Influence of pH on Molecular Hydrogen (H2) Generation and Reaction Rates during Serpentinization of Peridotite and Olivine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials
2.2. Hydrothermal Experiments
2.3. Analytical Methods
2.3.1. Gas Chromatography
2.3.2. X-ray Diffraction
2.3.3. Scanning Electron Microscope
2.3.4. Fourier Transform Infrared Spectroscopy
3. Results and Discussion
3.1. Identification of the Solid Experimental Products
3.2. Effect of Acidic and Alkaline Solutions on H2 Production
3.3. Effect of Acidic and Alkaline Solutions on the Kinetics of Serpentinization
3.4. Mechanisms of Serpentinization Reactions
3.5. Comparison with Previous Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kelley, D.S.; Karson, J.A.; Blackman, D.K.; Früh-Green, G.L.; Butterfield, D.A.; Lilley, M.D.; Olson, E.J.; Schrenk, M.O.; Roe, K.K.; Lebon, G.T.; et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 °N. Nature 2001, 412, 145–149. [Google Scholar] [CrossRef]
- Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Jean-Baptiste, P.; Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem. Geol. 2002, 191, 345–359. [Google Scholar] [CrossRef]
- Schrenk, M.O.; Brazelton, W.J.; Lang, S.Q. Serpentinization, carbon, and deep life. Rev. Miner. Geochem. 2013, 75, 575–606. [Google Scholar] [CrossRef]
- Komiya, T.; Maruyama, S.; Hirata, T.; Yurimoto, H.; Nohda, S. Geochemistry of the oldest MORB and OIB in the Isua Supracrustal Belt, southern West Greenland: Implications for the composition and temperature of early Archean upper mantle. Isl. ARC 2004, 13, 47–72. [Google Scholar] [CrossRef]
- Peacock, S.M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 2001, 29, 299–302. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Peacock, S.M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 2003, 212, 417–432. [Google Scholar] [CrossRef]
- Hirth, G.; Guillot, S. Rheology and tectonic significance of serpentinite. Elements 2013, 9, 107–113. [Google Scholar] [CrossRef]
- Escartín, J.; Hirth, G.; Evans, B. Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. Earth Planet. Sci. Lett. 1997, 151, 181–189. [Google Scholar] [CrossRef]
- Escartín, J.; Hirth, G.; Evans, B. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology 2001, 29, 1023–1026. [Google Scholar] [CrossRef]
- Hattori, K.H.; Guillot, S. Volcanic fronts as a consequence of serpentinites dehydration in the fore-arc mantle wedge. Geology 2003, 31, 525–528. [Google Scholar] [CrossRef]
- Scambelluri, M.; Rampone, E.; Piccardo, G.B. Serpentinite: A trace-element study of the Erro-Tobbio high-pressure ultramafites (Western Alps, NW Italy). J. Petrol. 2001, 42, 55–67. [Google Scholar] [CrossRef]
- Scambelluri, M.; Fiebig, J.; Malaspina, N.; Müntener, O.; Pettke, T. Serpentinite subduction: Implications for fluid processes and trace-element recycling. Int. Geol. Rev. 2004, 46, 595–613. [Google Scholar] [CrossRef]
- Guillot, S.; Hattori, K. Serpentinites: Essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 2013, 9, 95–98. [Google Scholar] [CrossRef]
- Ulmer, P.; Trommsdorff, V. Serpentine stability to mantle depths and subduction-related magmatism. Science 1995, 268, 858–861. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Poli, S. Experimentally based water budgets for hydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 1998, 163, 361–379. [Google Scholar] [CrossRef]
- Martin, B.; Fyfe, W.S. Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chem. Geol. 1970, 6, 185–202. [Google Scholar] [CrossRef]
- Wegner, W.W.; Ernst, W.G. Experimentally determined hydration and dehydration reaction rates in the system MgO-SiO2-H2O. Am. J. Sci. 1983, 283, 151–180. [Google Scholar]
- Lafay, R.; Montes-Hernandez, G.; Janots, E.; Chiriac, R.; Findling, N.; Toche, F. Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions. J. Cryst. Growth 2012, 347, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Lafay, R.; Montes-Hernandez, G.; Janots, E.; Chiriac, R.; Findling, N.; Toche, F. Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinity. Chem. Geol. 2014, 368, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Malvoisin, B.; Brunet, F.; Carlut, J.; Rouméjon, S.; Cannat, M. Serpentinization of oceanic peridotites: 2. Kinetics and progresses of San Carlos olivine hydrothermal alteration. J. Geophys. Res. 2012, 117, B04102. [Google Scholar] [CrossRef]
- McCollom, T.M.; Frieder, K.; Robbins, M.; Moskowitz, B.; Berquó, T.S.; Jöns, N.; Bach, W.; Templeton, A. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochim. Cosmochim. Acta 2016, 181, 175–200. [Google Scholar] [CrossRef] [Green Version]
- Lamadrid, H.M.; Rimstidt, J.D.; Schwarzenbach, E.M.; Klein, F.; Ulrich, S.; Dolocan, A.; Bodnar, R.J. Effect of water activity on rates of serpentinization of olivine. Nat. Commun. 2017, 8, 16107. [Google Scholar] [CrossRef]
- Huang, R.F.; Song, M.; Ding, X.; Zhu, S.; Zhan, W.; Sun, W. Influence of pyroxene and spinel on the kinetics of peridotite serpentinization. J. Geophys. Res. Solid Earth 2017, 122, 7111–7126. [Google Scholar] [CrossRef]
- Pens, M.; Andreani, M.; Daniel, I.; Perrillat, J.-P.; Cardon, H. Contrasted effect of aluminum on the serpentinization rate of olivine and orthopyroxene under hydrothermal conditions. Chem. Geol. 2016, 441, 256–264. [Google Scholar] [CrossRef]
- Charlou, J.L.; Donval, J.P.; Douville, E.; Jean-Baptiste, P.; Radford-Knoery, J.; Fouquet, Y.; Dapoigny, A.; Stievenard, M. Compared geochemical signatures and the evolution of Menez Gwen (37°50’N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chem. Geol. 2000, 171, 49–75. [Google Scholar] [CrossRef]
- Chen, D.G.; Li, B.X.; Zhi, X.C. Genetic geochemistry of mantle-derived peridotite xenolith from Panshishan, Jiangsu. Geochimica 1994, 23, 13–24. [Google Scholar]
- Sun, W.D.; Peng, Z.C.; Zhi, X.C.; Chen, D.G.; Wang, Z.R.; Zhou, X.H. Osmium isotope determination on mantle-derived peridotite xenoliths from Panshishan with N-TIMS. Chin. Sci. Bull. 1998, 43, 573–575. [Google Scholar] [CrossRef]
- Xu, X.S.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N.J.; Geng, H.Y.; Zheng, J.P. Re-Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle. Lithos 2008, 102, 43–64. [Google Scholar] [CrossRef]
- Huang, R.F.; Sun, W.D.; Ding, X.; Wang, Y.R.; Zhan, W.H. Experimental investigation of iron mobility during serpentinization. Acta Petrol. Sin. 2015, 31, 883–890. [Google Scholar]
- Huang, R.F.; Lin, C.T.; Sun, W.D.; Ding, X.; Zhan, W.H.; Zhu, J.H. The production of iron oxide during peridotite serpentinization: Influence of pyroxene. Geosci. Front. 2017, 8, 1311–1321. [Google Scholar] [CrossRef]
- Moody, J.B. An experimental study on the serpentinization of iron-bearing olivines. Can. Miner. 1976, 14, 462–478. [Google Scholar]
- Pan, C.C.; Yu, L.P.; Liu, J.Z.; Fu, J.M. Chemical and carbon isotopic fractionations of gaseous hydrocarbons during abiogenic oxidation. Earth Planet. Sci. Lett. 2006, 246, 70–89. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Geng, A.S.; Wang, Y.P.; Liu, D.H.; Jia, R.F.; Shen, J.G.; Xiao, X.M. Kinetic simulating experiment on the secondary hydrocarbon generation of kerogen. Sci. China (Ser. D) 2002, 45, 13–20. [Google Scholar] [CrossRef]
- Fuchs, Y.; Linares, J.; Mellini, M. Mössbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Phys. Chem. Miner. 1998, 26, 111–115. [Google Scholar] [CrossRef]
- Liu, X.W.; Liu, X.X.; Hu, Y.H. Investigation of the thermal decomposition of talc. Clay. Clay Miner. 2014, 62, 137–144. [Google Scholar] [CrossRef]
- McCollom, T.M.; Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 2009, 73, 856–875. [Google Scholar] [CrossRef]
- Bach, W.; Paulick, H.; Garrido, C.J.; Ildefonse, B.; Meurer, W.P.; Humphris, S.E. Unraveling the sequence of serpentinization reactions: Petrology, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 2006, 33, L13306. [Google Scholar] [CrossRef]
- Beard, J.S.; Frost, B.R.; Fryer, P.; McCaig, A.; Searle, R.; Ildefonse, B.; Zinin, P.; Sharma, S.K. Onset and progression of serpentinization and magnetite formation in olivine-rich troctolite from IODP Hole U1309D. J. Petrol. 2009, 50, 387–403. [Google Scholar] [CrossRef]
- Frost, B.R.; Beard, J.S. On silica activity and serpentinization. J. Petrol. 2007, 48, 1351–1368. [Google Scholar] [CrossRef]
- Klein, F.; Bach, W.; Humphris, S.E.; Kahl, W.A.; Jöns, N.; Moskowitz, B.; Berquó, T.S. Magnetite in seafloor serpentinite—Some like it hot. Geology 2014, 42, 135–138. [Google Scholar] [CrossRef]
- Allen, D.E.; Seyfried, W.E., Jr. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400 °C, 500 bars. Geochim. Cosmochim. Acta 2003, 67, 1531–1542. [Google Scholar] [CrossRef]
- Seyfried, W.E., Jr.; Foustoukos, D.I.; Fu, Q. Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at mid-ocean ridges. Geochim. Cosmochim. Acta 2007, 71, 3872–3886. [Google Scholar] [CrossRef]
- Seyfried, W.E., Jr.; Pester, N.J.; Ding, K.; Rough, M. Vent fluid chemistry of the Rainbow hydrothermal system (36 °N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes. Geochim. Cosmochim. Acta 2011, 75, 1574–1593. [Google Scholar] [CrossRef]
- Foresti, E.; Gazzano, M.; Gualtieri, A.F.; Lesci, I.G.; Lunelli, B.; Pecchini, G.; Renna, E.; Roveri, N. Determination of low levels of free fibres of chrysotile in contaminated soils by X-ray diffraction and FTIR spectroscopy. Anal. Bioanal. Chem. 2003, 376, 653–658. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Velbel, M.A. Dissolution of olivine during natural weathering. Geochim. Cosmochim. Acta 2009, 73, 6098–6113. [Google Scholar] [CrossRef]
- Chen, Y.; Brantley, S.L. Dissolution of forsteritic olivine at 65 °C and 2 < pH < 5. Chem. Geol. 2000, 165, 267–281. [Google Scholar]
- Pokrovsky, O.S.; Schott, J. Kinetics and mechanism of forsterite dissolution at 25 °C and pH from 1 to 12. Geochim. Cosmochim. Acta 2000, 64, 3313–3325. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhang, X.T.; Guy, B.; Hu, S.M.; Ligny, D.D.; Moutte, J. Experimental study of dissolution rates of hedenbergitic clinopyroxene at high temperatures: Dissolution in water from 25 °C and 374 °C. Eur. J. Miner. 2013, 25, 353–372. [Google Scholar] [CrossRef]
- Marcaillou, C.; Muñoz, M.; Vidal, O.; Parra, T.; Harfouche, M. Mineralogical evidence for H2 degassing during serpentinization at 300 °C/300 bar. Earth Planet. Sci. Lett. 2011, 303, 281–290. [Google Scholar] [CrossRef]
- Dungan, M.A. A microprobe study of antigorite and some serpentine pseudomorphs. Can. Miner. 1979, 17, 771–784. [Google Scholar]
- McLelland, J.; Morrison, J.; Selleck, B.; Cunningham, B.; Olson, C.; Schmidt, K. Hydrothermal alteration of late- to post-tectonic Lyon Mountain granitic gneiss, Adirondack Mountains, New York: Origin of quartz-sillimanite segragations, quartz-albite lithologies, and associated Kiruna-type low-Ti Fe-oxide deposits. J. Metamorph. Geol. 2002, 20, 175–190. [Google Scholar] [CrossRef]
- Sepahi, A.A.; Whitney, D.L.; Baharifar, A.A. Petrogenesis of andalusite-kyanite-sillimanite veins and host rocks, Sanandaj-Sir-jan metamorphic belt, Hamadan, Iran. J. Metamorph. Geol. 2004, 22, 119–134. [Google Scholar] [CrossRef]
- Douville, E.; Charlou, J.L.; Oelkers, E.H.; Bienvenu, P.; Jove Colon, C.F.; Donval, J.P.; Fouquet, Y.; Prieur, D.; Appriou, P. The rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 2002, 184, 37–48. [Google Scholar] [CrossRef]
- Andreani, M.; Daniel, I.; Pollet-Villard, M. Aluminum speeds up the hydrothermal alteration of olivine. Am. Miner. 2013, 98, 1738–1744. [Google Scholar] [CrossRef]
- Oufi, O.; Cannat, M.; Horen, H. Magnetic properties of variably serpentinized abyssal peridotites. J. Geophys. Res. 2002, 107, 2095. [Google Scholar] [CrossRef]
- Jones, L.C.; Rosenbauer, R.; Goldsmith, J.I.; Oze, C. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts. Geophys. Res. Lett. 2010, 37, L14306. [Google Scholar] [CrossRef]
- Allen, D.E.; Seyfried, W.E., Jr. Serpentinization and heat generation: Constraints from Lost City and Rainbow hydrothermal systems. Geochim. Cosmochim. Acta 2004, 68, 1347–1354. [Google Scholar] [CrossRef]
- Berndt, M.E.; Allen, D.E.; Seyfried, W.E., Jr. Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 1996, 24, 351–354. [Google Scholar] [CrossRef]
- Schmidt, K.; Koschinsky, A.; Garbe-Schönberg, D.; de Carvalho, L.M.; Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15 °N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chem. Geol. 2007, 242, 1–21. [Google Scholar] [CrossRef]
Sample | T(°C) | P (kbar) | Solid Reactant a | Starting Solution b | W/R Ratios d | Time (days) | Srp (%) e | Tlc (%) | Ol (%) | Py (%) | H2 (mmol/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|
H-2 | 300 | 3.20 | Prt | 0.05 M HCl | 0.97 | 14 | 96(2.0) | - | 2.5(2.0) | 0.0 | 98 |
H-3 | 300 | 3.20 | Prt | 2 M HCl | 0.98 | 30 | 19(1.0) | 44(2.2) | 34(1.0) | 3.0(2.0) | 1.9 |
H-4 | 300 | 3.40 | Ol | 2 M HCl | 0.93 | 16 | 81(4.6) | - | 19(4.6) | - | 89 |
H-5 | 300 | 3.80 | Prt | NaOH | 0.97 | 31 | 84(1.7) | - | 9.4(0.7) | 4.6(0.7) | 162 |
H-6 | 300 | 3.45 | Prt | NaOH | 0.98 | 8 | 77(1.9) | - | 12(0.8) | 9.0(0.8) | 244 |
H-7 | 300 | 2.30 | Prt | NaCl c | 0.89 | 27 | 88(3.0) | - | 9.4(1.2) | 2.6(4.2) | 181 |
H-8 | 300 | 3.20 | Prt | 0.05 M HCl | 0.96 | 14 | 92(3.2) | - | 6.1(1.4) | 0.0 | 161 |
H-9 | 300 | 2.79 | Ol | 2 M HCl | 0.91 | 26 | 80(1.7) | - | 20(1.7) | - | 146 |
H-10 | 300 | 2.80 | Prt | 2 M HCl | 0.97 | 26 | 15(2.2) | 33(5.0) | 37(2.0) | 15.6(4.5) | 3.8 |
H-11 | 300 | 3.00 | Prt | 0.05 M HCl | 1.04 | 27 | 98(2.8) | - | 2.7(2.2) | 0.0(5.0) | 124 |
H-12 | 300 | 2.50 | Prt | 2 M HCl | 0.92 | 20 | 12(1.2) | 26(2.6) | 40(2.2) | 22(6.0) | 3.0 |
H-13 | 300 | 3.27 | Prt | 0.05 M HCl | 0.99 | 8 | 83(1.7) | - | 10(0.3) | 5.0(0.3) | 133 |
H-16 | 300 | 3.00 | Ol | NaCl | 1.00 | 13 | 72(6.3) | - | 28(6.0) | - | 80 |
Solid Reactants | Starting Solutions | ξmax (%) | t1/2 (days) | Initial Rate (s−1) | Fitting R2 | |
---|---|---|---|---|---|---|
Cal. | Exp. | |||||
Olivine | NaCl | 100 | 70 | 7.0 ± 1.1 | 1.65 × 10−6 ± 0.26 × 10−6 | 0.987 |
Olivine | 2 M HCl | 100 | 81 | 4.7 ± 0.7 | 2.46 × 10−6 ± 0.37 × 10−6 | 0.995 |
Peridotite | NaCl | 100 | 80 | 5.5 ± 0.1 | 2.10 × 10−6 ± 0.04 × 10−6 | 0.999 |
Peridotite | 0.05 M HCl | 100 | 98 | 1.2 ± 0.2 | 9.35 × 10−6 ± 1.7 × 10−6 | 0.995 |
Peridotite | NaOH | 100 | 84 | 2.8 ± 0.8 | 4.11 × 10−6 ± 1.1 × 10−6 | 0.984 |
Peridotite | 2 M HCl | 100 | 63 | 25.7 ± 1.0 | 4.50 × 10−7 ± 0.18 × 10−7 | 0.965 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Sun, W.; Song, M.; Ding, X. Influence of pH on Molecular Hydrogen (H2) Generation and Reaction Rates during Serpentinization of Peridotite and Olivine. Minerals 2019, 9, 661. https://doi.org/10.3390/min9110661
Huang R, Sun W, Song M, Ding X. Influence of pH on Molecular Hydrogen (H2) Generation and Reaction Rates during Serpentinization of Peridotite and Olivine. Minerals. 2019; 9(11):661. https://doi.org/10.3390/min9110661
Chicago/Turabian StyleHuang, Ruifang, Weidong Sun, Maoshuang Song, and Xing Ding. 2019. "Influence of pH on Molecular Hydrogen (H2) Generation and Reaction Rates during Serpentinization of Peridotite and Olivine" Minerals 9, no. 11: 661. https://doi.org/10.3390/min9110661
APA StyleHuang, R., Sun, W., Song, M., & Ding, X. (2019). Influence of pH on Molecular Hydrogen (H2) Generation and Reaction Rates during Serpentinization of Peridotite and Olivine. Minerals, 9(11), 661. https://doi.org/10.3390/min9110661