Polytypism and Polysomatism in Mixed-Layer Chalcogenides: Characterization of PbBi4Te4S3 and Inferences for Ordered Phases in the Aleksite Series
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Compositional Data (EPMA)
3.2. Stacking Sequences and Their Distributions
3.3. Polytype Derivation Using the Displacement Vector Model for Interface Modulated Structures
3.4. Internal Structure of the Layers—Identity of Atom Layers
4. Discussion
4.1. The Identity of PbBi4Te4S3 and Polytypism among Pb–Bi Chalcogenides
4.2. Homology in the Aleksite Series
5. Conclusions and Further Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cook, N.J.; Ciobanu, C.L.; Stanley, C.J.; Paar, W.; Sundblad, K. Compositional data for Bi-Pb tellurosulfides. Can. Miner. 2007, 45, 417–435. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Wagner, T.; Stanley, C.J. Minerals of the system Bi-Te-Se-S related to the tetradymite archetype: Review of classification and compositional variation. Can. Miner. 2007, 45, 665–708. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Pring, A.; Cook, N.J.; Self, P.; Jefferson, D.; Dima, G.I.; Melnikov, V. Chemical-structural modularity in the tetradymite group: A HRTEM study. Am. Miner. 2009, 94, 517–534. [Google Scholar] [CrossRef]
- Lipovetskiy, A.G.; Borodaev, Y.S.; Zav’yalov, Y.N. Aleksite, PbBi2Te2S2, a new Miner1. Int. Geol. Rev. 1979, 21, 1223–1228. [Google Scholar] [CrossRef]
- Clarke, R.M. Saddlebackite, Pb2Bi2Te2S3, a new mineral species from the Boddington gold deposit, Western Australia. Aust. J. Miner. 1997, 3, 119–124. [Google Scholar]
- Kuribayashi, T.; Nagase, T.; Nozaki, T.; Ishibashi, J.; Shimada, K.; Shimizu, M.; Momma, K. Hitachiite, Pb5Bi2Te2S6, a new mineral from the Hitachi mine, Ibaraki Prefecture, Japan. Miner. Mag. 2019, 1–7. [Google Scholar] [CrossRef]
- Moëlo, Y.; Makovicky, E.; Mozgova, N.N.; Jambor, J.L.; Cook, N.; Pring, A.; Paar, W.; Nickel, E.H.; Graeser, S.; Karup-Møller, S.; et al. Sulfosalt systematics: A review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. Eur. J. Miner. 2008, 20, 7–62. [Google Scholar] [CrossRef]
- Shelimova, L.E.; Karpinsky, O.G.; Kosyakov, V.I.; Shestakov, V.A.; Zemskov, V.S.; Kuznetsov, F.A. Homologous series of layered tetradymite-like compounds in Bi-Te and GeTe-Bi2Te3 systems. J. Struct. Chem. 2000, 41, 81–87. [Google Scholar] [CrossRef]
- Imamov, P.M.; Semiletov, S.A. The crystal structure of the phases in the system Bi-Se, Bi-Te, and Sb-Te. Sov. Phys. Crystallogr. 1971, 15, 845–850. [Google Scholar]
- Gaudin, E.; Jobic, S.; Evain, M.; Brec, R.; Rouxel, J. Charge balance in some BixSey phases through atomic structure determination and band structure calculations. Mater. Res. Bull. 1995, 30, 549–561. [Google Scholar] [CrossRef]
- Bos, J.W.G.; Zandbergen, H.W.; Lee, M.-H.; Ong, N.P.; Cava, R.J. Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n. Phys. Rev. B 2007, 75, 195203. [Google Scholar] [CrossRef]
- Bos, J.W.G.; Faucheux, F.; Downie, R.A.; Marcinkova, A. Phase stability, structures and properties of the (Bi2)m(Bi2Te3)n natural superlattices. J. Solid State Chem. 2012, 193, 13–18. [Google Scholar] [CrossRef]
- Sharma, P.A.; Lima Sharma, A.L.; Medlin, D.L.; Morales, A.M.; Yang, N.; Barney, M.; He, J.; Drymiotis, F.; Turner, J.; Tritt, T.M. Low phonon thermal conductivity of layered (Bi2)m-(Bi2Te3)n thermoelectric alloys. Phys. Rev. B 2011, 83, 235209. [Google Scholar] [CrossRef]
- Mal, P.; Bera, G.; Turpu, R.; Srivastava, S.R.; Gangan, A.; Chakraborty, B.; Das, B.; Das, P. Vibrational spectra of Pb2Bi2Te3, PbBi2Te4, and PbBi4Te7, topological insulators: Temperature-dependent Raman and theoretical insights from DFT simulations. Phys. Chem. Chem. Phys. 2019, 21, 15030–15039. [Google Scholar] [CrossRef] [PubMed]
- Frangis, N.; Kuypers, S.; Manolikas, C.; Van Tendeloo, G.; Van Landuyt, J.; Amelinckx, S. Continuous series of one-dimensional structures in compounds based on M2X3 (M = Sb, Bi, X = Se, Te). J. Solid State Chem. 1990, 84, 314–334. [Google Scholar] [CrossRef]
- Van Landuyt, J.; De Ridder, R.; Gevers, R.; Amelinckx, S. Diffraction effects due to shear structures: A new method for determining the shear vector. Mater. Res. Bull. 1970, 5, 353–362. [Google Scholar] [CrossRef]
- Pauling, L. The formula, structure, and chemical bonding of tetradymite, Bi14Te13S8, and the phase Bi14Te15S6. Am. Miner. 1975, 60, 994–997. [Google Scholar]
- Liu, H.; Chang, L.L.Y. Lead and bismuth chalcogenide systems. Am. Miner. 1994, 79, 1159–1166. [Google Scholar]
- Spiridonov, E.M. Mineralogy of the metamorphosed plutonogenic gold–quartz Kochar deposit, South Urals. 1. Gold–telluride ores. Zap. Vses. Miner. Obshchest. 1995, 124, 24–39. (In Russian) [Google Scholar]
- Amelinckx, S.; Van Tendeloo, G.; Van Dyck, D.; Van Landuyt, J. The study of modulated structures, mixed layer polytypes and 1-D quasi-crystals by means of electron microscopy and electron diffraction. Phase Transit. 1989, 16, 3–40. [Google Scholar] [CrossRef]
- van Tendeloo, G.; van Dyck, D.; Kuypers, S.; Amelinckx, S. Electron diffraction in mixed layer compounds I. Theoretical Considerations. Phys. Stat. Sol. A 1987, 101, 339–354. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Maunders, C.; Wade, B.P.; Ehrig, K. Focused Ion Beam and Advanced Electron Microscopy for Minerals: Insights and Outlook from Bismuth Sulphosalts. Minerals 2016, 6, 112. [Google Scholar] [CrossRef]
- Li, W.; Ciobanu, C.L.; Slattery, A.; Cook, N.J.; Liu, W.; Wade, B.P.; Xie, D.Q. Chessboard structures: Atom-scale imaging of homologues from the kobellite series. Am. Miner. 2019, 104, 459–462. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Kontonikas-Charos, A.; Slattery, A.; Cook, N.J.; Wade, B.P.; Ehrig, K. Short-range stacking disorder in mixed-layer compounds: A HAADF STEM study of bastnäsite-parisite intergrowths. Minerals 2017, 7, 227. [Google Scholar] [CrossRef]
- Makovicky, E. Modular aspects of sulfides and sulfosalts. In EMU Notes in Mineralogy: Modular Aspects of Minerals; Merlino, S., Ed.; European Mineralogical Union: Jena, Germany, 1997; Volume 1, pp. 237–271. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Slattery, A.; Verdugo-Ihl, M.R.; Courtney-Davies, L.; Gao, W. Advances and Opportunities in Ore Mineralogy. Minerals 2017, 7, 233. [Google Scholar] [CrossRef]
- Medlin, D.L.; Ramasse, Q.M.; Spataru, C.D.; Yang, N.Y.C. Structure of the (0001) basal twin boundary in Bi2Te3. J. Appl. Phys. 2010, 108, 043517. [Google Scholar] [CrossRef]
- Medlin, D.L.; Yang, N.; Spataru, C.D.; Hale, L.M.; Mishin, Y. Unraveling the dislocation core structure at a van der Waals gap in bismuth telluride. Nat. Comms. 2019, 10, 1820. [Google Scholar] [CrossRef] [Green Version]
- Medlin, D.L.; Snyder, G.J. Atomic-scale interfacial structure in rock salt and tetradymite chalcogenide thermoelectric materials. JOM 2013, 65, 390–400. [Google Scholar] [CrossRef]
- Medlin, D.; Erickson, K.; Limmer, S.; Yelton, W.; Siegal, M.P. Dissociated ⅓ <0111> dislocations in Bi2Te3 and their relationship to seven-layer Bi3Te4 defects. J. Mater. Sci. 2014, 49, 3970–3979. [Google Scholar] [CrossRef]
- Chen, Y.L.; Analytis, J.G.; Chu, J.-H.; Liu, Z.K.; Mo, S.-K.; Qi, X.L.; Zhang, H.J.; Lu, D.H.; Dai, X.; Fang, Z.; et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181. [Google Scholar] [CrossRef]
- Heremans, J.; Cava, R.; Samarth, N. Tetradymites as thermoelectrics and topological insulators. Nat. Rev. Mater. 2017, 2, 17049. [Google Scholar] [CrossRef]
- Silkin, I.V.; Menshchikova, T.V.; Otrokov, M.M.; Eremeev, S.V.; Koroteev, Y.M.; Vergniory, M.G.; Kuznetsov, V.M.; Chulkov, E.V. Natural sulfur-containing minerals as topological insulators with a wide band gap. JETP Lett. 2012, 96, 322–325. [Google Scholar] [CrossRef]
- Gehring, P.; Vaklinova, K.; Hoyer, A.; Benia, H.M.; Skakalova, V.; Argentero, G.; Eder, F.; Meyer, J.C.; Burghard, M.; Kern, K. Dimensional crossover in the quantum transport behaviour of the natural topological insulator Aleksite. Sci. Rep. 2015, 5, 11691. [Google Scholar] [CrossRef] [PubMed]
- Bevins, R.E.; Stanley, C.J. Aleksite, a lead bismuth sulfotelluride: A second world occurrence from the Dolgellau Gold belt, Gwynedd, Wales. J. Russell Soc. 1990, 3, 67–69. [Google Scholar]
- Dominy, S.; Platten, I.M. Gold mineralisation and ore controls at the Clogau mine, Dolgellau, North Wales, United Kingdom. Appl. Earth Sci. IMM Trans. 2012, B121, 12–28. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Utsunomiya, S.; Pring, A.; Green, L. Focussed ion beam–transmission electron microscopy applications in ore mineralogy: Bridging micro- and nanoscale observations. Ore Geol. Rev. 2011, 42, 6–31. [Google Scholar] [CrossRef]
- Cepedal, A.; Martínez-Abad, I.; Fuertes-Fuente, M.; Lima, A. The presence of plumboan ingodite and a rare Bi-Pb tellurosulfide, Pb3Bi4Te4S5, in the Limarinho gold deposit, Northern Portugal. Can. Miner. 2013, 51, 643–651. [Google Scholar] [CrossRef]
Phase | Formula | n | a (Å) | c (Å) | Z | MxX3 | Stacking Sequence | N | γF | FN | Ref(s) |
---|---|---|---|---|---|---|---|---|---|---|---|
Unit Archetype | |||||||||||
Tetradymite | Bi2Te2S | 0 | #4.2381 | #29.589 | #3 | M2.X3 | (5) | 5 | 0.2000 | 15R | [17] |
Named minerals | |||||||||||
Aleksite | Pb2Bi4Te4S4 | 2 | #4.23 #4.238 #4.24 | *#39.83 #79.76 #79.64 | #3 #6 #6 | M2.25X3 | (7) (59) | 7 14 | 0.1429 | 21R 42R | [18] [4] [1] |
Saddlebackite | Pb4Bi4Te4S6 | 4 | #4.23 #4.23 #4.247 | *16.71 #33.4 #97.97 | #1 #2 #6 | M2.4X3 | (9); 9 (7.11); 18 (77.11.77.15) | 9 18 54 | 0.1111 | 9H 18H 54H | [18] [5] [19] |
Hitachiite | Pb10Bi4Te4S12 | 10 | #4.22 | #27.02 | #1 | M2.63X3 | (15) | 15 | 0.0667 | 15H | [6] |
Unnamed and predicted phases | |||||||||||
Unnamed (“Phase C”) | PbBi4Te4S3 | 1 | 4.24 | *#23.12 | 2 | M2.14X3 | (57) | 12 | 0.1667 | 12H | [18] |
4.25 | #69.71 | 6 | (557.559) | 36 | 36H | [1] | |||||
Synthetic | Pb2.5Bi4Te4S4.5 | 2.5 | 4.23 | **60 | 2 | M2.29X3 | (7779) | 30 | 0.1333 | 30H | [18] |
Predicted | Pb3Bi4Te4S5 | 3 | ~96 | 3 | M2.33X3 | (79) | 16 | 0.1250 | 48R | [1] | |
Unnamed | Pb5Bi4Te4S7 | 5 | ~120 | 3 | M2.45X3 | (9.11) | 20 | 0.1000 | 60R | [1] | |
Unnamed | Pb6Bi4Te4S8 | 6 | ~66 | 3 | M2.5X3 | (11) | 11 | 0.0909 | 33R | [1] | |
Unnamed | Pb7Bi4Te4S9 | 7 | ~48 | 1 | M2.54X3 | (11.13) | 24 | 0.0833 | 24H | [1] | |
Predicted | Pb8Bi4Te4S10 | 8 | ~78 | 3 | M2.57X3 | (13) | 13 | 0.0769 | 39R | [1] |
Wt. % | Formula (apfu, 12 Atoms) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Bi | Te | S | Se | Total | Pb | Bi | Te | S | Se | |
Mean (n = 57) | 12.56 | 49.45 | 30.62 | 6.42 | 0.12 | 99.18 | 0.98 | 3.84 | 3.89 | 3.26 | 0.02 |
S.D. | 0.59 | 1.12 | 0.27 | 0.10 | 0.02 | 0.05 | 0.08 | 0.04 | 0.04 | 0.00 | |
Minimum | 11.56 | 47.40 | 29.83 | 6.20 | 0.07 | 98.01 | 0.91 | 3.69 | 3.80 | 3.17 | 0.01 |
Maximum | 14.48 | 52.11 | 31.09 | 6.64 | 0.20 | 100.81 | 1.14 | 4.02 | 3.96 | 3.35 | 0.04 |
1 FN | Sequence | Stack | M:X Ratio | 2 Formula M(2 + ε)X3 | p | 3 N | 4 γF | 5c (Å) |
---|---|---|---|---|---|---|---|---|
12H | 57 | (1 × 5).(1 × 7) | M5X7 | M2.14X3 | 2 | 12 | 0.1667 | 24 |
24H | 5559 | (3 × 5).(1 × 9) | M10X14 | M2.14X3 | 2 | 24 | 0.1667 | 48 |
36H | 557.559 | (4 × 5).(1 × 7).(1 × 9) | M15X21 | M2.14X3 | 2 | 36 | 0.1667 | 72 |
48H | 5557.555.11 | (6 × 5).(1 × 7).(1 × 11) | M20X28 | M2.14X3 | 2 | 48 | 0.1667 | 96 |
120R | 559.55.11 | (4 × 5).(1 × 9).(1 × 11) | M17X23 | M2.22X3 | 2 | 40 | 0.1500 | 80 |
78R | 555.11 | (3 × 5).(1 × 11) | M11X15 | M2.2X3 | 2 | 26 | 0.1538 | 52 |
57R | 559 | (2 × 5).(1 × 9) | M8X11 | M2.18X3 | 2 | 19 | 0.1579 | 38 |
87R | 55559 | (4 × 5).(1 × 9) | M12X17 | M2.12X3 | 2 | 29 | 0.1724 | 58 |
51R | 557 | (2 × 5).(1 × 7) | M7X10 | M2.1X3 | 2 | 17 | 0.1765 | 34 |
66R | 5557 | (3 × 5).(1 × 7) | M9X13 | M2.08X3 | 2 | 22 | 0.1818 | 44 |
Polytype | d (Å) | qF (Å) | i | 1 dN (Å) | 2 N | 3 γF | 4c (Å) |
---|---|---|---|---|---|---|---|
57 | 1.90 | 11.4 | 2 | 22.7 | 12 | 0.1673 | 22.7 |
* 57 | 1.93 | 11.6 | 2 | 23.2 | 12 | 0.1664 | 23.2 |
* 57 | 1.98 | 11.9 | 2 | 23.8 | 12 | 0.1664 | 23.8 |
T 57 | 2.00 | 12.0 | 2 | 24.0 | 12 | 0.1667 | 24.0 |
5559 | 1.90 | 11.2 | 4 | 44.8 | 24 | 0.1696 | 44.8 |
5559 | 1.97 | 11.8 | 4 | 47.2 | 24 | 0.1669 | 47.2 |
* 5559 | 1.98 | 11.9 | 4 | 47.6 | 24 | 0.1664 | 47.6 |
T 5559 | 2.00 | 12.0 | 4 | 48.0 | 24 | 0.1667 | 48.0 |
557.559 | 1.90 | 11.4 | 6 | 68.4 | 36 | 0.1667 | 68.4 |
557.559 | 1.94 | 11.6 | 6 | 69.6 | 36 | 0.1672 | 69.6 |
557.559 | 1.96 | 11.8 | 6 | 70.8 | 36 | 0.1661 | 70.8 |
* 557.559 | 1.98 | 11.9 | 6 | 71.4 | 36 | 0.1664 | 71.4 |
T 557.559 | 2.00 | 12.0 | 6 | 72.0 | 36 | 0.1667 | 72.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cook, N.J.; Ciobanu, C.L.; Liu, W.; Slattery, A.; Wade, B.P.; Mills, S.J.; Stanley, C.J. Polytypism and Polysomatism in Mixed-Layer Chalcogenides: Characterization of PbBi4Te4S3 and Inferences for Ordered Phases in the Aleksite Series. Minerals 2019, 9, 628. https://doi.org/10.3390/min9100628
Cook NJ, Ciobanu CL, Liu W, Slattery A, Wade BP, Mills SJ, Stanley CJ. Polytypism and Polysomatism in Mixed-Layer Chalcogenides: Characterization of PbBi4Te4S3 and Inferences for Ordered Phases in the Aleksite Series. Minerals. 2019; 9(10):628. https://doi.org/10.3390/min9100628
Chicago/Turabian StyleCook, Nigel J., Cristiana L. Ciobanu, Wenyuan Liu, Ashley Slattery, Benjamin P. Wade, Stuart J. Mills, and Christopher J. Stanley. 2019. "Polytypism and Polysomatism in Mixed-Layer Chalcogenides: Characterization of PbBi4Te4S3 and Inferences for Ordered Phases in the Aleksite Series" Minerals 9, no. 10: 628. https://doi.org/10.3390/min9100628
APA StyleCook, N. J., Ciobanu, C. L., Liu, W., Slattery, A., Wade, B. P., Mills, S. J., & Stanley, C. J. (2019). Polytypism and Polysomatism in Mixed-Layer Chalcogenides: Characterization of PbBi4Te4S3 and Inferences for Ordered Phases in the Aleksite Series. Minerals, 9(10), 628. https://doi.org/10.3390/min9100628