Hydrogen Effect on the Sound Velocities of Upper Mantle Omphacite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jacobsen, S.D. Effect of Water on the Equation of State of Nominally Anhydrous Minerals. In Water in Nominally Anhydrous Minerals; Walter de Gruyter GmbH: Berlin, Germany, 2018; pp. 321–342. [Google Scholar] [CrossRef]
- Liu, L.; Du, J.; Zhao, J.; Liu, H.; Gao, H.; Chen, Y. Elastic Properties of Hydrous Forsterites under High Pressure: First-Principle Calculations. Phys. Earth Planet. Inter. 2009, 176, 89–97. [Google Scholar] [CrossRef]
- Karato, S.I. Mapping Water Content in the Upper Mantle. In Geophysical Monograph Series; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2004; Volume 138, pp. 135–152. [Google Scholar] [CrossRef]
- Thompson, A.B. Water in the Earth’s Upper Mantle. Nature 1992, 358, 295–302. [Google Scholar] [CrossRef]
- Katayama, I.; Nakashima, S.; Yurimoto, H. Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle. Lithos 2006, 86, 245–259. [Google Scholar] [CrossRef]
- Ohtani, E.; Litasov, K.; Hosoya, T.; Kubo, T.; Kondo, T. Water Transport into the Deep Mantle and Formation of a Hydrous Transition Zone. Phys. Earth Planet. Inter. 2004, 143, 255–269. [Google Scholar] [CrossRef]
- Skogby, H. Water in Natural Mantle Minerals I: Pyroxenes. Rev. Mineral. Geochem. 2006, 62, 155–167. [Google Scholar] [CrossRef]
- Xia, Q.K.; Liu, J.; Kovács, I.; Hao, Y.T.; Li, P.; Yang, X.Z.; Chen, H.; Sheng, Y.M. Water in the Upper Mantle and Deep Crust of Eastern China: Concentration, Distribution and Implications. Natl. Sci. Rev. 2019, 6, 125–144. [Google Scholar] [CrossRef]
- Rapp, R.P.; Irifune, T.; Shimizu, N.; Nishiyama, N.; Norman, M.D.; Inoue, T. Subduction Recycling of Continental Sediments and the Origin of Geochemically Enriched Reservoirs in the Deep Mantle. Earth Planet. Sci. Lett. 2008, 271, 14–23. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.S. Differential Contraction of Subducted Lithosphere Layers Generates Deep Earthquakes. Earth Planet. Sci. Lett. 2015, 421, 98–106. [Google Scholar] [CrossRef]
- Irifune, T.; Sekine, T.; Ringwood, A.E.; Hibberson, W.O. The Eclogite–Garnetite Transformations at High Pressure and Some Geophysical Implications.Pdf. Earth Planet. Sci. Lett. 1986, 77, 245–256. [Google Scholar] [CrossRef]
- Gavrilenko, P. Water Solubility in Diopside. Ph.D. Thesis, Bayerisches Geoinstitut, University Bayreuth, Bayreuth, Germany, 2008; p. 139. [Google Scholar]
- Smyth, J.R.; Bell, D.R.; Rossman, G.R. Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 1991, 351, 732–735. [Google Scholar] [CrossRef]
- Wen, S.; Zhendong, Y.; Bolin, C.; Kai, Y. Role of Water in Deformed Omphacite in UHP Eclogite from the Dabie Mountains, Eastern China. Acta Geol. Sin. Engl. Ed. 2003, 77, 320–325. [Google Scholar] [CrossRef]
- Weis, F.A.; Ros, L.; Reichart, P.; Skogby, H.; Kristiansson, P.; Dollinger, G. Hydrogen Concentration Analysis in Clinopyroxene Using Proton–Proton Scattering Analysis. Phys. Chem. Miner. 2018, 45, 669–678. [Google Scholar] [CrossRef]
- Weis, F.A.; Skogby, H.; Troll, V.R.; Deegan, F.M.; Dahren, B. Magmatic Water Contents Determined through Clinopyroxene: Examples from the Western Canary Islands, Spain. Geochem. Geophys. Geosys. 2015, 16, 2127–2146. [Google Scholar] [CrossRef]
- Warren, J.M.; Hauri, E.H. Pyroxenes as Tracers of Mantle Water Variations. J. Geophys. Res. Solid Earth 2014, 119, 1851–1881. [Google Scholar] [CrossRef]
- Bromiley, G.D.; Keppler, H. An Experimental Investigation of Hydroxyl Solubility in Jadeite and Na-Rich Clinopyroxenes. Contrib. Mineral. Petrol. 2004, 147, 189–200. [Google Scholar] [CrossRef]
- Ghosh, S.; Ohtani, E.; Litasov, K.D.; Suzuki, A.; Dobson, D.; Funakoshi, K. Effect of Water in Depleted Mantle on Post-Spinel Transition and Implication for 660 km Seismic Discontinuity. Earth Planet. Sci. Lett. 2013, 371–372, 103–111. [Google Scholar] [CrossRef]
- Ghosh, S.; Ohtani, E.; Litasov, K.D.; Suzuki, A.; Dobson, D.; Funakoshi, K. Corrigendum to “Effect of Water in Depleted Mantle on Post-Spinel Transition and Implication for 660 Km Seismic Discontinuity” [Earth Planet. Sci. Lett. 371–372 (2013) 103–111]. Earth Planet. Sci. Lett. 2013, 382, 85–86. [Google Scholar] [CrossRef]
- Jacobsen, S.D.; Jiang, F.; Mao, Z.; Duffy, T.S.; Smyth, J.R.; Holl, C.M.; Frost, D.J. Effects of Hydration on the Elastic Properties of Olivine. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Mao, Z.; Jacobsen, S.D.; Jiang, F.; Smyth, J.R.; Holl, C.M.; Duffy, T.S. Elasticity of Hydrous Wadsleyite to 12 GPa: Implications for Earth’s Transition Zone. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Mao, Z.; Lin, J.F.; Jacobsen, S.D.; Duffy, T.S.; Chang, Y.Y.; Smyth, J.R.; Frost, D.J.; Hauri, E.H.; Prakapenka, V.B. Sound Velocities of Hydrous Ringwoodite to 16GPa and 673K. Earth Planet. Sci. Lett. 2012, 331–332, 112–119. [Google Scholar] [CrossRef]
- Wang, W.; Walter, M.J.; Peng, Y.; Redfern, S.; Wu, Z. Constraining Olivine Abundance and Water Content of the Mantle at the 410-Km Discontinuity from the Elasticity of Olivine and Wadsleyite. Earth Planet. Sci. Lett. 2019, 519, 1–11. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, D.; Fan, D.; Zhang, J.S.; Hu, Y.; Guo, X.; Dera, P.; Zhou, W. Phase Transitions in Orthoenstatite and Subduction Zone Dynamics: Effects of Water and Transition Metal Ions. J. Geophys. Res. Solid Earth 2018, 123, 2723–2737. [Google Scholar] [CrossRef]
- Angel, R.J.; Nimis, P.; Mazzucchelli, M.L.; Alvaro, M.; Nestola, F. How Large Are Departures from Lithostatic Pressure? Constraints from Host–Inclusion Elasticity. J. Metamorph. Geol. 2015, 33, 801–813. [Google Scholar] [CrossRef]
- Angel, R.J.; Mazzucchelli, M.L.; Alvaro, M.; Nestola, F. EosFit-Pinc: A Simple GUI for Host-Inclusion Elastic Thermobarometry. Am. Mineral. 2019, 102, 1957–1960. [Google Scholar] [CrossRef]
- Maxisch, T.; Ceder, G. Elastic Properties of Olivine Lix FePO4 from First Principles. Phys. Rev. B-Condens. Matter Mater. Phys. 2006, 73, 174112. [Google Scholar] [CrossRef]
- Sinogeikin, S.V.; Katsura, T.; Bass, J.D. Sound Velocities and Elastic Properties of Fe-Bearing Wadsleyite and Ringwoodite. J. Geophys. Res. Solid Earth 1998, 103, 20819–20825. [Google Scholar] [CrossRef]
- Inoue, T.; Weidner, D.J.; Northrup, P.A.; Parise, J.B. Elastic Properties of Hydrous Ringwoodite (γ-Phase) in Mg2SiO4. Earth Planet. Sci. Lett. 1998, 160, 107–113. [Google Scholar] [CrossRef]
- Zhang, D.; Dera, P.K.; Eng, P.J.; Stubbs, J.E.; Zhang, J.S.; Prakapenka, V.B.; Rivers, M.L. High Pressure Single Crystal Diffraction at PX^2. J. Vis. Exp. 2017, 119, e54660. [Google Scholar] [CrossRef]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A Program for Reduction of Two-Dimensional X-Ray Diffraction Data and Data Exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Zhang, J.S.; Bass, J.D.; Taniguchi, T.; Goncharov, A.F.; Chang, Y.Y.; Jacobsen, S.D. Elasticity of Cubic Boron Nitride under Ambient Conditions. J. Appl. Phys. 2011, 109, 063521. [Google Scholar] [CrossRef]
- Zhang, J.S.; Bass, J.D.; Zhu, G. Single-Crystal Brillouin Spectroscopy with CO2 Laser Heating and Variable Q. Rev. Sci. Instrum. 2015, 86, 063905. [Google Scholar] [CrossRef] [PubMed]
- Oberti, R.; Caporuscio, F.A. Crystal chemistry of clinopyroxenes from mantle eclogites: A study of the key role of the M2 site population by means of crystal-structure refinement. Am. Mineral. 1991, 76, 1141–1152. [Google Scholar]
- Fleet, M.E.; Henznrnc, C.T.; Bancroft, G.M.; Aldridge, L.P. Omphacite Studies, I. The P2ln-C2 /c Transformation. Am. Mineral. 1978, 63, 1100–1106. [Google Scholar]
- Hao, M.; Zhang, J.S.; Pierotti, C.E.; Ren, Z.; Zhang, D. High-Pressure Single-Crystal Elasticity and Thermal Equation of State of Omphacite and Their Implications for the Seismic Properties of Eclogite in the Earth’s Interior. J. Geophys. Res. Solid Earth 2019, 124, 2368–2377. [Google Scholar] [CrossRef]
- Hill, R. Elastic Properties of Reinforced Solids: Some Theoretical Principles. J. Mech. Phys. Solids 1963, 5, 357–372. [Google Scholar] [CrossRef]
- Sang, L.; Vanpeteghem, C.B.; Sinogeikin, S.V.; Bass, J.D. The Elastic Properties of Diopside, CaMgSi2O6. Am. Mineral. 2011, 96, 224–227. [Google Scholar] [CrossRef]
- Bhagat, S.S.; Bass, J.D.; Smyth, J.R. Single-Crystal Elastic Properties of Omphacite-C2/c by Brillouin Spectroscopy. J. Geophys. Res. 1992, 97, 6843–6848. [Google Scholar] [CrossRef]
- Kandelin, J.; Weidener, D.J. The single-crystal elastic properties of jadeite. Phys. Earth Planet. Inter. 1988, 3, 251–260. [Google Scholar] [CrossRef]
- Brown, J.M.; Collins, M.D. Elasticity of an Upper Mantle Clinopyroxene. Phys. Chem. Miner. 1998, 26, 7–13. [Google Scholar] [CrossRef]
- Isaak, D.G.; Ohno, I. Elastic Constants of Chrome-Diopside: Application of Resonant Ultrasound Spectroscopy to Monoclinic Single-Crystals. Phys. Chem. Miner. 2003, 30, 430–439. [Google Scholar] [CrossRef]
- Hao, M.; Pierotti, C.E.; Tkachev, S.; Prakapenka, V.; Zhang, J.S. The Single-Crystal Elastic Properties of the Jadeite-Diopside Solid Solution and Their Implications for the Composition-Dependent Seismic Properties of Eclogite. Am. Mineral. 2019, 104, 1016–1021. [Google Scholar] [CrossRef]
- Bascou, J.; Barruol, G.; Vauchez, A.; Mainprice, D.; Egydio-Silva, M. EBSD-Measured Lattice-Preferred Orientations and Seismic Properties of Eclogites. Tectonophysics 2001, 342, 61–80. [Google Scholar] [CrossRef]
- Bascou, J.; Tommasi, A.; Mainprice, D. Plastic Deformation and Development of Clinopyroxene Lattice Preferred Orientations in Eclogites. J. Struct. Geol. 2002, 24, 1357–1368. [Google Scholar] [CrossRef]
- Ulrich, S.; Mainprice, D. Does Cation Ordering in Omphacite Influence Development of Lattice-Preferred Orientation? J. Struct. Geol. 2005, 27, 419–431. [Google Scholar] [CrossRef]
- Zhang, J.; Green, H.W.; Bozhilov, K.N. Rheology of Omphacite at High Temperature and Pressure and Significance of Its Lattice Preferred Orientations. Earth Planet. Sci. Lett. 2006, 246, 432–443. [Google Scholar] [CrossRef]
- Mazzucchelli, M.L.; Reali, A.; Morganti, S.; Angel, R.J.; Alvaro, M. Elastic Geobarometry for Anisotropic Inclusions in Cubic Hosts. Lithos 2019, 350–351, 105218. [Google Scholar] [CrossRef]
- Alvaro, M.; Mazzucchelli, M.L.; Angel, R.J.; Murri, M.; Campomenosi, N.; Scambelluri, M.; Nestola, F.; Korsakov, A.; Tomilenko, A.A.; Marone, F.; et al. Fossil Subduction Recorded by Quartz from the Coesite Stability Field. Geology 2020, 48, G46617.1. [Google Scholar] [CrossRef]
- Bonazzi, M.; Tumiati, S.; Thomas, J.B.; Angel, R.J.; Alvaro, M. Assessment of the Reliability of Elastic Geobarometry with Quartz Inclusions. Lithos 2019, 350–351, 105201. [Google Scholar] [CrossRef]
Elastic Moduli | Anhydrous Di59.1Jd40.9 | SBB-46 Di59.1Jd40.9 ~710 ppm Water |
---|---|---|
C11 (GPa) | 244(4) | 245(1) |
C22 (GPa) | 205(4) | 210(2) |
C33 (GPa) | 254(6) | 249.6(9) |
C44 (GPa) | 81(2) | 75.7(9) |
C55 (GPa) | 69(2) | 71.2(5) |
C66 (GPa) | 82(2) | 76(1) |
C12 (GPa) | 83(2) | 85(2) |
C13 (GPa) | 79(4) | 70(1) |
C23 (GPa) | 64(6) | 66(2) |
C15 (GPa) | 7.7(6) | 8.0(6) |
C25 (GPa) | 10(2) | 6(1) |
C35 (GPa) | 37(3) | 34.7(6) |
C46 (GPa) | 9(1) | 8.7(7) |
Ks (GPa) | 125(1) | 125(3) |
G (GPa) | 76(1) | 75(2) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mans, W.; Zhang, J.S.; Hao, M.; Smyth, J.R.; Zhang, D.; Finkelstein, G.J.; Dera, P. Hydrogen Effect on the Sound Velocities of Upper Mantle Omphacite. Minerals 2019, 9, 690. https://doi.org/10.3390/min9110690
Mans W, Zhang JS, Hao M, Smyth JR, Zhang D, Finkelstein GJ, Dera P. Hydrogen Effect on the Sound Velocities of Upper Mantle Omphacite. Minerals. 2019; 9(11):690. https://doi.org/10.3390/min9110690
Chicago/Turabian StyleMans, Wade, Jin S. Zhang, Ming Hao, Joseph R. Smyth, Dongzhou Zhang, Gregory J. Finkelstein, and Przemyslaw Dera. 2019. "Hydrogen Effect on the Sound Velocities of Upper Mantle Omphacite" Minerals 9, no. 11: 690. https://doi.org/10.3390/min9110690
APA StyleMans, W., Zhang, J. S., Hao, M., Smyth, J. R., Zhang, D., Finkelstein, G. J., & Dera, P. (2019). Hydrogen Effect on the Sound Velocities of Upper Mantle Omphacite. Minerals, 9(11), 690. https://doi.org/10.3390/min9110690