [Google Scholar] [CrossRef]
- Lynch, F.L.; Mack, L.E.; Land, L.S. Burial diagenesis of illite/smectite in shales and the origins of authigenic quartz and secondary porosity in sandstones. Geochim. Cosmochim. Acta 1997, 61, 1995–2006. [Google Scholar] [CrossRef]
- Perry, E.; Hower, J. Burial diagenesis in gulf coast pelitic sediments. Clay Clay Min. 1970, 18, 165–177. [Google Scholar] [CrossRef]
- Dutton, S.P.; Loucks, R.G. Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200–6700 m) burial, Gulf of Mexico basin, USA. Mar. Pet. Geol. 2010, 27, 69–81. [Google Scholar] [CrossRef]
- Lin, C.-X.; Bai, Z.-H.; Zhang, Z.-R. Thermodynamic Data Manual for Minerals and Related Compounds; Science Press: Beijing, China, 1985; pp. 214–265. [Google Scholar]
Well/Section | Sample ID | Mineral Contents (%) | Clay Mineral Contents (%) | TOC (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | K-Feldspar | Plagioclase | Calcite | Dolomite | Pyrite | Clay Minerals | K | C | I | S | I/S | C/S | |||
Majinzi | Majinzi-1* | 59.6 | 2.4 | 17.0 | 0.0 | 0.0 | 0.0 | 20.5 | 1 | 1 | 38 | 0 | 52 | 8 | 2.7 |
Majinzi | Majinzi-2* | 50.3 | 7.0 | 14.3 | 0.0 | 0.0 | 0.0 | 25.5 | 0 | 0 | 38 | 0 | 62 | 0 | 3.6 |
Majinzi | Majinzi-3 | 48.0 | 3.4 | 17.9 | 0.0 | 1.1 | 0.0 | 24.6 | 0 | 0 | 26 | 0 | 74 | 0 | 2.5 |
Majinzi | Majinzi-4 | 48.2 | 4.8 | 17.1 | 0.0 | 0.0 | 0.0 | 26.0 | 0 | 3 | 20 | 0 | 77 | 0 | 2.4 |
Majinzi | Majinzi-5 | 44.9 | 3.4 | 19.4 | 0.4 | 0.8 | 0.0 | 24.5 | 0 | 0 | 27 | 0 | 70 | 3 | 2.0 |
Majinzi | Majinzi-6 | 41.2 | 2.2 | 19.6 | 0.0 | 2.0 | 0.0 | 28.6 | 0 | 3 | 31 | 0 | 66 | 0 | 0.5 |
Majinzi | Majinzi-7* | 41.4 | 3.3 | 18.4 | 0.0 | 2.9 | 0.0 | 25.4 | 0 | 20 | 30 | 0 | 41 | 9 | 1.6 |
Majinzi | Majinzi-8 | 40.3 | 3.5 | 23.0 | 0.5 | 1.1 | 0.0 | 29.3 | 0 | 38 | 18 | 0 | 26 | 18 | 0.2 |
Majinzi | Majinzi-9 | 51.7 | 3.7 | 25.7 | 7.0 | 1.0 | 1.2 | 9.7 | 0 | 39 | 23 | 0 | 16 | 22 | 0.6 |
Majinzi | Majinzi-10 | 40.2 | 6.0 | 19.2 | 0.0 | 0.0 | 0.0 | 23.8 | 0 | 4 | 28 | 0 | 52 | 16 | 0.5 |
Majinzi | Majinzi-11* | 47.0 | 6.6 | 20.2 | 0.0 | 0.0 | 0.0 | 23.8 | 0 | 14 | 34 | 0 | 42 | 10 | 2.5 |
Majinzi | Majinzi-12 | 46.5 | 2.9 | 10.9 | 0.0 | 0.0 | 0.0 | 33.2 | 0 | 2 | 26 | 0 | 69 | 3 | 3.0 |
Z1 | Z1-1 | 73.3 | 1.5 | 3.0 | 9.4 | 0.6 | 1.6 | 9.8 | 0 | 0 | 24 | 0 | 76 | 0 | 6.6 |
Z1 | Z1-2* | 51.3 | 1.2 | 9.7 | 4.6 | 4.3 | 5.9 | 20.6 | 3 | 0 | 37 | 0 | 60 | 0 | 4.8 |
Z1 | Z1-3 | 35.5 | 1.8 | 14.4 | 2.4 | 3.2 | 6.7 | 36.0 | 1 | 1 | 25 | 0 | 73 | 0 | 2.6 |
Z1 | Z1-4 | 32.7 | 1.8 | 8.0 | 2.3 | 7.2 | 9.1 | 37.0 | 0 | 3 | 32 | 0 | 61 | 4 | 2.6 |
Z1 | Z1-5* | 37.0 | 1.8 | 13.6 | 0.4 | 5.7 | 8.9 | 31.8 | 1 | 2 | 13 | 0 | 84 | 0 | 3.0 |
Z1 | Z1-6 | 39.2 | 2.4 | 19.1 | 5.2 | 5.4 | 9.4 | 19.3 | 0 | 10 | 17 | 0 | 61 | 12 | 4.2 |
Z1 | Z1-7 | 37.7 | 3.0 | 18.9 | 3.5 | 1.2 | 4.6 | 28.4 | 0 | 6 | 21 | 0 | 68 | 5 | 3.1 |
Z1 | Z1-8 | 32 | 2.1 | 17.0 | 2.6 | 8.9 | 13.9 | 21.8 | 0 | 8 | 23 | 0 | 63 | 6 | 3.0 |
Z1 | Z1-9* | 36.3 | 2.3 | 18.9 | 4.5 | 2.4 | 4.7 | 30.9 | 0 | 22 | 24 | 0 | 43 | 11 | 1.8 |
Z1 | Z1-10 | 44.5 | 2.7 | 21.0 | 1.5 | 0.0 | 3.3 | 27.0 | 0 | 13 | 19 | 0 | 59 | 9 | 1.8 |
Z1 | Z1-11 | 38.3 | 2.4 | 18.7 | 0.9 | 2.6 | 3.3 | 32.7 | 0 | 8 | 30 | 0 | 55 | 7 | 1.9 |
Z1 | Z1-12 | 36.8 | 3.1 | 20.8 | 2.0 | 0.2 | 1.5 | 32.3 | 1 | 7 | 14 | 0 | 67 | 11 | 1.8 |
Z1 | Z1-13 | 43.0 | 3.9 | 22.1 | 3.8 | 0.0 | 2.1 | 22.1 | 3 | 9 | 19 | 0 | 52 | 17 | 1.9 |
Z1 | Z1-14 | 35.4 | 3.2 | 20.3 | 3.5 | 0.0 | 1.2 | 32.4 | 0 | 35 | 22 | 0 | 29 | 14 | 1.7 |
Z1 | Z1-15* | 37.2 | 3.3 | 20.0 | 3.9 | 0.0 | 2.5 | 31.2 | 0 | 34 | 12 | 0 | 42 | 12 | 1.7 |
Z1 | Z1-16 | 38.3 | 3.6 | 22.4 | 3.9 | 0.0 | 2.4 | 29.4 | 0 | 31 | 13 | 0 | 41 | 15 | 1.3 |
Z1 | Z1-17 | 38.7 | 2.8 | 24.2 | 3.9 | 0.0 | 1.5 | 24.8 | 0 | 28 | 15 | 0 | 45 | 12 | 1.3 |
Z1 | Z1-18* | 37.8 | 2.6 | 23.0 | 3.4 | 0.8 | 1.4 | 29.5 | 0 | 39 | 22 | 0 | 36 | 3 | 1.1 |
Z1 | Z1-19 | 41.7 | 3.7 | 28.3 | 10.1 | 0.0 | 1.1 | 12.2 | 0 | 38 | 12 | 0 | 31 | 19 | 1.1 |
Z1 | Z1-20 | 45.2 | 4.4 | 21.4 | 4.1 | 0.0 | 0.0 | 23.0 | 0 | 48 | 9 | 0 | 29 | 14 | 0.9 |
Z1 | Z1-21 | 39.1 | 3.1 | 24.7 | 6.9 | 0.6 | 1.0 | 21.3 | 0 | 42 | 12 | 0 | 29 | 17 | 1.2 |
Z1 | Z1-22 | 42.0 | 2.9 | 28.0 | 9.0 | 0.0 | 3.3 | 14.0 | 0 | 45 | 10 | 0 | 28 | 17 | 0.8 |
Z1 | Z1-23 | 41.4 | 2.4 | 26.8 | 6.5 | 0.6 | 1.2 | 17.6 | 0 | 42 | 14 | 0 | 22 | 22 | 1.0 |
Z1 | Z1-24 | 37.8 | 2.2 | 27.4 | 4.3 | 0.6 | 1.2 | 21.9 | 0 | 44 | 14 | 0 | 24 | 18 | 1.2 |
Range value | 32–73.3 | 1.2–7 | 3–28.3 | 0–10.1 | 0–8.9 | 0–13.9 | 9.8–37 | 0–3 | 0–48 | 9–38 | 0 | 16–84 | 0–22 | 0.2–6.6 | |
Average value | 42.5 | 3.2 | 19.3 | 3.1 | 1.5 | 2.6 | 25.1 | 0.3 | 17.8 | 22.0 | 0 | 50.7 | 9.3 | 2.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, H.; Zhang, T.; Li, Y.; Zhao, S.; Li, J.; Lin, D.; Wang, J. The Albitization of K-Feldspar in Organic- and Silt-Rich Fine-Grained Rocks of the Lower Cambrian Qiongzhusi Formation in the Southwestern Upper Yangtze Region, China. Minerals 2019, 9, 620. https://doi.org/10.3390/min9100620
Min H, Zhang T, Li Y, Zhao S, Li J, Lin D, Wang J. The Albitization of K-Feldspar in Organic- and Silt-Rich Fine-Grained Rocks of the Lower Cambrian Qiongzhusi Formation in the Southwestern Upper Yangtze Region, China. Minerals. 2019; 9(10):620. https://doi.org/10.3390/min9100620
Chicago/Turabian StyleMin, Huajun, Tingshan Zhang, Yong Li, Shaoze Zhao, Jilin Li, Dan Lin, and Jincheng Wang. 2019. "The Albitization of K-Feldspar in Organic- and Silt-Rich Fine-Grained Rocks of the Lower Cambrian Qiongzhusi Formation in the Southwestern Upper Yangtze Region, China" Minerals 9, no. 10: 620. https://doi.org/10.3390/min9100620
APA StyleMin, H., Zhang, T., Li, Y., Zhao, S., Li, J., Lin, D., & Wang, J. (2019). The Albitization of K-Feldspar in Organic- and Silt-Rich Fine-Grained Rocks of the Lower Cambrian Qiongzhusi Formation in the Southwestern Upper Yangtze Region, China. Minerals, 9(10), 620. https://doi.org/10.3390/min9100620