Recycling Lead–Zinc Tailings for Cemented Paste Backfill and Stabilisation of Excessive Metal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.1.1. Lead–Zinc Tailing
2.1.2. Binders
2.2. Test Methods
2.2.1. Cemented Paste Backfill Sample Preparation
2.2.2. Slurry Fluidity Test
2.2.3. Unconfined Compressive Strength Test
2.2.4. Static Leaching
2.2.5. Stabilisation Test of Excessive Elements
2.2.6. Dynamic Leaching and Strength Retest
2.2.7. Toxicity Characteristic Leaching Procedure
2.2.8. Chemical Measurement
3. Results and Discussion
3.1. Feasibility of CPB Pipeline Transportation
3.2. UCS Test Results
3.3. Determination of Excessive Metal Elements by Static Leaching
3.4. Optimum Dosage of Immobilisation Materials
3.5. UCS Retest Results and Environmental Effects of CPB after the Addition of Immobilisation Materials
3.5.1. UCS Comparison
3.5.2. Environmental Stability of the CPB in Dynamic Leaching
3.5.3. Environmental Evolution by TCLP
4. Discussion
4.1. Potential of Significant Reuse of LZT as Backfill Material
4.2. Environmental Effects of the Backfill Slurry
4.3. Strength Change and Environmental Stability of CPB after Adding Immobilisation Materials
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tao, M.; Zhang, X.; Wang, S.; Cao, W.; Jiang, Y. Life cycle assessment on lead–zinc ore mining and beneficiation in China. J. Clean. Prod. 2019, 237, 117833. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, X.; Wang, Y.; Zhuang, D. Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: A case study in China. Process Saf. Environ. Prot. 2018, 113, 204–219. [Google Scholar] [CrossRef]
- Ye, M.; Li, G.; Yan, P.; Ren, J.; Zheng, L.; Han, D.; Sun, S.; Huang, S.; Zhong, Y. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Chemosphere 2017, 185, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, R.; Shui, Z.; Zhao, Z.; Song, Q.; Yang, B.; Fan, D. Development of a novel cleaner construction product: Ultra-high performance concrete incorporating lead-zinc tailings. J. Clean. Prod. 2018, 196, 172–182. [Google Scholar] [CrossRef]
- He, Y.; Chen, Q.; Qi, C.; Zhang, Q.; Xiao, C. Lithium slag and fly ash-based binder for cemented fine tailings backfill. J. Environ. Manag. 2019, 248, 109282. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Taheri, A.; Zhang, W.; Wu, Z.; Song, W. Properties and Application of Backfill Materials in Coal Mines in China. Minerals 2019, 9, 53. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Zhang, W.; Gao, F.; Yan, H.; An, T. Experimental Investigation of Perceptual Characteristics of Functional Cemented Backfilling Materials in Coal Mines. Minerals 2019, 9, 55. [Google Scholar] [CrossRef]
- Yin, Y.; Zhao, T.; Zhang, Y.; Tan, Y.; Qiu, Y.; Taheri, A.; Jing, Y. An Innovative Method for Placement of Gangue Backfilling Material in Steep Underground Coal Mines. Minerals 2019, 9, 107. [Google Scholar] [CrossRef]
- Xu, W.; Cao, P.; Tian, M. Strength Development and Microstructure Evolution of Cemented Tailings Backfill Containing Different Binder Types and Contents. Minerals 2018, 8, 167. [Google Scholar] [CrossRef]
- Lv, W.; Wu, Y.; Ming, L.; Yin, J. Migration Law of the Roof of a Composited Backfilling Longwall Face in a Steeply Dipping Coal Seam. Minerals 2019, 9, 188. [Google Scholar] [CrossRef]
- Béket Dalcé, J.; Li, L.; Yang, P. Experimental Study of Uniaxial Compressive Strength (UCS) Distribution of Hydraulic Backfill Associated with Segregation. Minerals 2019, 9, 147. [Google Scholar] [CrossRef]
- Zhou, N.; Ma, H.; Ouyang, S.; Germain, D.; Hou, T. Influential Factors in Transportation and Mechanical Properties of Aeolian Sand-Based Cemented Filling Material. Minerals 2019, 9, 116. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y.; Zhao, T.; Tan, Y.; Yu, F. Experimental Research on Deformation Characteristics of Waste-Rock Material in Underground Backfill Mining. Minerals 2019, 9, 102. [Google Scholar] [CrossRef]
- Taheri, A.; Tatsuoka, F. Small-and large-strain behaviour of a cement-treated soil during various loading histories and testing conditions. Acta Geotech. 2015, 10, 131–155. [Google Scholar] [CrossRef]
- Taheri, A.; Tatsuoka, F. Stress-strain relations of cement-mixed gravelly soil from multiple-step triaxial compression test results. Soils Found. 2012, 52, 748–766. [Google Scholar] [CrossRef]
- Gao, W.; Ni, W.; Zhang, Y.; Li, Y.; Shi, T.; Li, Z. Investigation into the semi-dynamic leaching characteristics of arsenic and antimony from solidified/stabilized tailings using metallurgical slag-based binders. J. Hazard. Mater. 2020, 381, 120992. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, H.; Taheri, A.; Deng, J.; Ke, B. Effects of Superplasticizer on the Hydration, Consistency, and Strength Development of Cemented Paste Backfill. Minerals 2018, 8, 381. [Google Scholar] [CrossRef]
- Zhao, Y.; Soltani, A.; Taheri, A.; Karakus, M.; Deng, A. Application of Slag–Cement and Fly Ash for Strength Development in Cemented Paste Backfills. Minerals 2019, 9, 22. [Google Scholar] [CrossRef]
- Fellet, G.; Marchiol, L.; Vedove, G.; Peressotti, A. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere 2011, 83, 1262–1267. [Google Scholar] [CrossRef]
- Mudd, G.; Jowitt, S.; Werner, T. The world’s lead-zinc mineral resources: Scarcity, data, issues and opportunities. Ore Geol. Rev. 2017, 80, 1160–1190. [Google Scholar] [CrossRef]
- Tang, C.; Chen, Y.; Zhang, Q.; Li, J.; Zhang, F.; Liu, Z. Effects of peat on plant growth and lead and zinc phytostabilization from lead-zinc mine tailing in southern China: Screening plant species resisting and accumulating metals. Ecotoxicol. Environ. Saf. 2019, 176, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, Q.; Qi, C.; Fourie, A.; Xiao, C. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact. J. Clean. Prod. 2018, 186, 418–429. [Google Scholar] [CrossRef]
- Deng, D.; Liu, L.; Yao, Z.; Song, K.; Lao, D. A practice of ultra-fine tailings disposal as filling material in a gold mine. J. Environ. Manag. 2017, 196, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, Q.; Fourie, A.; Chen, X.; Qi, C. Experimental investigation on the strength characteristics of cement paste backfill in a similar stope model and its mechanism. Constr. Build. Mater. 2017, 154, 34–43. [Google Scholar] [CrossRef]
- Shi, X.; Zhao, J.; Yin, J.; Yu, Z. An elastoplastic model for gap-graded soils based on homogenization theory. Int. J. Solids Struct. 2019, 163, 10–14. [Google Scholar] [CrossRef]
- Chen, X.; Shi, X.; Zhou, J.; Du, X.; Chen, Q.; Qiu, X. Effect of overflow tailings properties on cemented paste backfill. J. Environ. Manag. 2019, 235, 133–144. [Google Scholar] [CrossRef]
- Common Portland Cement; GB175-2007; Standardization Administration of China: Beijing, China, 2007.
- Chen, Q.; Zhang, Q.; Fourie, A.; Xin, C. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill. J. Environ. Manag. 2017, 201, 19. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Chen, Q.; Qi, C.; Su, Z.; Huang, Z. Utilisation of water-washing pre-treated phosphogypsum for cemented paste backfill. Minerals. 2019, 9, 175. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Wang, X.; Xiao, C.; Hu, Q. A hydraulic gradient model of paste-like crude tailings backfill slurry transported by a pipeline system. Environ. Earth. Sci. 2016, 75, 1099. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Construct. Build. Mater. 2018, 159, 473–478. [Google Scholar] [CrossRef]
- IAEA. Underground Disposal of Radioactive Wastes: Basic Guidelines Safety Series No. 54; IAEA: Vienna, Austria, 1981. [Google Scholar]
- Vaghela, P. Radioactive waste treatment and disposal techniques. Chem. Prod. Finder 2000, 18, 102–111. [Google Scholar]
- Rout, T.; Sengupta, D.; Kaur, G.; Kumar, S. Enhanced removal of dissolved metal ions in radioactive effluents by flocculation. Int. J. Miner. Process. 2006, 80, 215–222. [Google Scholar] [CrossRef]
- Freitas, J.; Santana, K.; Nascimento, A.; Paiva, S.; Moura, M.; Coelho, L.; Oliveira, M.; Paiva, P.; Nascimento, A.; Napoleão, T. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water. Chemosphere 2016, 163, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chai, L.; Yang, Z.; Liao, Y.; Deng, X.; Zhang, S. Application of polymeric aluminum salts in remediation of soil contaminated by Pb, Cd, Cu, and Zn. J. Cent. South Univ. 2013, 20, 1638–1644. [Google Scholar] [CrossRef]
- Chapter Seven of the SW-846 Compendium: Introductory and Regulatory Definitions Pertaining to Hazardous Waste Characteristics; EPA: Washington, DC, USA, 2004.
- Lu, C.; Hsu, M.; Lin, Y. Evaluation of heavy metal leachability of incinerating recycled aggregate and solidification/stabilization products for construction reuse using TCLP, multi-final pH and EDTA-mediated TCLP leaching tests. J. Hazard. Mater. 2019, 368, 336–344. [Google Scholar] [CrossRef]
- Wang, H.; Chen, K. A study of the engineering properties of CLSM with a new type of slag. Constr. Build. Mater. 2016, 102, 422–427. [Google Scholar] [CrossRef]
- Yilmaz, T.; Ercikdi, B. Predicting the uniaxial compressive strength of cemented paste backfill from ultrasonic pulse velocity test. Nondestr. Test. Eval. 2016, 31, 247–266. [Google Scholar] [CrossRef]
- Khaldoun, A.; Ouadif, L.; Baba, K.; Bahi, L. Valorization of mining waste and tailings through paste backfilling solution, imiter operation, Morocco. Int. J. Miner. Sci. Technol. 2016, 26, 511–516. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Liu, Y. Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash. Ultrasonics 2016, 64, 89–96. [Google Scholar] [CrossRef]
- Standard for Ground Water; GB14848-2017; Standardization Administration of China: Beijing, China, 2017.
- Huang, H.; Zhang, P.; Yang, L.; Zhang, D.; Guo, G.; Liu, J. A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization. Chem. Eng. J. 2017, 317, 640–650. [Google Scholar] [CrossRef]
- Tan, H.; Li, M.; Ren, J.; Deng, X.; Zhang, X.; Nie, K.; Zhang, J.; Yu, Z. Effect of aluminum sulfate on the hydration of tricalcium silicate. Constr. Build. Mater. 2019, 205, 414–424. [Google Scholar] [CrossRef]
- Li, X.; Du, J.; Gao, L.; He, S.; Gan, L.; Sun, C.; Shi, Y. Immobilization of phosphogypsum for cemented paste backfill and its environmental effect. J. Clean. Prod. 2017, 156, 137–146. [Google Scholar] [CrossRef]
- Belem, T.; Benzaazoua, M. Design and application of underground mine paste backfill technology. Geotech. Geol. Eng. 2008, 26, 147–174. [Google Scholar] [CrossRef]
Elements | O | Si | S | Fe | Cr | Cu | Zn | Pb | Ni | As | Ca | K |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LZT samples | 36.8 | 16.04 | 1.1 | 11.54 | 0.015 | 0.012 | 0.25 | 0.2 | 0.01 | 0.018 | 19.04 | 0.925 |
Raw LZT | 37.2 | 16.93 | 1.02 | 11.32 | 0.016 | 0.011 | 0.26 | 0.2 | 0.01 | 0.02 | 18.83 | 0.912 |
CaO | SiO2 | Fe2O3 | Al2O3 | MgO | K2O | ZnO | PbO |
---|---|---|---|---|---|---|---|
28.23 | 35.63 | 16.28 | 7.33 | 1.23 | 1.13 | 0.32 | 0.23 |
Physical Properties | Gs | d60 (μm) | d50 (μm) | d30 (μm) | d10 (μm) | Cu | Cc |
---|---|---|---|---|---|---|---|
LZT | 2.94 | 50.18 | 28.077 | 8.83 | 1.963 | 25.56 | 0.79 |
Chemical Composition (%) | |
CaO | 63.62 |
SiO2 | 20.13 |
Al2O3 | 4.78 |
Fe2O3 | 3.97 |
MgO | 1.46 |
K2O | 0.61 |
TiO2 | 0.31 |
LOI | 4.12 |
Physical Properties | |
d50(μm) | 14.69 |
d90(μm) | 40 |
d[4,3](μm) | 18.3 |
ρ(g/cm3) | 3.08 |
Parameters | LZT (mg/L) | Backfill (mg/L) | GB Standard (mg/L) |
---|---|---|---|
Fe | 30.2 | 0.2 | 0.3 |
Cr | 0.4 | <0.02 | 0.05 |
As | 0.3 | 0.003 | 0.01 |
Cu | 0.3 | <0.001 | 1 |
Ni | 0.1 | 0.008 | 0.02 |
Curing Age | Original UCS Value (MPa) | UCS Value after Adding Immobilisation Materials (MPa) |
---|---|---|
7 days | 1.02 | 1.15 |
14 days | 1.41 | 1.56 |
28 days | 2.06 | 2.24 |
Samples | Elements (mg/L) | ||||||
---|---|---|---|---|---|---|---|
Pb | Zn | Fe | Cr | As | Cu | Ni | |
LZT | 0.08 | 0.05 | 3.1 | 0.01 | 0.01 | 0.02 | <0.001 |
CPB curing for 7 days | 0.006 | 0.003 | 0.04 | <0.001 | 0.001 | <0.001 | <0.001 |
CPB curing for 14 days | 0.005 | 0.005 | 0.02 | <0.001 | <0.001 | <0.001 | <0.001 |
CPB curing for 28 days | 0.001 | 0.002 | 0.03 | <0.001 | <0.001 | <0.001 | <0.001 |
GB standard | 0.01 | 1 | 0.3 | 0.05 | 0.01 | 1 | 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Chen, Q.; Zhang, Q.; Zhang, D. Recycling Lead–Zinc Tailings for Cemented Paste Backfill and Stabilisation of Excessive Metal. Minerals 2019, 9, 710. https://doi.org/10.3390/min9110710
Su Z, Chen Q, Zhang Q, Zhang D. Recycling Lead–Zinc Tailings for Cemented Paste Backfill and Stabilisation of Excessive Metal. Minerals. 2019; 9(11):710. https://doi.org/10.3390/min9110710
Chicago/Turabian StyleSu, Zhu, Qiusong Chen, Qinli Zhang, and Deming Zhang. 2019. "Recycling Lead–Zinc Tailings for Cemented Paste Backfill and Stabilisation of Excessive Metal" Minerals 9, no. 11: 710. https://doi.org/10.3390/min9110710
APA StyleSu, Z., Chen, Q., Zhang, Q., & Zhang, D. (2019). Recycling Lead–Zinc Tailings for Cemented Paste Backfill and Stabilisation of Excessive Metal. Minerals, 9(11), 710. https://doi.org/10.3390/min9110710