Geochemical Footprint of Megacities on River Sediments: A Case Study of the Fourth Most Populous Area in India, Chennai
Abstract
:1. Introduction
1.1. General Setting of the Studied Area
1.2. Description of the Studied Fluvial System
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. Analysis of Sediment
2.3. Assessment of Sediment Contamination
2.3.1. Calculation of Igeo for This Study
2.3.2. Geochemical Urban Footprint Index (GUFI)
- Range 1–10 | extremely low contamination |
- Range 10–25 | low contamination |
- Range 25–50 | moderate contamination |
- Range 50–75 | high contamination |
- Range 75–100 | very high contamination |
- Range >100 | extremely high contamination |
2.3.3. Sediment Quality Guidelines (SQGs)
3. Results and Discussion
3.1. Upstream–Downstream Trace Element Gradient in Urban Sediments
3.2. Identification of Suitable Urban Tracers
3.3. Assessment of a Global Urban Footprint and Identification of Possible Socioeconomic Drivers
3.4. Worldwide Comparative Analysis of Megacity Pollution Levels Using Sediment Quality Guidelines (SQGs)
- -
- Population range greater than 10 million
- -
- The presence of an urban river flowing within the megacity limits
- -
- Availability of data on trace element levels in the corresponding sediments
- -
- The first group refers to cities in Asia, the top six ranked cities: Mumbai (India), Dhaka (Bangladesh), Delhi (India), Ho Chi Minh City (Vietnam), Chennai (India), and Guangzhou (China). Similar levels of pollution can be observed in all of them due to rapid urban population growth and industrial growth. In terms of geochemical footprint, emerging cities that combine massive population growth and industrial activities have changed from traditional practices to modern economical activities. Chennai is the fifth most polluting megacity worldwide. It is on a par with the level of pollution of Ho Chi Minh City (Vietnam) and Guangzhou (China).
- -
- The second group of megacities is composed of Paris (France), Lagos (Nigeria), Tokyo-Yokohama (Japan), Seoul (Korea) and Kinshasa (DR Congo). These five cities have similar pollution levels. However, Nigeria and DR Congo are in developing countries, whereas France, Japan and Korea are developed. In upcoming decades, if such development in Nigeria and DR Congo continues, Lagos and Kinshasa may result in pollution levels of the first group. On the other hand, the Seine in Paris (France) showed greater pollution during the 1980s but with the introduction of strict regulations on water bodies’ pollution, its status has greatly improved. Similarly, in Tokyo-Yokohama (Japan) and Seoul (Korea), pollution levels must obey strict regulations.
- -
- In relation to the data for Jakarta (Indonesia), the sediment concentration seems too low considering that this megacity presents the second highest population in the world and the water quality of the river is very poor due to discharging of municipal waste [94]. So, the study [95] which provided the result for Ciliwung river sediments appears suspicious as the Pb concent in the Ciliwang river is <1 ppm. Normally, the mean continental crust is minimum 20 times higher than the result for the Ciliwung river.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giri, S.; Singh, A.K.; Tewary, B.K. Source and distribution of metals in bed sediments of Subarnarekha River, India. Environ. Earth Sci. 2013, 70, 3381–3392. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Mamun, M.H.-A.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Lyons, B.W.; Harmon, R.S. Why Urban Geochemistry? Elements 2012, 6, 417–422. [Google Scholar] [CrossRef]
- De Miguel, E.; Charlesworth, S.; Ordóñez, A.; Seijas, E. Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain). Sci. Total Environ. 2005, 340, 137–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafie, N.A.; Aris, A.Z.; Haris, H. Geoaccumulation and distribution of heavy metals in the urban river sediment. Int. J. Sediment Res. 2014, 29, 368–377. [Google Scholar] [CrossRef]
- Yoshimura, C.; Yamanaka, C.; Fujii, M.; Leungprasert, S.; Tanchuling, M.A.N. Heavy metals in suspended sediments in rivers flowing through megacities in southeast Asia. Asean Eng. J. 2014, 4, 63–72. [Google Scholar]
- Khadse, G.K.; Patni, P.M.; Kelkar, P.S.; Devotta, S. Qualitative evaluation of Kanhan river and its tributaries flowing over central Indian plateau. Environ. Monit. Assess. 2008, 147, 83–92. [Google Scholar] [CrossRef]
- Veerasingam, S.; Venkatachalapathy, R.; Ramkumar, T. Heavy metals and ecological risk assessment in marine sediments of Chennai, India. J. Earth Environ. Sci. 2012, 7, 111–124. [Google Scholar]
- Venugopal, T.; Giridharan, L.; Jayaprakash, M. Characterization and Risk Assessment Studies of Bed Sediments of River Adyar-An Application of Speciation Study. Int. J. Environ. Res. 2009, 3, 581–598. [Google Scholar]
- Walker, W.J.; McNutt, R.P.; Maslanka, C.K. The potential contribution of urban runoff to surface sediments of the Passaic River: Sources and chemical characteristics. Chemosphere 1999, 38, 363–377. [Google Scholar] [CrossRef]
- Macfarlane, G.R.; Burchett, M.D. Cellular distribution of Cu, Pb and Zn in the grey mangrove Avicennia marina (Frorsk). Vierh. Aquat. Bot. 2000, 68, 45–59. [Google Scholar] [CrossRef]
- Mourier, B.; Desmet, M.; Van Metre, P.C.; Mahler, B.J.; Perrodin, Y.; Roux, G.; Bedell, J.-P.; Lefèvre, I.; Babut, M. Historical records, sources, and spatial trends of PCBs along the Rhône River (France). Sci. Total Environ. 2014, 476, 568–576. [Google Scholar] [CrossRef]
- Purushothaman, P.; Chakrapani, G.J. Heavy Metals Fractionation in Ganga River Sediments, India Heavy Metals Fractionation in Ganga River. Environ. Monit. Assess. 2007, 132, 475–489. [Google Scholar] [CrossRef] [PubMed]
- Raju, K.V.; Somashekar, R.K.; Prakash, K.L. Heavy metal status of sediment in river Cauvery, Karnataka. Environ. Monit. Assess. 2012, 184, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Sheykhi, V.; Moore, F. Evaluation of potentially toxic metals pollution in the sediments of the Kor river, southwest Iran. Environ. Monit. Assess. 2013, 185, 3219–3232. [Google Scholar] [CrossRef] [PubMed]
- Van Metre, P.C.; Babut, M.; Mourier, B.; Mahler, B.J.; Roux, G.; Desmet, M. Declining Dioxin Concentrations in the Rhone River Basin, France, Attest to the Effectiveness of Emissions Controls. Environ. Sci. Technol. 2015, 49, 12723–12730. [Google Scholar] [CrossRef]
- Homady, M.; Hussein, H.; Jiries, A.; Mahasneh, A.; Al-Nasir, F.; Khleifat, K. Survey of Some Heavy Metals in Sediments from Vehicular Service Stations in Jordan and Their Effects on Social Aggression in Prepubertal Male Mice. Environ. Res. 2002, 89, 43–49. [Google Scholar] [CrossRef]
- Grosbois, C.; Courtin-Nomade, A.; Robin, E.; Bril, H.; Tamura, N.; Schafer, J.; Blanc, G. Fate of arsenic-bearing phases during the suspended transport in a gold mining district (Isle river Basin, France). Sci. Total Environ. 2011, 409, 4986–4999. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lin, C.; Cao, X. Heavy metals content and distribution in the surface sediments of the Guangzhou section of the Pearl River, Southern China. Environ. Earth Sci. 2011, 64, 1593–1605. [Google Scholar] [CrossRef]
- Xu, F.; Liu, Z.; Cao, Y.; Qiu, L.; Feng, J.; Xu, F.; Tian, X. Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China. Catena 2017, 150, 9–16. [Google Scholar] [CrossRef]
- Le Gall, M.; Ayrault, S.; Evrard, O.; Laceby, J.P.; Gateuille, D.; Lefevre, I.; Mouchel, J.M.; Meybeck, M. Investigating the metal contamination of sediment transported by the 2016 Seine River flood (Paris, France). Environ. Pollut. 2018, 240, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Le Pape, P.; Ayrault, S.; Quantin, C. Trace element behavior and partition versus urbanization gradient in an urban river (Orge River, France). J. Hydrol. 2012, 472–473, 99–110. [Google Scholar] [CrossRef]
- Grosbois, C.; Meybeck, M.; Horowitz, A.; Ficht, A. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994–2000). Sci. Total Environ. 2006, 356, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, A.J.; Meybeck, M.; Idlafkih, Z.; Biger, E. Variations in trace element geochemistry in the Seine River Basin based on floodplain deposits and bed sediments. Hydrol. Process. 1999, 13, 1329–1340. [Google Scholar] [CrossRef]
- Meybeck, M.; Horowitz, A.J.; Grosbois, C. The geochemistry of seine river basin particulate matter: Distrubition of an integrated metal pollution index. Sci. Total Environ. 2004, 328, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Ajibola, V.O.; Ladipo, M.K. Sediment Quality of Effluent Discharge Channels from Six Industrial Sites in Lagos, Nigeria. Int. J. Environ. Res. 2011, 5, 901–908. [Google Scholar]
- Mohiuddin, K.M.; Zakir, H.M.; Otomo, K.; Sharmin, S.; Shikazono, N. Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. Int. J. Environ. Sci. Technol. 2010, 7, 17–28. [Google Scholar] [CrossRef]
- Mohiuddin, K.M.; Ogawa, Y.; Zakir, H.M.; Otomo, K.; Shikazono, N. Heavy metals contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 2011, 8, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Muller, G.; Singh, I.B. Heavy metals in freshly deposited stream sediments of rivers associated with urbanization of the Ganga Plain, India. WaterAirSoil Pollut. 2002, 141, 35–54. [Google Scholar] [CrossRef]
- Singare, P.U.; Mishra, R.M.; Trivedi, M.P. Sediment Contamination Due to Toxic Heavy Metals in Mithi River of Mumbai. Adv. Anal. Chem. Sci. Acad. Publ. 2012, 2, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Singh, A.K. Bibliography of environmental studies in natural characteristics and anthropogenic influences on the Ganga River. Environ. Monit. Assess. 2007, 129, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Bonnail, E.; Antón-Martín, R.; Riba, I.; DelValls, T. Ángel Metal Distribution and Short-Time Variability in Recent Sediments from the Ganges River towards the Bay of Bengal (India). Geosciences 2019, 9, 260. [Google Scholar] [CrossRef]
- Hejabi, A.T.; Basavarajappa, H.T.; Karbassi, A.R.; Monavari, S.M.; Karbassi, A. Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environ. Monit. Assess. 2011, 182, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.K.; Singhal, D.C.; Sharma, M.K. Metal pollution assessment of sediment and water in the River Hindon, India. Environ. Monit. Assess. 2005, 105, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakesh, M.; Urban, B.; Velmurugan, P.M.; Srinivasalu, S. Accumulation of total trace metal due to rapid urbanization in microtidal zone of pallikaranai marsh, South of Chennai, India. Environ. Monit. Assess. 2010, 170, 609–629. [Google Scholar] [CrossRef]
- Lin, C.; He, M.; Liu, X.; Guo, W.; Liu, S. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China. Environ. Monit. Assess. 2013, 185, 4321–4332. [Google Scholar] [CrossRef]
- Singh, M. Heavy metal pollution in freshly deposited sediments of the Yamuna River (the Ganges River tributary): A case study from Delhi and Agra urban centres, India. Environ. Earth Sci. 2001, 40, 664–671. [Google Scholar] [CrossRef]
- Kaushik, A.; Kansal, A.; Shiv kumara, S.M.; Kaushik, C.P. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by metal enrichment factor of the sediments. J. Hazard. Mater. 2009, 164, 265–270. [Google Scholar] [CrossRef]
- Saravanan, S.P.; Ambujam, N.K.; Grosbois, C.; Saravanan, R.; Manikandabharath, K.; Rukkumany, R.H.; Desmet, M. Trace Element into a Fluvial Urban System in Chennai, India. Int. J. Ecol. Dev. 2019, 34, 38–46. [Google Scholar]
- Shanmugam, P.; Neelamanu, S.; Ahn, Y.-H.; Philip, L.; Hong, G.-H. Assessment of the levels of coastal marine pollution of Chennai city, Southern India. Water Resour. Manag. 2007, 21, 1187–1206. [Google Scholar] [CrossRef]
- Loring, D.H.; Rantala, R.T.T. Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Sci. Rev. 1992, 32, 35–283. [Google Scholar] [CrossRef]
- Perkey, H. Heavy metal pollution assessment in sediments of Izmit Bay, Turkey. Environ. Monit. Assess. 2006, 123, 219–231. [Google Scholar]
- Silva, J.D.; Srinivasalu, S.; Roy, P.D.; Jonathan, M.P. Environmental conditions inferred from multi-element concentrations in sediments off Cauvery delta, Southeast India. Environ. Earth Sci. 2013, 71, 2043–2058. [Google Scholar] [CrossRef]
- Adekola, F.A.; Eletta, O.A.; Atanda, S.A. Determination of the levels of some heavy metals in urban Run-off Sediments in llorin and Lagos, Nigeria. J. Appl. Sci. Environ. Manag. 2002, 6, 23–26. [Google Scholar]
- Chambers, L.G.; Chin, Y.-P.; Filippelli, G.M.; Gardner, C.B.; Herndon, E.M.; Long, D.T.; Lyons, W.B.; MacPherson, G.; McElmurry, S.P.; McLean, C.E.; et al. Developing the scientific framework for urban geochemistry. Appl. Geochem. 2016, 67, 1–20. [Google Scholar] [CrossRef]
- Howari, F.M.; Banat, K.M. Assessment of Fe, Zn, Cd, Hg, and Pb In The Jordan And Yarmouk River Sediments In Relation To Their Physicochemical Properties And Sequential Extraction Characterization. WaterAir Soil Pollut. 2001, 132, 43–59. [Google Scholar] [CrossRef]
- Lai, T.M.; Lee, W.; Hur, J.; Kim, Y.; Huh, I.-A.; Shin, H.-S.; Kim, C.-K.; Lee, J.-H. Influence of Sediment Grain Size and Land Use on the Distributions of Heavy Metals in Sediments of the Han River Basin in Korea and the Assessment of Anthropogenic Pollution. WaterAirSoil Pollut. 2013, 224, 1609. [Google Scholar] [CrossRef]
- Luoma, S.N.; Bryan, G.W. A statistical assessment of the trace metals in oxidized estuarine sediments employing chemical extractants. Sci. Total Environ. 1981, 17, 165–196. [Google Scholar] [CrossRef]
- Muller, G. Schwermetalle in den Sedimenten des Rheins Veranderungen seit. Umschau 1979, 24, 778–783. [Google Scholar]
- Olivares-Rieumont, S.; De La Rosa, D.; Lima, L.; Graham, D.W.; Alessandro, K.D.; Borroto, J.; Martínez, F.; Sánchez, J. Assessment of heavy metal levels in Almendares River sediments—Havana City, Cuba. Water Res. 2005, 39, 3945–3953. [Google Scholar] [CrossRef]
- Subramanian, V. Water Quality in South Asia. Asian J. Water Environ. Pollut. 2004, 1, 41–54. [Google Scholar]
- Taylor, K.G.; Owens, P.N. Sediments in urban river basins: A review of sediment–contaminant dynamics in an environmental system conditioned by human activities. J. Soils Sediments 2009, 9, 281–303. [Google Scholar] [CrossRef]
- Marshall, S.; Pettigrove, V.; Carew, M.; Hoffmann, A. Isolating the impact of sediment toxicity in urban streams. Environ. Pollut. 2010, 158, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Rath, P.; Panda, U.; Bhatta, D.; Sahu, K. Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—A case study: Brahmani and Nandira Rivers, India. J. Hazard. Mater. 2009, 163, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Szefer, P.; Szefer, K.; Glasby, G.; Pempkowiak, J.; Kaliszan, R. Heavy-metal pollution in surficial sediments from the Southern Baltic sea off Poland. J. Environ. Sci. Health. Part A Environ. Sci. Eng. Toxicol. 1996, 31, 2723–2754. [Google Scholar] [CrossRef]
- Akcay, H.; Oguz, A.; Karapire, C. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Res. 2003, 37, 813–822. [Google Scholar] [CrossRef]
- Cheung, K.; Poon, B.; Lan, C.; Wong, M. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 2003, 52, 1431–1440. [Google Scholar] [CrossRef]
- Connor, N.P.; Sarraino, S.; Frantz, D.E.; Bushaw-Newton, K.; MacAvoy, S.E. Geochemical characteristics of an urban river: Influences of an anthropogenic landscape. Appl. Geochem. 2014, 47, 209–216. [Google Scholar] [CrossRef]
- Sharma, S.K.; Subramanian, V.; Sharma, S.K. Source and distribution of trace metals and nutrients in Narmada and Tapti river basins, India. Environ. Earth Sci. 2010, 61, 1337–1352. [Google Scholar] [CrossRef]
- Government of India, Census of India. 2011. Available online: http://www.census2011.co.in (accessed on 1 December 2011).
- Demographia. Demographia World Urban Areas, 13th ed.; Demographia: Belleville, IL, USA, April 2017. [Google Scholar]
- Krishnamurthy, R.; Desouza, K.C. Chennai, India. Cities 2015, 42, 118–129. [Google Scholar] [CrossRef]
- Deepa, K.; Karthiga, A.; Rehana, K.; Rayen, V. Aquifer Mapping of Chennai city using GIS techniques. Imp. J. Interdiscip. Res. 2017, 3, 165–172. [Google Scholar]
- Seenirajan, M.; Natarajan, M.; Thangaraj, R.; Bagyaraj, M. Study and Analysis of Chennai Flood 2015 Using GIS and Multicriteria Technique. J. Geogr. Inf. Syst. 2017, 9, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakash, M.; Nagarajan, R.; Velmurugan, P.M.; Sathiyamoorthy, J.; Krishnamurthy, R.R.; Urban, B. Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India. Environ. Monit. Assess. 2012, 184, 7407–7424. [Google Scholar] [CrossRef] [PubMed]
- Gowri, V.S.; Ramachandran, S.; Ramesh, R.; Pramiladevi, R.R.; Krishnaveni, K. Application of GIS in the study of mass transport of pollutants by Adyar and Cooum rivers in Chennai, Tamilnadu. Environ. Monit. Assess. 2008, 138, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Achyuthan, H.; Thirunavukarasu, N. Quaternary stratigraphy of the Koratallaiyar-Cooum basin, Chennai. J. Geol. Soc. India 2009, 73, 683–696. [Google Scholar] [CrossRef]
- CNRS-SARM Laboratory, Nancy, France. Available online: http://helium.crpg.cnrs-nancy.fr/SARM (accessed on 5 April 2001).
- Dhivert, E.; Grosbois, C.; Rodrigues, S.; Desmet, M. Influence of fluvial environments on sediment archiving processes and temporal pollutant dynamics (Upper Loire River, France). Sci. Total Environ. 2015, 505, 121–136. [Google Scholar] [CrossRef]
- Dhivert, E.; Grosbois, C.; Coynel, A.; Lefèvre, I.; Desmet, M. Influences of major flood sediment inputs on sedimentary and geochemical signals archived in a reservoir core (Upper Loire Basin, France). Catena 2015, 126, 75–85. [Google Scholar] [CrossRef]
- Dhivert, E.; Grosbois, C.; Courtin-Nomade, A.; Bourrain, X.; Desmet, M. Dynamics of metallic contaminants at a basin scale—Spatial and temporal reconstruction from four sediment cores (Loire fluvial syatem, France). Sci. Total Environ. 2016, 541, 1504–1515. [Google Scholar] [CrossRef]
- Grosbois, C.; Meybeck, M.; Lestel, L.; Lefèvre, I.; Moatar, F. Severe and contrasted polymetallic contamination patterns (1900–2009) in the Loire River sediments (France). Sci. Total Environ. 2012, 435, 290–305. [Google Scholar] [CrossRef]
- Reimann, C.; De Caritat, P. Intrinsic Flaws of Element Enrichment Factors (EFs) in Environmental Geochemistry. Environ. Sci. Technol. 2000, 34, 5084–5091. [Google Scholar] [CrossRef]
- Franco-Uría, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geo J. 1969, 2, 108–118. [Google Scholar]
- Muller, G. Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: Eine Bestand sanfnahme. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Gassama, N.; Kasper, H.; Dia, A.; Cocirta, C.; Bouhnik-Lecoz, M. Discrimination between different water bodies from a multilayered aquifer (Kaluvely watershed, India): Trace element signature. Appl. Geochem. 2012, 27, 715–728. [Google Scholar] [CrossRef]
- Tomson, J.; Rao, Y.B.; Kumar, T.V.; Choudhary, A. Geochemistry and neodymium model ages of Precambrian charnockites, Southern Granulite Terrain, India: Constraints on terrain assembly. Precambrian Res. 2013, 227, 295–315. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D. Recommended Uses of Empirically Derived, Sediment Quality Guidelines for Marine and Estuarine Ecosystems. Hum. Ecol. Risk Assess. Int. J. 1998, 4, 1019–1039. [Google Scholar] [CrossRef]
- Long, E.R. Ranges in chemical concentrations in sediments associated with adverse biological effects. Mar. Pollut. Bull. 1992, 24, 38–45. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- MacDonald, D.D. Development of an Approach to the Assessment of Sediment Quality in Florida Coastal Waters; Macdonald Environmental Sciences, Ltd.: Ladysmith, BC, Canada; Florida Department of Environmental Regulation: Tallahassee, FL, USA, 1993; Volumes 1–2. [Google Scholar]
- Macdonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef]
- Helen, D.; Vaithyanathan, C.; Ramalingom pillai, A. Assessment of Heavy Metal Contamination and Sediment Quality of Thengapattinam Estuary in Kanyakumari District. Int. J. Chem. Phys. Sci. 2016, 5, 8–17. [Google Scholar]
- Hoda, H.H.; Ahdy Khaled, A. Heavy Metals Contamination in Sediments of the Western Part of Egyptian Mediterranean Sea. Aust. J. Basic Appl. Sci. 2009, 3, 3330–3336. [Google Scholar]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus based sediment quality guidelines for fresh water ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Sinha, S.; Rai, U.N. Bioremidition of Chromium from water and soil by vascular aquatic plants. Am. Chem. Soc. 1997, 664, 274–282. [Google Scholar]
- Ramesh kumar, A.; Riyazuddin, P. Chromium Speciation in groundwater of a tannery polluted area of Chennai City, India. Environ. Monit. Assess. 2010, 160, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Chennai Metropolitan Development Authority. Second Master Plan for Chennai Metropolitan Area, 2026. 2008. Available online: http://www.cmdachennai.gov.in/smp_main.html (accessed on 12 April 2008).
- Baud, I.S.; Pfeffer, K.; Sridharan, N.; Nainan, N. Matching deprivation mapping to urban governance in three Indian mega-cities. Habitat Int. 2009, 33, 365–377. [Google Scholar] [CrossRef]
- Mwanamoki, P.M.; Devarajan, N.; Niane, B.; Ngelinkoto, P.; Thevenon, F.; Nlandu, J.W.; Mpiana, P.T.; Prabakar, K.; Mubedi, J.I.; Kabele, C.G.; et al. Trace metal distributions in the sediments from river-reservoir systems: Case of the Congo River and Lake Ma Vallée, Kinshasa (Democratic Republic of Congo). Environ. Sci. Pollut. Res. 2014, 22, 586–597. [Google Scholar] [CrossRef]
- Huy, N.Q.; Luyen, T.V.; Phe, T.M.; Mai, N.V. Toxic elements and heavy metals in sediments in Tham Luong Canal, Ho Chi Minh City, Vietnam. Environ. Geol. 2003, 43, 836–841. [Google Scholar] [CrossRef]
- Palupi, K.; Sumengen, S.; Inswiasri, S.; Agustina, L.; Nunik, S.A.; Sunarya, W.; Quraisyn, A. River water quality study in the vicinity of Jakarta. Water Sci. Technol. 1995, 31, 17–25. [Google Scholar] [CrossRef]
- Yasuda, M.; Yustiawati; Syawal, M.S.; Sikder, M.T.; Hosokawa, T.; Saito, T.; Tanaka, S.; Kurasaki, M. Metal Concentrations of River Water and Sediments in West Java, Indonesia. Bull. Environ. Contam. Toxicol. 2011, 87, 669–673. [Google Scholar] [CrossRef] [Green Version]
Station | Kilometric Point (km) | Ag | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Al | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Adyar River | A1 | 0.0 | 0.1 | 3.1 | 0.2 | 141 | 68 | 0.0 | 66 | 22 | 115 | 93,100 |
A2 | 3.0 | 0.8 | 3.1 | 0.8 | 1517 | 237 | 0.1 | 67 | 55 | 1392 | 76,000 | |
A3 | 6.6 | 0.6 | 2.4 | 0.4 | 925 | 82 | 0.1 | 62 | 28 | 155 | 86,300 | |
A4 | 12.0 | 0.2 | 1.8 | 0.4 | 700 | 83 | 0.1 | 76 | 24 | 145 | 77,100 | |
A5 | 14.7 | 1.8 | 1.8 | 0.8 | 74 | 74 | 0.3 | 18 | 26 | 122 | 54,600 | |
A6 | 15.9 | 18.8 | 3.7 | 4.8 | 348 | 325 | 1.4 | 55 | 54 | 722 | 61,200 | |
A7 | 18.4 | 7.1 | 2.9 | 1.5 | 164 | 182 | 0.5 | 44 | 60 | 308 | 67,500 | |
A8 | 21.9 | 12.1 | 4.1 | 2.3 | 359 | 192 | 1.8 | 56 | 65 | 321 | 76,400 | |
A9 | 23.7 | 4.4 | 3.1 | 1.1 | 167 | 85 | 0.5 | 28 | 33 | 155 | 62,400 | |
Min. | - | 0.1 | 1.8 | 0.2 | 74 | 68 | 0.0 | 18 | 22 | 115 | 54,500 | |
Max. | - | 18.8 | 4.1 | 4.8 | 1517 | 325 | 1.8 | 76 | 65 | 1392 | 93,100 | |
Cooum River | C1 | 0.0 | 1.2 | 4.9 | 0.4 | 109 | 61 | 0.1 | 46 | 38 | 148 | 82,900 |
C2 | 4.1 | 9.3 | 3.8 | 1.1 | 185 | 188 | 0.1 | 46 | 340 | 381 | 80,400 | |
C3 | 9.2 | 2.6 | 4.5 | 0.9 | 123 | 86 | 5.7 | 44 | 52 | 203 | 81,300 | |
C4 | 12.8 | 17.7 | 3.9 | 9.9 | 113 | 179 | 3.7 | 42 | 79 | 517 | 73,800 | |
C5 | 14.6 | 22.4 | 4.3 | 16.2 | 119 | 254 | 1.7 | 47 | 71 | 586 | 70,400 | |
C6 | 15.8 | 31.0 | 3.7 | 17.4 | 105 | 223 | 6.6 | 39 | 84 | 595 | 71,900 | |
C7 | 17.4 | 16.1 | 3.5 | 7.3 | 95 | 155 | 4.3 | 36 | 58 | 382 | 73,500 | |
C8 | 19.8 | 15.4 | 4.0 | 10.1 | 104 | 173 | 1.5 | 36 | 71 | 471 | 71,800 | |
C9 | 23.5 | 9.0 | 10.8 | 7.8 | 226 | 302 | 1.8 | 49 | 145 | 402 | 77,300 | |
Min. | - | 1.2 | 3.5 | 0.4 | 95 | 61 | 0.1 | 36 | 38 | 148 | 70,400 | |
Max. | - | 31.0 | 10.8 | 17.4 | 226 | 302 | 6.6 | 49 | 340 | 595 | 82,900 | |
Tributary | CSC | - | 0.1 | 2.6 | 0.4 | 96 | 45 | 0.0 | 37 | 17 | 65 | 82,400 |
RP | - | 7.2 | 3.9 | 0.7 | 267 | 159 | 1.7 | 61 | 59 | 776 | 74,200 | |
BC | - | 9.7 | 3.0 | 0.9 | 226 | 336 | 1.8 | 56 | 75 | 457 | 63,800 | |
YMCA | - | 14.3 | 3.9 | 10.0 | 131 | 239 | 1.4 | 44 | 65 | 415 | 70,200 | |
NMR | - | 14.5 | 4.3 | 37.6 | 95 | 346 | 1.5 | 40 | 54 | 442 | 64,500 | |
GR | - | 5.9 | 4.4 | 0.5 | 93 | 104 | 1.0 | 36 | 59 | 358 | 70,700 | |
Min. | - | 0.1 | 2.6 | 0.4 | 93 | 45 | 0.0 | 36 | 17 | 65 | 63,800 | |
Max. | - | 14.5 | 4.4 | 37.6 | 267 | 346 | 1.8 | 61 | 75 | 776 | 82,400 |
Igeo Value–Class | Pollution Level of the River Sediments | Mean Value of Chennai Peri-Urban Area | Mean Value of Chennai Urban Area | ||
---|---|---|---|---|---|
Adyar River (A1–A4) | Cooum River (C1 and C2) | Adyar River (A5–A9) | Cooum River (C3–C9) | ||
0 (Igeo < 0) | Unpolluted | As, Hg | Hg | - | - |
1 (0 < Igeo < 1) | From Unpolluted to Moderately polluted | Pb | As, Ni | As, Ni, Pb | As, Ni |
2 (1 < Igeo < 2) | Moderately polluted | Ag, Cd, Ni, Zn | Cr, Zn | Cr, Zn | Cr, Pb |
3 (2 < Igeo < 3) | From Moderately polluted to Highly polluted | Cu | Cd, Cu, Pb | Cu | Zn |
4 (3 < Igeo < 4) | Highly polluted | Cr | - | Cd, Hg | Cu |
5 (4 < Igeo < 5) | From Highly polluted to Extremely polluted | - | - | - | - |
6 (Igeo > 5) | Extremely polluted | - | Ag | Ag | Ag, Cd, Hg |
GUFI Range | Level of Contamination | Adyar River | Cooum River | Urban Drain |
---|---|---|---|---|
1–10 | Extremely Low Contamination | A1, A2, A3, A4 | C1, C2 | CSC |
10–25 | Low Contamination | A5 | C8, C9 | - |
25–50 | Moderate Contamination | A7, A9 | C3, C4, C5, C7 | RP, BC, GR |
50–75 | High Contamination | - | C6 | YMCA |
75–100 | Very High Contamination | A8 | - | - |
>100 | Extremely High Contamination | A6 | - | NMR |
Name of the Megacity | World Population Rank (April 2017) | Population (millions) | Population Density (/km2) | Name of the River | Trace Element (mg/kg) | References | Megacity Pollution Rank * | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Zn | Cr | Cu | Pb | Ni | |||||||
SQGs for TEC level | 121 | 43 | 32 | 36 | 23 | [87] | |||||
SQGs for PEC level | 459 | 111 | 149 | 128 | 49 | [87] | |||||
Tokyo-Yokohama, Japan | 1 | 37.900 | 4400 | Tsurumi river | 381 | 103 | 133 | 41 | 37 | [27] | 9 |
Jakarta, Indonesia | 2 | 31.760 | 9600 | Ciliwung river | 10 | - | 2.8 | 0.8 | - | [95] | 12 |
Delhi, India | 3 | 26.495 | 12,000 | Yamuna river | 561 | 394 | 275 | 76 | 159 | [37] | 3 |
Seoul, Korea | 5 | 24.105 | 8800 | Han river | 225 | 84 | 55 | 45 | 34 | [47] | 10 |
Mumbai, India | 8 | 22.885 | 26,000 | Mithi river | - | 477 | - | 849 | 860 | [30] | 1 |
Guangzhou, China | 13 | 19.075 | 5000 | Pearl river | 388 | 97 | 352 | 103 | - | [19] | 6 |
Dhaka, Bangladesh | 15 | 16.820 | 45,700 | Buriganga river | 836 | 610 | 232 | 476 | 125 | [28] | 2 |
Lagos, Nigeria | 24 | 13.360 | 9400 | Discharge canal | 319 | 157 | 68 | 130 | 48 | [26] | 8 |
Kinshasa, DR Congo | 28 | 11.855 | 20,300 | Congo river | 50 | 59 | 24 | 9.3 | 58 | [92] | 11 |
Paris, France | 31 | 10.950 | 3700 | Seine river | 231 | - | 56 | 169 | - | [23] | 7 |
Ho Chi Minh City, Vietnam | 35 | 10.380 | 6600 | Tham Luong canal | 719 | 256 | - | 55 | - | [2] | 4 |
Chennai, India | 36 | 10.265 | 9900 | Adyar river | 381 | 488 | 147 | 41 | 52 | Present Study | 5 |
Chennai, India | 36 | 10.265 | 9900 | Cooum river | 409 | 131 | 180 | 104 | 43 | Present Study | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravanan, S.P.; Desmet, M.; Neelakanta Pillai Kanniperumal, A.; Ramasamy, S.; Shumskikh, N.; Grosbois, C. Geochemical Footprint of Megacities on River Sediments: A Case Study of the Fourth Most Populous Area in India, Chennai. Minerals 2019, 9, 688. https://doi.org/10.3390/min9110688
Saravanan SP, Desmet M, Neelakanta Pillai Kanniperumal A, Ramasamy S, Shumskikh N, Grosbois C. Geochemical Footprint of Megacities on River Sediments: A Case Study of the Fourth Most Populous Area in India, Chennai. Minerals. 2019; 9(11):688. https://doi.org/10.3390/min9110688
Chicago/Turabian StyleSaravanan, Sukkampatti Palanisamy, Marc Desmet, Ambujam Neelakanta Pillai Kanniperumal, Saravanan Ramasamy, Nikita Shumskikh, and Cécile Grosbois. 2019. "Geochemical Footprint of Megacities on River Sediments: A Case Study of the Fourth Most Populous Area in India, Chennai" Minerals 9, no. 11: 688. https://doi.org/10.3390/min9110688
APA StyleSaravanan, S. P., Desmet, M., Neelakanta Pillai Kanniperumal, A., Ramasamy, S., Shumskikh, N., & Grosbois, C. (2019). Geochemical Footprint of Megacities on River Sediments: A Case Study of the Fourth Most Populous Area in India, Chennai. Minerals, 9(11), 688. https://doi.org/10.3390/min9110688