Nataliakulikite, Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, a New Perovskite-Supergroup Mineral from Hatrurim Basin, Negev Desert, Israel
Abstract
:1. Introduction
2. Brief Geological Background for Haturim Basin
3. Analytical Methods
4. Sample Description
5. Morphology, Optical and Physical Properties of Nataliakulikite
6. Chemical Composition of Nataliakulikite
7. Crystal Structure Data for Nataliakulikite
7.1. The Crystal Structure of Synthetic Ca4Ti2Fe2O11
7.2. HRTEM Data for Nataliakulikite
7.3. EBSD Data for Nataliakulikite
7.4. Raman Spectroscopy for Nataliakulikite
8. Discussion
8.1. Phase Relations in the System Perovskite-Brownmillerite
8.2. Natural Equivalents for Phases of the Perovskite-Brownmillerite Series
8.3. Temperature Estimation for Nataliakulikite at the Hatrurim Basin
9. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gross, S. The mineralogy of the Hatrurim Formation, Israel. Geol. Surv. Isr. Bull. 1977, 70, 80. [Google Scholar]
- Burg, A.; Starinsky, A.; Bartov, Y.; Kolodny, Y. Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Isr. J. Earth Sci. 1991, 40, 107–124. [Google Scholar]
- Burg, A.; Kolodny, Y.; Lyakhovsky, V. Hatrurim-2000: The “Mottled Zone” revisited, forty years later. Isr. J. Earth Sci. 1999, 48, 209–223. [Google Scholar]
- Novikov, I.; Vapnik, Y.; Safonova, I. Mud volcano origin of the Mottled Zone, South Levant. Geosci. Front. 2013, 4, 597–619. [Google Scholar] [CrossRef]
- Sokol, E.V.; Kokh, S.N.; Sharygin, V.V.; Danilovsky, V.A.; Seryotkin, Y.V.; Liferovich, R.; Deviatiiarova, A.S.; Nigmatulina, E.N.; Karmanov, N.S. Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: Implications for storage and partitioning of elements in oil shale clinkering. Minerals 2019, 9, 465. [Google Scholar] [CrossRef]
- Grenier, J.C.; Pouchard, M.; Hagenmuller, P. Vacancy ordering in oxygen-deficient perovskite-related ferrites. Struct. Bond. 1981, 47, 1–25. [Google Scholar] [CrossRef]
- Causa, M.T.; Zysler, R.D.; Tovar, M.; Vallet-Regí, M.; González-Calbet, J.M. Magnetic properties of the CanFe2Tin−2O3n−1 perovskite related series: An EPR study. J. Solid State Chem. 1992, 98, 25–32. [Google Scholar] [CrossRef]
- Gonzáles-Calbet, J.M.; Valet-Regí, M. A new perovskite-type compound: Ca4Fe2Ti2O11. J. Solid State Chem. 1987, 68, 266–272. [Google Scholar] [CrossRef]
- Hovmöller, S.; Zou, X.; Wang, D.N.; Gonzáles-Calbet, J.M.; Valet-Regí, M. Structure determination of Ca4Fe2Ti2O11 by electron microscopy and crystallographic image processing. J. Solid State Chem. 1988, 77, 316–321. [Google Scholar] [CrossRef]
- Grenier, J.-C.; Darriet, J.; Pouchard, M.; Hagenmuller, P. Mise en evidence d’une nouvelle fammille de phases de type perovskite lacunaire ordonnee de formule A3M3O8 (AMO2.67). Mater. Res. Bull. 1976, 11, 1219–1226. [Google Scholar] [CrossRef]
- Grenier, J.-C.; Schiffmacher, G.; Caro, P.; Pouchard, M.; Hagenmuller, P. Etude par diffraction X et microscopie electronique du système CaTiO3-CaFe2O5. J. Solid State Chem. 1977, 20, 365–379. [Google Scholar] [CrossRef]
- Rodrígues-Carvajal, J.; Valett-Regí, M.; González-Calbet, J.M. Perovskite threefold superlattices: A structure determination of the A3M3O8 phase. Mater. Res. Bull. 1989, 24, 423–430. [Google Scholar] [CrossRef]
- Marinho, M.B.; Glasser, F.P. Polymorphism and phase changes in the ferrite phase of cements induced by titanium substitution. Cem. Concr. Res. 1984, 14, 360–368. [Google Scholar] [CrossRef]
- Melgunov, S.V.; Kulik, N.A.; Bakumenko, I.T. Mineralogy and geochemistry of metamorphogenic segregative pegmatoids. In Proceedings of Institute of Geology and Geophysics; Nauka: Novosibirs, Russia, 1975; Volume 236, p. 92. (In Russian) [Google Scholar]
- Derevianko, A.P.; Markin, S.V.; Kulik, N.A.; Kolobova, K.A. Lithic raw material exploitation in the Sibiryachikha facies, the Middle Paleolithic of Altai. Archaeol. Ethnol. Anthropol. Eurasia 2015, 43, 3–16. [Google Scholar] [CrossRef]
- Lbova, L.V.; Kulik, N.A.; Volkov, P.V.; Barkov, A.V.; Vanhaeren, M.; Marchenko, D.V.; Kovalev, V.S. Technology of working with “exotic” mineral resources in the upper palaeolithic of South Siberia (based on the materials of Malaya Syia). Strat. Plus 2018, 1, 199–211. (In Russian) [Google Scholar]
- Shunkov, M.V.; Kulik, N.A.; Kozlikin, M.B.; Sokol, E.V.; Miroshnichenko, L.V.; Ulianov, V.A. The phosphates of Pleistocene-Holocene sediments of the eastern gallery of Denisova Cave. Dokl. Earth Sci. 2018, 478, 46–50. [Google Scholar] [CrossRef]
- Sharygin, V.V.; Wirth, R.; Sokol, E.V.; Nigmatulina, E.N.; Karmanov, N.S. Si-rich natural analog of Ca4Ti2Fe2O11 in larnite-gehlenite rock from Hatrurim Basin, Israel. In 3rd International Conference “Crystallogenesis and Mineralogy”, Abstract Volume; Bekker, T.B., Litasov, K.D., Sobolev, N.V., Eds.; Publishing House of SB RAS: Novosibirsk, Russia, 2013; pp. 190–192. [Google Scholar]
- Sharygin, V.V.; Yakovlev, G.A.; Wirth, R.; Seryotkin, Y.V.; Sokol, E.V.; Nigmatulina, E.N.; Karmanov, N.S.; Pautov, L.A. Nataliakulikite, IMA 2018-061. CNMNC Newsletter No. 45, October 2018: Page 1230. Mineral. Mag. 2018, 82, 1225–1232. [Google Scholar]
- Becerro, A.I.; McCammon, C.; Langenhorst, F.; Seifert, F.; Angel, R.J. Oxygen-vacancy ordering in CaTiO3–CaFeO2.5 perovskites: From isolated defects to infinite sheets. Phase Transit. 1999, 69, 133–146. [Google Scholar] [CrossRef]
- Becerro, A.I.; Carpenter, M.A.; Boffa Ballaran, T.; Seifert, F. Hard mode spectroscopy of CaTiO3–CaFeO2.5 perovskites. Phase Transit. 2000, 71, 161–172. [Google Scholar] [CrossRef]
- Becerro, A.I.; Redfern, S.A.T.; Carpenter, M.A.; Knight, K.S.; Seifert, F. Displacive phase transitions in and strain analysis of Fe-dopped CaTiO3 perovskite at high temperatures by neutron diffraction. J. Solid State Chem. 2002, 167, 459–471. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Welch, M.D.; Chakhmouradian, A.R. Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition. Mineral. Mag. 2017, 81, 411–461. [Google Scholar] [CrossRef]
- Hentschel, G. Mayenit, 12CaO·7Al2O3, und Brownmillerit, 2CaO·(Al,Fe)2O3, zwei neue Minerale in den Kalksteineinschlüssen der Lava des Ettringer Bellerberges. N. Jb. Mineral. Mh. 1964, 22–29. [Google Scholar]
- Chesnokov, B.V.; Bazhenova, L.F. Srebrodolskite Ca2Fe2O5—A new mineral. Zap. Vsesoyuznogo Mineral. Obshchestva 1985, 114, 195–199. (In Russian) [Google Scholar]
- Sharygin, V.V.; Sokol, E.V.; Vapnik, Y. Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russ. Geol. Geophys. 2008, 49, 709–726. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Gazeev, V.M.; Armbruster, T.; Zadov, A.E.; Galuskina, I.O.; Pertsev, N.N.; Dzierżanovski, P.; Kadiyski, M.; Gurbanov, A.G.; Wrzalik, R.; et al. Lakargiite CaZrO3: A new mineral of the perovskite group from the Northern Caucasus, Kabardino-Balkaria, Russia. Am. Mineral. 2008, 93, 1903–1910. [Google Scholar] [CrossRef]
- Sharygin, V.V. Minerals of the Ca3TiFeAlO8–Ca3TiFeFeO8 series in natural and technogenic pyrometamorphic system. In The Mineralogy of Technogenesis-2012; Potapov, S.S., Ed.; Institute of Mineralogy, Uralian Branch of Russian Academy of Sciences: Miass, Russia, 2012; pp. 29–49. (In Russian) [Google Scholar]
- Sharygin, V.V.; Wirth, R. Shulamitite and its Fe-analog in metacarbonate xenoliths from alkali basalts, E. Eifel, Germany. In Proceedings of the abstracts of 29th International conference “Ore potential of alkaline, kimberlite and carbonatite magmatism”, School ‘‘Alkaline magmatism of the Earth’’, ONTI GEOKHI RAS, Sudak-Moscow, Ukraine-Russia, 14–22 September 2012; pp. 97–99. [Google Scholar]
- Sharygin, V.V.; Lazic, B.; Armbruster, T.M.; Murashko, M.N.; Wirth, R.; Galuskina, I.O.; Galuskin, E.V.; Vapnik, Y.; Britvin, S.N.; Logvinova, A.M. Shulamitite Ca3TiFe3+AlO8—A new perovskite-related mineral from Hatrurim Basin, Israel. Eur. J. Mineral. 2013, 25, 97–111. [Google Scholar] [CrossRef]
- Juroszek, R.; Krüger, H.; Galuskina, I.O.; Krüger, B.; Jeżak, L.; Ternes, B.; Wojdyla, J.; Krzykawski, T.; Pautov, L.A.; Galuskin, E.V. Sharyginite, Ca3TiFe2O8, a new mineral from the Bellerberg Volcano, Germany. Minerals 2018, 8, 308. [Google Scholar] [CrossRef]
- Vapnik, Y.; Sokol, E.; Murashko, M.; Sharygin, V. The enigma of Hatrurim. Mineral. Alm. 2006, 10, 69–77. [Google Scholar]
- Gross, S.; Heller, L. A natural occurrence of bayerite. Mineral. Mag. 1963, 33, 723–724. [Google Scholar] [CrossRef]
- Gross, S. Bentorite, a new mineral from the Hatrurim area, West of the Dead Sea, Israel. Isr. J. Earth Sci. 1980, 29, 81–84. [Google Scholar]
- Gross, S. Occurrence of ye’elimite and ellestadite in an unusual cobble from the “pseudo-conglomerate” of the Hatrurim Basin, Israel. Geol. Surv. Isr. Curr. Res. 1983, 84, 1–4. [Google Scholar]
- Weber, D.; Bischoff, A. Grossite (CaAl4O7)—A rare phase in terrestrial rocks and meteorites. Eur. J. Mineral. 1994, 6, 591–594. [Google Scholar] [CrossRef]
- Murashko, M.N.; Chukanov, N.V.; Mukhanova, A.A.; Vapnik, Y.; Britvin, S.N.; Krivovichev, S.V.; Polekhovsky, Y.S.; Ivakin, I.D. Barioferrite BaFe3+12O19: A new mineral species of the magnetoplumbite group from the Hatrurim Formation in Israel. Geol. Ore Depos. 2011, 53, 558–563. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Kusz, J.; Armbruster, T.; Galuskina, I.O.; Marzec, K.; Vapnik, Y.; Murashko, M. Vorlanite, (CaU6+)O4, from Jabel Harmun, Palestinian Autonomy, Israel. Am. Mineral. 2013, 98, 1938–1942. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Galuskina, I.O.; Kusz, J.; Armbruster, T.; Marzec, K.M.; Dzierżanowski, P.; Murashko, M. Vapnikite Ca3UO6—A new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. Mineral. Mag. 2014, 78, 571–581. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Gfeller, F.; Armbruster, T.; Galuskina, I.O.; Vapnik, Y.; Dulski, M.; Murashko, M.; Dzierżanowski, P.; Sharygin, V.V.; Krivovichev, S.V.; et al. Mayenite supergroup, Part III: Fluormayenite, Ca12Al14O32[□4F2] and fluorkyuygenite, Ca12Al14O32[(H2O)4F2], two new minerals from pyrometamorphic rock of the Hatrurim Complex, Southern Levant. Eur. J. Mineral. 2015, 27, 123–136. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Gfeller, F.; Galuskina, I.O.; Pakhomova, A.; Armbruster, T.; Vapnik, Y.; Wlodyka, R.; Dzierżanowski, P.; Murashko, M. New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineral. Mag. 2015, 79, 1073–1087. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Galuskina, I.O.; Gfeller, F.; Krüger, B.; Kusz, J.; Vapnik, Y.; Dulski, M.; Dzierżanowski, P. Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new “old” mineral from the Negev Desert, Israel, and the ternesite-silicocarnotite solid solution: Indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. Eur. J. Mineral. 2016, 28, 105–123. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Gfeller, F.; Galuskina, I.O.; Armbruster, T.; Krzatala, A.; Vapnik, Y.; Kusz, J.; Dulski, M.; Gardocki, M.; Gurbanov, A.G.; et al. New minerals with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part III. Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and the Palestine Autonomy, South Levant, and from South Ossetia, Greater Caucasus. Mineral. Mag. 2017, 81, 499–513. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Galuskin, E.V.; Pakhomova, A.S.; Widmer, R.; Armbruster, T.; Krüger, B.; Grew, E.S.; Vapnik, Y.; Dzierżanowski, P.; Murashko, M. Khesinite, Ca4Mg2Fe3+10O4[(Fe3+10Si2)O36], a new rhonite-group (sapphirine supergroup) mineral from the Negev Desert, Israel—Natural analogue of the SFCA phase. Eur. J. Mineral. 2017, 29, 101–116. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Galuskin, E.V.; Vapnik, Y.; Prusik, K.; Stasiak, M.; Dzierżanowski, P.; Murashko, M. Gurimite, Ba3(VO4)2 and hexacelsian, BaAl2Si2O8—Two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineral. Mag. 2017, 81, 1009–1019. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Krüger, B.; Galuskin, E.V.; Krüger, H.; Vapnik, Y.; Murashko, M.; Agakhanov, A.A.; Pauluhn, A.; Olieric, V. Zoharite, IMA 2017-049. CNMNC Newsletter No. 39, 17, page 1281. Mineral. Mag. 2017, 81, 1279–1286. [Google Scholar]
- Krüger, B.; Krüger, H.; Galuskin, E.V.; Galuskina, I.O.; Vapnik, Y.; Olieric, V.; Pauluhn, A. Aravaite, Ba2Ca18(SiO4)6(PO4)3(CO3)F3O: Modular structure and disorder of a new mineral with single and triple antiperovskite layers. Acta Crystallogr. Sect. B-Struct. Sci. Cryst. Eng. Mater. 2018, 74, 492–501. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Krüger, B.; Galuskina, I.O.; Krüger, H.; Vapnik, Y.; Pauluhn, A.; Olieric, V. Stracherite, BaCa6(SiO4)2[(PO4)(CO3)]F, the first CO3-bearing intercalated hexagonal antiperovskite from Negev Desert, Israel. Am. Mineral. 2018, 103, 1699–1706. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Krüger, B.; Galuskina, I.O.; Krüger, H.; Vapnik, Y.; Wojdyla, J.A.; Murashko, M. New mineral with modular structure derived from hatrurite from the pyrometamorphic rocks of the Hatrurim Complex: Ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev Desert, Israel. Minerals 2018, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Galuskin, E.V.; Krüger, B.; Galuskina, I.O.; Krüger, H.; Vapnik, Y.; Pauluhn, A.; Olieric, V. Levantite, KCa3(Al2Si3)O11(PO4), a new latiumite group mineral from pyrometamorphic rock of the Hatrurim Basin, Negev Desert, Israel. Mineral. Mag. 2019, 83, 1–23. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Krüger, B.; Galuskin, E.V.; Krüger, H.; Vapnik, Y.; Banasik, K.; Murashko, M.; Agakhanov, A.A.; Pauluhn, A. Gmalimite, IMA 2019-007. CNMNC Newsletter No. 50. Mineral. Mag. 2019, 83. [Google Scholar] [CrossRef] [Green Version]
- Sokol, E.V.; Seryotkin, Y.V.; Kokh, S.N.; Vapnik, Y.; Nigmatulina, E.N.; Goryainov, S.V.; Belogub, E.V.; Sharygin, V.V. Flamite (Ca,Na,K)2(Si,P)O4, a new mineral from the ultrahigh-temperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineral. Mag. 2015, 79, 583–596. [Google Scholar] [CrossRef]
- Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Earth’s phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Sci. Rep. 2015, 5, 8355. [Google Scholar] [CrossRef] [Green Version]
- Britvin, S.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V.; Krzhizhanovskaya, M.G.; Gorelova, L.A.; Vereshchagin, O.S.; Shilovskikh, V.V.; Zaitsev, A.N. Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Mineral. Petrol. 2018, 113, 237–248. [Google Scholar] [CrossRef]
- Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V.; Vereshchagin, O.S.; Vlasenko, N.S.; Shilovskikh, V.V.; Zaitsev, A.N. Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys. Chem. Miner. 2019, 46, 361–369. [Google Scholar] [CrossRef]
- Britvin, S.N.; Murashko, M.N.; Vereshchagin, O.S.; Vapnik, Y.; Shilovskikh, V.V.; Vlasenko, N.S. Polekhovskyite, IMA 2018-147. CNMNC Newsletter No. 48, 19, page 401. Eur. J. Mineral. 2019, 31, 399–402. [Google Scholar]
- Britvin, S.N.; Murashko, M.N.; Krzhizhanovskaya, M.G.; Vereshchagin, O.S.; Vapnik, Y.; Shilovskikh, V.V.; Lozhkin, M.S. Nazarovite, IMA 2019-013. CNMNC Newsletter No. 50. Mineral. Mag. 2019, 83. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, F.; Burg, A.; Avni, Y. Geological Map of Israel on a 1:50,000 scale. Arad, Jerusalem, Arad sheet 15–IV. Geol. Surv. Isr. 2010. [Google Scholar]
- Vapnik, Y.; Sharygin, V.V.; Sokol, E.V.; Shagam, R. Paralavas in combustion metamorphic complex at the Hatrurim Basin, Israel. Rev. Eng. Geol. 2007, 18, 133–153. [Google Scholar] [CrossRef]
- Sharygin, V.V. A hibonite-spinel-corundum-hematite assemblage in plagioclase-clinopyroxene pyrometamorphic rocks, Hatrurim Basin, Israel: Mineral chemistry, genesis and formation temperatures. Mineral. Mag. 2019, 83, 123–135. [Google Scholar] [CrossRef]
- Kolodny, Y. Natural cement factory: A geological story. In Cement Production and Use; Skalny, J., Ed.; Franklin Pierce College: Rindge, NH, USA, 1979; pp. 203–216. [Google Scholar]
- Sokol, E.V.; Maksimova, N.V.; Nigmatulina, E.N.; Sharygin, V.V.; Kalugin, V.M. Combustion Metamorphism; Izd. SO RAN: Novosibirsk, Russia, 2005. (In Russian) [Google Scholar]
- Sokol, E.V.; Novikov, I.S.; Vapnik, Y.; Sharygin, V.V. Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Dokl. Earth Sci. 2007, 413A, 474–480. [Google Scholar] [CrossRef]
- Sokol, E.V.; Novikov, I.S.; Zateeva, S.N.; Sharygin, V.V.; Vapnik, Y. Pyrometamorphic rocks of the spurrite-merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim Formation, Israel). Dokl. Earth Sci. 2008, 420, 608–614. [Google Scholar] [CrossRef]
- Bentor, Y.K.; Gross, S.; Heller, L. High temperature minerals in non-metamorphosed sediments in Israel. Nature 1963, 199, 478–479. [Google Scholar] [CrossRef]
- Khoury, H.; Nassir, S. High temperature mineralization in Maqarin area, North Jordan. N. Jb. Mineral. Abh. 1982, 144, 197–213. [Google Scholar] [CrossRef]
- Gur, D.; Steinitz, G.; Kolodny, Y.; Starinsky, A.; McWilliams, M. 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chem. Geol. 1995, 122, 171–184. [Google Scholar] [CrossRef]
- Techer, I.; Khoury, H.N.; Salameh, E.; Rassineux, F.; Claude, C.; Clauer, N.; Pagel, M.; Lancelot, J.; Hamelin, B.; Jacquot, E. Propagation of high-alkaline fluids in an argillaceous formation: Case study of the Khushaym Matruk natural analogue (Central Jordan). J. Geochem. Explor. 2006, 90, 53–67. [Google Scholar] [CrossRef]
- Gilat, A. Hydrothermal activity and hydro-explosions as a cause of natural combustion and pyrolysis of bituminous rocks: The case of Pliocene metamorphism in Israel (Hatrurim Formation). Geol. Surv. Isr. Curr. Res. 1998, 11, 96–102. [Google Scholar]
- Matthews, A.; Gross, S. Petrologic evolution of the “Mottled Zone” (Hatrurim) metamorphic complex of Israel. Isr. J. Earth Sci. 1980, 29, 93–106. [Google Scholar]
- Sharygin, V.V.; Vapnik, Y.; Sokol, E.V.; Kamenetsky, V.S.; Shagam, R. Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: Composition and homogenization temperatures. In Proceedings of the ACROFI I: Asian Current Research on Fluid Inclusions, Nanjing University PH, Nanjing, China, 26 May 2006; pp. 189–192. [Google Scholar]
- Zateeva, S.N.; Sokol, E.V.; Sharygin, V.V. Specificity of pyrometamorphic minerals of the ellestadite group. Geol. Ore Depos. 2007, 49, 792–805. [Google Scholar] [CrossRef]
- Vapnik, Y.; Galuskina, I.; Palchik, V.; Sokol, E.V.; Galuskin, Y.; Lindsley-Griffin, N.; Stracher, G.B. Stone-tool workshops of the Hatrurim Basin, Israel. In Coal Peat Fires: A Glob. Perspect. Case Studies-Coal Fires; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 3282–3316. [Google Scholar] [CrossRef]
- Pouchou, I.L.; Pichoir, F. “PaP” (phi-rho-z) procedure for improved quantitative microanalysis. In Microbeam Analysis; Armstrong, I.T., Ed.; San Francisco Press: San Francisco, CA, USA, 1985; pp. 104–106. [Google Scholar]
- Wirth, R. Focused Ion Beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur. J. Mineral. 2004, 16, 863–876. [Google Scholar] [CrossRef] [Green Version]
- Wirth, R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale. Chem. Geol. 2009, 261, 217–229. [Google Scholar] [CrossRef]
- Bosi, F.; Hatert, F.; Hålenius, U.; Pasero, M.; Miyawaki, R.; Mills, S.J. On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions. Mineral. Mag. 2019, 83, 627–632. [Google Scholar] [CrossRef]
- Krause, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Prasanna, T.S.R.; Navrotsky, A. Energetics in the brownmillerite-perovskite pseudobinary Ca2Fe2O5-CaTiO3. J. Mater. Res. 1994, 9, 3121–3124. [Google Scholar] [CrossRef]
- Žáček, V.; Skála, R.; Chlupáčová, M.; Dvorák, Z. Ca-Fe3+-rich Si-undersaturated buchite from Želénky, North-Bohemian brown coal basin, Czech Republic. Eur. J. Mineral. 2005, 17, 623–633. [Google Scholar] [CrossRef]
- Žáček, V.; Skála, R.; Dvořák, Z. Combustion metamorphism in the Most Basin. In Coal Peat Fires: A Glob. Perspect. Case Studies-Coal Fires; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 162–202. [Google Scholar] [CrossRef]
- Fukuda, K.; Ando, H. Determination of the Pcmn/Ibm2 phase boundary at high temperature in the system Ca2Fe2O5–Ca2Al2O5. J. Am. Ceram. Soc. 2002, 85, 1300–1303. [Google Scholar] [CrossRef]
- Redhammer, G.J.; Tippelt, G.; Roth, G.; Amthauer, G. Structural variations in the brownmillerite series Ca2(Fe2–xAlx)O5: Single-crystal X-ray diffraction at 25 °C and high-temperature powder diffraction (25 °C ≤ T ≤ 1000 °C). Am. Mineral. 2004, 89, 405–420. [Google Scholar] [CrossRef]
- Stöber, S.; Redhammer, G.; Schorr, S.; Prokhnenko, O.; Pöllmann, H. Structure refinements of members in the brownmillerite solid solution series Ca2Alx(Fe0.5Mn0.5)2-xO5+δ with 1/2 ≤ x ≤ 4/3. J. Solid State Chem. 2013, 197, 420–428. [Google Scholar] [CrossRef]
- Gloter, A.; Ingrin, J.; Bouchet, D.; Scrivener, K.; Colliex, C. TEM evidence of perovskite-brownmillerite coexistence in the Ca(AlxFe1-x)O2.5 system with minor amounts of titanium and silicon. Phys. Chem. Miner. 2000, 27, 504–513. [Google Scholar] [CrossRef]
- Scarlett, N.V.Y.; Pownceby, M.I.; Madsen, I.C.; Christensen, A.N. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter. Metall. Mater. Trans. B 2004, 35, 929–936. [Google Scholar] [CrossRef]
- Chen, J.; Shevchenko, M.; Hayes, P.C.; Jak, E. A phase equilibrium of the iron-rich corner of the CaO-FeO-Fe2O3-SiO2 system in air and the determination of the SFC primary phase field. ISIJ Int. 2019, 59, 795–804. [Google Scholar] [CrossRef] [Green Version]
Mineral | Gehlenite | Larnite | Flamite | Fluorapatite | Magnesioferrite | Perovskite | Barite | Hashemite | ||
---|---|---|---|---|---|---|---|---|---|---|
Position | core | rim | ||||||||
n | 36 | 7 | 26 | 18 | 3 | 2 | 45 | 6 | 7 | 6 |
SiO2 | 22.17 | 21.60 | 33.03 | 29.14 | 3.29 | 6.28 | n.a. | 3.81 | n.a. | n.a. |
TiO2 | 0.04 | 0.00 | n.d. | n.d. | n.a. | n.a. | 0.01 | 33.36 | n.a. | n.a. |
ZrO2 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.74 | n.a. | n.a. |
Nb2O5 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.06 | n.a. | n.a. |
V2O5 | n.a. | n.a. | n.a. | n.a. | 0.52 | 0.50 | n.a. | n.a. | n.a. | n.a. |
Cr2O3 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.41 | 0.07 | ||
Al2O3 | 32.91 | 28.05 | 0.11 | 0.14 | n.a. | n.a. | 3.55 | 1.92 | n.a. | n.a. |
Fe2O3 | 4.25 | 10.48 | 74.01 | 17.66 | ||||||
FeO | 0.28 | 0.18 | 0.10 | 0.24 | 0.19 | 0.33 | 1.30 | n.d. | n.d. | |
NiO | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.81 | n.a. | n.a. | n.a. |
ZnO | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.66 | n.a. | n.a. | n.a. |
CuO | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.44 | n.a. | n.a. | n.a. |
MnO | n.d. | n.d. | n.a. | n.a. | n.a. | n.a. | 0.27 | 0.03 | n.a. | n.a. |
MgO | 0.28 | 0.35 | n.d. | n.d. | n.a. | n.a. | 17.25 | n.d. | n.a. | n.a. |
CaO | 40.26 | 39.17 | 63.22 | 59.54 | 55.23 | 55.91 | 1.50 | 41.98 | 0.67 | 0.53 |
BaO | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 62.76 | 61.45 |
SrO | n.d. | n.d. | 0.27 | 0.37 | 0.83 | n.a. | n.a. | 0.27 | 0.75 | 0.44 |
Na2O | n.d. | n.d. | 0.65 | 0.94 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
K2O | n.d. | n.d. | 0.65 | 2.49 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
P2O5 | n.d. | n.d. | 2.26 | 6.98 | 37.53 | 29.31 | n.a. | n.a. | n.a. | n.a. |
SO3 | n.a. | n.a. | n.d. | n.d. | 0.82 | 6.27 | n.a. | n.a. | 18.91 | 9.40 |
CrO3 | 16.77 | 28.20 | ||||||||
F | n.a. | n.a. | n.a. | n.a. | 2.39 | 3.16 | n.a. | n.a. | n.a. | n.a. |
Sum | 100.20 | 98.79 | 100.31 | 99.85 | 100.82 | 101.75 | 100.23 | 99.76 | 99.86 | 100.03 |
Formula based on | 5 cations | 10 cat in Ca site | 3 cat | 2 cat | ||||||
7 oxygens | 4 oxy | 4 oxy | 4 oxy | 4 oxy | ||||||
Si | 1.03 | 1.03 | 0.94 | 0.83 | 0.55 | 1.04 | 0.08 | |||
Al | 1.80 | 1.57 | 0.00 | 0.00 | 0.14 | 0.05 | ||||
Ti | 0.00 | 0.00 | 0.00 | 0.56 | ||||||
Zr+Nb | 0.01 | |||||||||
Cr3+ | 0.01 | 0.00 | ||||||||
Fe3+ | 0.15 | 0.37 | 1.85 | 0.30 | ||||||
Fe2+ | 0.01 | 0.01 | 0.00 | 0.01 | 0.03 | 0.05 | 0.04 | 0.00 | 0.00 | |
Ni+Zn+Cu | 0.04 | |||||||||
Mn | 0.00 | 0.00 | 0.01 | 0.00 | ||||||
Mg | 0.02 | 0.02 | 0.00 | 0.00 | 0.85 | 0.00 | ||||
Ca+Sr | 2.00 | 2.00 | 1.94 | 1.83 | 9.97 | 9.95 | 0.05 | 1.00 | 0.05 | 0.03 |
Ba | 1.00 | 0.99 | ||||||||
Na | 0.00 | 0.00 | 0.04 | 0.05 | ||||||
K | 0.00 | 0.00 | 0.02 | 0.09 | ||||||
P5+ | 0.05 | 0.17 | 5.31 | 4.12 | ||||||
V5+ | 0.06 | 0.06 | ||||||||
S6+ | 0.10 | 0.78 | 0.58 | 0.29 | ||||||
Cr6+ | 0.41 | 0.70 | ||||||||
F | 1.26 | 1.66 |
λ (nm) | Rmax/Rmin | λ (nm) | Rmax/Rmin |
---|---|---|---|
400 | 16.70/16.34 | 560 | 13.36/13.34 |
420 | 14.79/14.41 | 580 | 13.25/13.22 |
440 | 14.23/14.06 | 589 (COM) | 13.20/13.15 |
460 | 14.17/14.09 | 600 | 13.13/13.09 |
470 (COM) | 14.15/14.08 | 620 | 13.05/12.97 |
480 | 14.03/14.02 | 640 | 12.99/12.90 |
500 | 13.86/13.85 | 650 (COM) | 12.98/12.83 |
520 | 13.69/13.68 | 660 | 12.90/12.78 |
540 | 13.48/13.48 | 680 | 12.78/12.64 |
546 (COM) | 13.45/13.43 | 700 | 12.70/12.52 |
Component | Nataliakulikite | Ntk-TEM | Ntk-1 | Ntk-2 | Ideal-1 | Ideal-2 | |||
---|---|---|---|---|---|---|---|---|---|
n = 47 | sd | min | max | n = 2 | n = 5 | n = 6 | |||
SiO2 | 5.05 | 0.63 | 3.71 | 6.87 | 5.11 | 5.11 | 5.17 | 4.53 | |
TiO2 | 29.04 | 1.71 | 25.48 | 32.64 | 29.51 | 29.69 | 29.44 | 29.38 | 30.14 |
ZrO2 | 0.68 | 0.07 | 0.53 | 0.84 | 0.71 | 0.75 | 0.69 | ||
Nb2O5 | 0.04 | 0.02 | 0.00 | 0.10 | 0.03 | 0.04 | 0.04 | ||
Cr2O3 | 0.08 | 0.02 | 0.04 | 0.17 | 0.09 | 0.08 | 0.08 | ||
Al2O3 | 2.07 | 0.41 | 1.24 | 3.02 | 2.14 | 2.37 | 2.47 | 1.92 | |
Fe2O3 | 14.23 | 2.52 | 9.24 | 19.62 | 13.17 | 12.56 | 12.76 | 29.37 | 15.07 |
FeO | 5.47 | 1.15 | 2.75 | 8.07 | 6.18 | 6.29 | 6.01 | 0.00 | 5.42 |
MnO | 0.07 | 0.06 | 0.00 | 0.25 | 0.04 | 0.05 | 0.14 | ||
CaO | 42.10 | 0.16 | 41.82 | 42.50 | 42.01 | 42.11 | 42.09 | 41.25 | 42.37 |
SrO | 0.27 | 0.04 | 0.20 | 0.34 | 0.24 | 0.31 | 0.32 | ||
UO2 | 0.20 | 0.07 | 0.07 | 0.33 | 0.13 | 0.28 | 0.28 | ||
Sum | 99.30 | 99.36 | 99.63 | 99.47 | 100.00 | 99.45 | |||
Formula based on 8 cations and 11 oxygens | |||||||||
Si | 0.447 | 0.451 | 0.450 | 0.456 | 0.400 | ||||
Al | 0.216 | 0.223 | 0.247 | 0.256 | 0.200 | ||||
Fe3+ | 0.338 | 0.325 | 0.303 | 0.288 | 1.000 | 0.400 | |||
Sum T | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |||
Ti | 1.933 | 1.961 | 1.967 | 1.953 | 2.000 | 2.000 | |||
Zr+Nb | 0.031 | 0.032 | 0.034 | 0.031 | |||||
Cr | 0.006 | 0.006 | 0.006 | 0.006 | |||||
Fe3+ | 0.610 | 0.551 | 0.530 | 0.559 | 1.000 | 0.600 | |||
Fe2+ | 0.405 | 0.456 | 0.463 | 0.443 | 0.000 | 0.400 | |||
Mn | 0.005 | 0.003 | 0.004 | 0.010 | |||||
Sum B | 2.990 | 3.009 | 3.003 | 3.001 | 3.000 | 3.000 | |||
Ca | 3.992 | 3.977 | 3.976 | 3.977 | 4.000 | 4.000 | |||
Sr | 0.014 | 0.012 | 0.016 | 0.016 | |||||
U | 0.004 | 0.003 | 0.005 | 0.005 | |||||
Sum A | 4.010 | 3.991 | 3.997 | 3.999 | 4.000 | 4.000 | |||
End-members (mol.%) | |||||||||
Ca4Ti2Fe3+Fe3+O11 | 33.75 | 32.53 | 30.30 | 28.81 | 100.00 | 40.00 | |||
Ca4Ti2Fe3+AlO11 | 21.59 | 22.32 | 24.65 | 25.64 | 0.00 | 20.00 | |||
Ca4Ti2Fe2+SiO11 | 44.66 | 45.15 | 45.04 | 45.55 | 0.00 | 40.00 |
Nataliakulikite | Synthetic [8,9] | |||||
---|---|---|---|---|---|---|
h | k | l | dcalc, Å | Irel | dcalc, Å | Irel |
0 | 2 | 0 | 15.151 | 19 | 15.110 | 18 |
0 | 4 | 0 | 7.576 | 5 | 7.555 | 5 |
0 | 6 | 0 | 5.050 | 1 | 5.037 | 1 |
0 | 3 | 1 | 4.822 | 6 | 4.820 | 6 |
0 | 5 | 1 | 4.068 | 7 | 4.063 | 7 |
1 | 0 | 1 | 3.795 | 8 | 3.863 | 9 |
0 | 8 | 0 | 3.788 | 4 | 3.778 | 4 |
1 | 2 | 1 | 3.681 | 1 | 3.742 | 1 |
1 | 3 | 1 | 3.553 | 3 | 3.607 | 3 |
0 | 7 | 1 | 3.399 | 2 | 3.393 | 2 |
1 | 4 | 1 | 3.393 | 1 | ||
1 | 5 | 1 | 3.217 | 1 | 3.255 | 1 |
0 | 9 | 1 | 2.870 | 4 | 2.864 | 4 |
0 | 0 | 2 | 2.744 | 23 | 2.745 | 22 |
1 | 8 | 1 | 2.681 | 100 | 2.701 | 100 |
2 | 0 | 0 | 2.627 | 26 | 2.719 | 28 |
2 | 1 | 0 | 2.617 | 1 | 2.708 | 1 |
2 | 3 | 0 | 2.542 | 2 | 2.625 | 2 |
1 | 0 | 2 | 2.432 | 1 | 2.450 | 1 |
1 | 3 | 2 | 2.365 | 5 | 2.381 | 5 |
0 | 8 | 2 | 2.222 | 6 | 2.220 | 6 |
2 | 8 | 0 | 2.159 | 4 | 2.207 | 4 |
0 | 13 | 1 | 2.145 | 1 | 2.141 | 1 |
1 | 7 | 2 | 2.121 | 1 | 2.131 | 1 |
1 | 8 | 2 | 2.047 | 1 | 2.056 | 1 |
2 | 8 | 1 | 2.009 | 2 | 2.047 | 2 |
2 | 0 | 2 | 1.898 | 30 | 1.931 | 31 |
0 | 16 | 0 | 1.894 | 22 | 1.889 | 21 |
2 | 5 | 2 | 1.811 | 1 | 1.840 | 1 |
1 | 13 | 2 | 1.683 | 1 | 1.686 | 1 |
3 | 0 | 1 | 1.668 | 1 | 1.721 | 2 |
3 | 3 | 1 | 1.646 | 1 | 1.696 | 1 |
3 | 5 | 1 | 1.609 | 1 | 1.655 | 1 |
1 | 8 | 3 | 1.572 | 14 | 1.576 | 13 |
3 | 8 | 1 | 1.566 | 10 | ||
0 | 16 | 2 | 1.559 | 5 | 1.556 | 5 |
2 | 16 | 0 | 1.551 | 6 |
Mineral | Perovskite | Natalia- kulikite | Sharyginite | Shulamitite | Synthetic phase | Srebrodol- skite | Brown- millerite |
---|---|---|---|---|---|---|---|
Formula | CaTiO3 | Ca4Ti2Fe3+Fe3+O11 | Ca3TiFe3+Fe3+O8 | Ca3TiFe3+AlO8 | Ca5TiFe3+2Al2O13 | Ca2Fe3+Fe3+O5 | Ca2Fe3+AlO5 |
Orthorhombic space group | Pnma | Pnma | P21ma | Pmma | Body-centered | Pnma | I2mb |
Unit cell: | |||||||
a, Å | 5.544 | 5.254 | 5.423(2) | 5.4200(6) | 5.420(3) | 5.57 | |
b, Å | 7.6412 | 30.302 | 11.150(8) | 11.064(1) | 18.6 | 14.752(3) | 14.52 |
c, Å | 5.381 | 5.488 | 5.528(2) | 5.5383(7) | 5.594(3) | 5.34 | |
V, Å3 | 223.8 | 873.7 | 334.3(3) | 332.12 | 447.27 | 431.88 | |
Z | 4 | 4 | 2 | 2 | 4 | 4 | |
Sequence | OOOOOO | OOTOOO | OTOOTO | OT’OOT’O | OTOTOO | OTOT’OT | OTOTOT |
Density (g/cm3) | 4.04 | 4.006 | 3.943 | 3.84 | 3.94 | 3.74 | |
Reference | [21] | This study; [8,9] | [31] | [30] | [13] | [25,83] | [24,83] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharygin, V.V.; Yakovlev, G.A.; Wirth, R.; Seryotkin, Y.V.; Sokol, E.V.; Nigmatulina, E.N.; Karmanov, N.S.; Pautov, L.A. Nataliakulikite, Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, a New Perovskite-Supergroup Mineral from Hatrurim Basin, Negev Desert, Israel. Minerals 2019, 9, 700. https://doi.org/10.3390/min9110700
Sharygin VV, Yakovlev GA, Wirth R, Seryotkin YV, Sokol EV, Nigmatulina EN, Karmanov NS, Pautov LA. Nataliakulikite, Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, a New Perovskite-Supergroup Mineral from Hatrurim Basin, Negev Desert, Israel. Minerals. 2019; 9(11):700. https://doi.org/10.3390/min9110700
Chicago/Turabian StyleSharygin, Victor V., Grigory A. Yakovlev, Richard Wirth, Yurii V. Seryotkin, Ellina V. Sokol, Elena N. Nigmatulina, Nikolai S. Karmanov, and Leonid A. Pautov. 2019. "Nataliakulikite, Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, a New Perovskite-Supergroup Mineral from Hatrurim Basin, Negev Desert, Israel" Minerals 9, no. 11: 700. https://doi.org/10.3390/min9110700
APA StyleSharygin, V. V., Yakovlev, G. A., Wirth, R., Seryotkin, Y. V., Sokol, E. V., Nigmatulina, E. N., Karmanov, N. S., & Pautov, L. A. (2019). Nataliakulikite, Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, a New Perovskite-Supergroup Mineral from Hatrurim Basin, Negev Desert, Israel. Minerals, 9(11), 700. https://doi.org/10.3390/min9110700