Mg-Rich Authigenic Carbonates in Coastal Facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical and Geological Settings
2.2. Field Study and Sampling
2.3. Analytical Methods
3. Results
3.1. Water Chemistry of Setovskiye Lakes
3.2. XRD Analysis of Minerals from Algae Mats and Microbialites from Vtoroe Zasechnoe Lake
3.3. Hydrogeochemical Modeling
3.4. Characterization of Algae Mats from Near-Shore Zone of Vtoroe Zasechnoe Lake
3.5. Characterization of Initial Microbialites from the Shallow Coastal Zone of the Vtoroe Zasechnoe Lake
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Melezhik, V.A.; Fallick, A.E.; Medvedev, P.V.; Makarikhin, V.V. Palaeoproterozoic magnesite: Lithological and isotopic evidence for playa/sabkha environments. Sedimentology 2001, 48, 379–397. [Google Scholar] [CrossRef]
- Slaughter, M.; Hill, R.J. The influence of organic-matter in organogenic dolomitization. J. Sediment. Res. 1991, 61, 296–303. [Google Scholar] [CrossRef]
- Vasconcelos, C.; McKenzie, J.A.; Bernasconi, S.; Grujic, D.; Tiens, A.J. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 1995, 377, 220–222. [Google Scholar] [CrossRef]
- Vasconcelos, C.; McKenzie, J.A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J. Sediment. Res. 1997, 67, 378–390. [Google Scholar] [CrossRef]
- Land, L.S. Failure to precipitate dolomite at 25 °C from dilute solution despite 1000-fold oversaturation after 32 years. Aquat. Geochem. 1998, 4, 361–368. [Google Scholar] [CrossRef]
- Deelman, J.C. Low-temperature nucleation of magnesite and dolomite. Neues Jahrb. Miner. Mon. 1999, 7, 289–302. [Google Scholar]
- Königsberger, E.; Königsberger, L.; Gamsjager, H. Low-temperature thermodynamic model for the system Na2CO3-MgCO3-CaCO3-H2O. Geochim. Cosmochim. Acta 1999, 63, 3105–3119. [Google Scholar] [CrossRef]
- Hänchen, M.; Prigiobbe, V.; Baciocchi, R.; Mazzotti, M. Precipitation in the Mg-carbonate system – effects of temperature and CO2 pressure. Chem. Eng. Sci. 2008, 63, 1012–1028. [Google Scholar] [CrossRef]
- Power, I.M.; Dipple, G.M.; Francis, P.S. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials. Cem. Concr. Compos. 2017, 78, 97–107. [Google Scholar] [CrossRef]
- Power, I.M.; Kenward, P.A.; Dipple, G.M.; Raudsepp, M. Room Temperature Magnesite Precipitation. Cryst. Growth Des. 2017, 17, 5652–5659. [Google Scholar] [CrossRef]
- Sanz-Montero, M.E.; Rodríguez-Aranda, J.P. Magnesite formation by microbial activity: Evidence from a Miocene hypersaline lake. Sediment. Geol. 2012, 263, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Montero, M.E.; Cabestrero, Ó.; Sánchez-Román, M. Microbial Mg-rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain). Front. Microbiol. 2019, 10, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Anjos, A.P.A.; Sifeddine, A.; Sanders, C.J.; Patchineelam, S.R. Synthesis of magnesite at low temperature. Carbonates Evaporites 2011, 26, 213–215. [Google Scholar] [CrossRef]
- Power, I.M.; Harrison, A.L.; Dipple, G.M.; Wilson, S.A.; Barker, S.L.L.; Fallon, S.J. Magnesite formation in playa environments near Atlin, British Columbia, Canada. Geochim. Cosmochim. Acta 2019, 255, 1–24. [Google Scholar] [CrossRef]
- Braithwaite, C.J.R.; Zedef, V. Living hydromagnesite stromatolites from Turkey. Sediment. Geol. 1994, 92, 1–5. [Google Scholar] [CrossRef]
- Shirokova, L.S.; Mavromatis, V.; Bundeleva, I.A.; Pokrovsky, O.S.; Benezeth, P.; Gerard, E.; Pearce, C.R.; Oelkers, E.H. Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes. Aquat. Geochem. 2013, 19, 1–24. [Google Scholar] [CrossRef]
- Shirokova, L.S.; Mavromatis, V.; Bundeleva, I.; Pokrovsky, O.S.; Bénézeth, P.; Pearce, C.R.; Gérard, E.; Balor, S.; Oelkers, E.H. Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes? Biogeosci. Discuss. 2011, 8, 6473–6517. [Google Scholar] [CrossRef] [Green Version]
- Mavromatis, V.; Pearce, C.R.; Shirokova, L.S.; Bundeleva, I.A.; Pokrovsky, O.S.; Benezeth, P.; Oelkers, E.H. Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 2012, 76, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Warthmann, R.; van Lith, Y.; Vasconcelos, C.; McKenzie, J.A.; Karpoff, A.M. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 2000, 28, 1091–1094. [Google Scholar] [CrossRef]
- Roberts, J.A.; Bennett, P.C.; Gonzalez, L.A.; Macpherson, G.L.; Miliken, K.L. Microbial precipitation of dolomite in methanogenic groundwater. Geology 2004, 32, 277–280. [Google Scholar] [CrossRef]
- Sánchez-Román, M.; Vasconcelos, C.; Warthmann, R.; Rivadeneyra, M.; McKenzie, J.A. Microbial dolomite precipitation under aerobic conditions: Results from Brejo do Espinho Lagoon (Brazil) and Culture Experiments. In Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg; Swart, P.K., Eberli, G.P., McKenzie, J.A., Jarvis, I., Stevens, T., Eds.; Blackwell Publishing: Chichester, UK, 2009; Volume 41, pp. 167–178. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Dong, H.; Lv, G.; Jiang, H.; Yu, B.; Bishop, M.E. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chem. Geol. 2010, 278, 151–159. [Google Scholar] [CrossRef]
- Dittrich, M.; Sibler, S. Calcium Carbonate Precipitation by Cyanobacterial Polysaccharides. In Tufas and Speleothems: Unravelling the Microbial and Physical Controls; Pedley, H.M., Rogerson, M., Eds.; Geological Society London Special Publication: London, UK, 2010; Volume 336, pp. 51–63. [Google Scholar] [CrossRef]
- Bundeleva, I.A.; Shirokova, L.S.; Bénézeth, P.; Pokrovsky, O.S.; Kompantseva, E.I.; Balor, S. Calcium carbonate precipitation by anoxygenic phototrophic bacteria. Chem. Geol. 2012, 291, 116–131. [Google Scholar] [CrossRef]
- Bundeleva, I.A.; Shirokova, L.S.; Pokrovsky, O.S.; Bénézeth, P.; Ménez, B.; Gérard, E.; Balor, S. Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp. Chem. Geol. 2014, 374–375, 44–60. [Google Scholar] [CrossRef]
- Al Disi, Z.A.; Jaoua, S.; Bontognali, T.R.R.; Attia, E.S.M.; Al-Kuwari, H.A.A.S.; Zouari, N. Evidence of a Role for Aerobic Bacteria in High Magnesium Carbonate Formation in the Evaporitic Environment of Dohat Faishakh Sabkha in Qatar. Front. Environ. Sci. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- DiLoreto, Z.A.; Bontognali, T.R.R.; Al Disi, Z.A.; Al-Kuwari, H.A.S.; Williford, K.H.; Strohmenger, C.J.; Sadooni, F.; Palermo, C.; Rivers, J.M.; McKenzie, J.A.; et al. Microbial community composition and dolomite formation in the hypersaline microbial mats of the Khor Al-Adaid sabkhas, Qatar. Extremophiles 2019, 23, 201–218. [Google Scholar] [CrossRef]
- Power, I.M.; Wilson, S.A.; Thom, J.M.; Dipple, G.M.; Gabites, J.E.; Southam, G. The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration. Chem. Geol. 2009, 260, 286–300. [Google Scholar] [CrossRef]
- McCutcheon, J.; Power, I.M.; Harrison, A.L.; Dipple, G.M.; Southam, G. A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals. Environ. Sci. Technol. 2014, 48, 9142–9151. [Google Scholar] [CrossRef]
- McCutcheon, J.; Power, I.M.; Shuster, J.; Harrison, A.L.; Dipple, G.M.; Southam, G. Carbon Sequestration in Biogenic Magnesite and Other Magnesium Carbonate Minerals. Environ. Sci. Technol. 2019, 53, 3225–3237. [Google Scholar] [CrossRef]
- Alderman, A.R.; von der Borch, C.C. Occurrence of Hydromagnesite in Sediments in South Australia. Nature 1960, 188, 931. [Google Scholar] [CrossRef]
- Pueyo, J.; Inglés, M. Substrate mineralogy, interstitial brine composition and diagenetic processes in the playa lakes of Los Monegros and Bajo Aragón (Spain). In Geochemistry and Mineral Formation in the Earth Surface, Proceedings of the International Meeting “Geochemistry of the Earth Surface and Processes of Mineral Formation”, Granada, Spain, 16–22 March 1986; Rodriguez-Clemente, R., Tardy, Y., Eds.; Centre National de la Researche Scientifique: Paris, France, 1987; pp. 351–372. [Google Scholar]
- Shlyapnikov, D.S.; Demchuk, N.G.; Okunev, P.V. Mineral Components of Bottom Sediments of the Lakes of the Urals; Ural State University: Sverdlovsk, Russia, 1990. (In Russian) [Google Scholar]
- Last, W.M. Petrology of modern carbonate hardgrounds from East Basin Lake, a Saline Maar Lake, Southern Australia. Sediment. Geol. 1992, 81, 215–229. [Google Scholar] [CrossRef]
- Renaut, R.W. Morphology, distribution, and preservation potential of microbial mats in the hydromagnesite-magnesite playas of the Cariboo Plateau, British-Columbia, Canada. Hydrobiologia 1993, 267, 75–98. [Google Scholar] [CrossRef]
- Braithwaite, C.J.R.; Zedef, V. Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Golu, Turkey. J. Sediment. Res. 1996, 66, 991–1002. [Google Scholar] [CrossRef]
- Queralt, I.; Julia, R.; Plana, F.; Bischoff, J.L. A hydrous Ca-bearing magnesium carbonate from playa lake sediments, Saline Lake, Spain. Am. Mineral. 1997, 82, 812–819. [Google Scholar] [CrossRef]
- Coshell, L.; Rosen, M.R.; McNamara, K.J. Hydromagnesite replacement of biomineralized aragonite in a new location of Holocene stromatolites, Lake Walyungup, Western Australia. Sedimentology 1998, 45, 1005–1018. [Google Scholar] [CrossRef]
- Kaźmierczak, J.; Kempe, S.; Kremer, B.; López-García, P.; Moreira, D.; Tavera, R. Hydrochemistry and microbialites of the alkaline crater lake Alchichica, Mexico. Facies 2011, 57, 543–570. [Google Scholar] [CrossRef] [Green Version]
- Last, F.M.; Last, W.M. Lacustrine carbonates of the northern Great Plains of Canada. Sediment. Geol. 2012, 277, 1–31. [Google Scholar] [CrossRef]
- Couradeau, E.; Benzerara, K.; Gérard, E.; Estève, I.; Moreira, D.; Tavera, R.; López-García, P. Cyanobacterial calcification in modern microbialites submicrometer scale. Biogeosciences 2013, 10, 5255–5266. [Google Scholar] [CrossRef] [Green Version]
- Power, I.M.; Wilson, S.A.; Harrison, A.L.; Dipple, G.M.; McCutcheon, J.; Southam, G.; Kenward, P.A. A depositional model for hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Sedimentology 2014, 61, 1701–1733. [Google Scholar] [CrossRef]
- Sanz-Montero, M.E.; Cabestrero, Ó.; Rodríguez-Aranda, J. Hydromagnesite precipitation in microbial mats from a highly alkaline lake, Central Spain. Mineral. Mag. 2013, 77, 2133. [Google Scholar]
- Lin, Y.; Zheng, M.; Ye, C. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes. Appl. Geochem. 2017, 78, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zheng, M.; Ye, C.; Power, I.M. Rare earth element and strontium isotope geochemistry in Dujiali Lake, central Qinghai-Tibet Plateau, China: Implications for the origin of hydromagnesite deposits. Chem. ERDE Geochem. 2019, 79, 337–346. [Google Scholar] [CrossRef]
- Power, I.M.; Wilson, S.A.; Thom, J.M.; Dipple, G.M.; Southam, G. Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem. Trans. 2007, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Alçiçek, H. Late Miocene nonmarine sedimentation and formation of magnesites in the Acigol Basin, southwestern Anatolia, Turkey. Sediment. Geol. 2009, 219, 115–135. [Google Scholar] [CrossRef]
- Tkachev, B.P. Inland Regions of the South of Western Siberia; Tomsk State University Publication: Tomsk, Russia, 2001. (In Russian) [Google Scholar]
- Strakhovenko, V.D.; Solotchina, E.P.; Vosel’, Y.S.; Solotchin, P.A. Geochemical factors for endogenic mineral formation in the bottom sediments of the Tazheran lakes (Baikal area). Russ. Geol. Geophys. 2015, 56, 1437–1450. [Google Scholar] [CrossRef]
- Samylina, O.S.; Zaytseva, L.V.; Sinetova, M.A. Participation of algal–bacterial community in the formation of modern stromatolites in Cock Soda Lake, Altai Region. Paleontol. J. 2016, 50, 635–645. [Google Scholar] [CrossRef]
- Gaskova, O.L.; Strakhovenko, V.D.; Ovdina, E.A. Composition of brines and mineral zoning of the bottom sediments of soda lakes in the Kulunda steppe (West Siberia). Russ. Geol. Geophys. 2017, 58, 1199–1210. [Google Scholar] [CrossRef]
- Samylina, O.S.; Zaytseva, L.V. Characterization of modern dolomite stromatolites from hypersaline Petukhovskoe Soda Lake, Russia. Lethaia 2018, 52, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kolpakova, M.N.; Gaskova, O.L.; Naymushina, O.S.; Karpov, A.V.; Vladimirov, A.G.; Krivonogov, S.K. Saline lakes of Northern Kazakhstan: Geochemical correlations of elements and controls on their accumulation in water and bottom sediments. Appl. Geochem. 2019, 107, 8–18. [Google Scholar] [CrossRef]
- Strakhovenko, V.; Ovdina, E.; Solotchina, E.; Malov, G. Features of formation of authigenic minerals in holocene bottom sediments of small lakes of Western Siberia. In Paleolimnology of Northern Eurasia: Experience, Methodology, Current Status and Young Scientists School in Microscopy Skills in Paleolimnology, Proceedings of the 3rd International conference, Kazan, Republic of Tatarstan, Russia, 1–4 October 2018; Frolova, L.A., Ibragimova, A.G., Nigamatzyanova, G.R., Eds.; Publishing House of Kazan University: Kazan, Russia, 2018; pp. 119–123. [Google Scholar]
- Zemtsov, A.A. Geomorphology of the West Siberian Plain; Tomsk State University Publication: Tomsk, Russia, 1976. (In Russian) [Google Scholar]
- Puzhakov, B.A.; Saveliev, V.P.; Kuznetsov, N.S.; Shokh, V.D.; Schulkin, E.P.; Schulkina, N.E.; Zhdanov, A.V.; Dolgova, O.Y.; Tarelkina, E.A.; Orlov, M.V. Explanatory note. In State Geological Map of the Russian Federation. Scale 1: 1,000,000 (Third Generation); Series Ural. Sheet N41—Chelyabinsk; Zotova, E.A., Ed.; Cartographic factory VSEGEI: St. Petersburg, Russia, 2013. (In Russian) [Google Scholar]
- Climate-Data.org. Available online: https://ru.climate-data.org/азия/рoссииская-федерация/курганская-oбласть/куртамыш-59573/ (accessed on 26 September 2019).
- Konstantinova, E.Y. Trace metals in soils of the main geomorphological units in the southwestern part of Western Siberia. Earth Environ. 2016, 43, 012002. [Google Scholar] [CrossRef] [Green Version]
- Pokrovsky, O.S.; Shirokova, L.S.; Kirpotin, S.N.; Audry, S.; Viers, J.; Dupré, B. Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia. Biogeosciences 2011, 8, 565–583. [Google Scholar] [CrossRef] [Green Version]
- Pace, A.; Bourillot, R.; Bouton, A.; Vennin, E.; Braissant, O.; Dupraz, C.; Duteil, T.; Bundeleva, I.; Patrier, P.; Galaup, S.; et al. Formation of stromatolite lamina at the interface of oxygenic–anoxygenic photosynthesis. Geobiology 2018, 16, 378–398. [Google Scholar] [CrossRef] [PubMed]
- Payandi-Rolland, D.; Roche, A.; Vennin, E.; Visscher, P.T.; Amiotte-Suchet, P.; Thomas, C.; Bundeleva, I.A. Carbonate Precipitation in Mixed Cyanobacterial Biofilms Forming Freshwater Microbial Tufa. Minerals 2019, 9, 409. [Google Scholar] [CrossRef] [Green Version]
- Visual MINTEQ. Available online: https://vminteq.lwr.kth.se (accessed on 30 June 2019).
- Akao, M.; Iwai, S. The hydrogen bonding of hydromagnesite. Acta Cryst. B 1977, 33, 1273–1275. [Google Scholar] [CrossRef]
- Roberts, W.L.; Campbell, T.J.; Rapp, G.R. Encyclopedia of Minerals, 2nd ed.; Chapman & Hall: New York, NY, USA, 1990. [Google Scholar]
- Stamatakis, M.G.; Renaut, R.W.; Kostakis, K.; Tsivilis, S.; Stamatakis, G.; Kakali, G. The hydromagnesite deposits of the Atlin area, British Columbia, Canada, and their industrial potential as a fire retardant. Bull. Geol. Soc. Greece 2007, 40, 972–983. [Google Scholar] [CrossRef] [Green Version]
- Balci, N.; Demirel, C.; Akcer Ön, S.; Gültekin, A.H.; Kurt, M.A. Evaluating abiotic and microbial factors on carbonate precipitation in Lake Acigöl, a hypersaline lake in Southwestern Turkey. Quatern. Int. 2018, 486, 116–128. [Google Scholar] [CrossRef]
- Balci, N.; Demirel, C.; Kurt, M.A. Geomicrobiology of Lake Salda and microbial influences on present-day stromatolite formation. Yerbilimleri 2018, 39, 19–40. (In Turkish) [Google Scholar]
- Cabestrero, Ó.; Sanz-Montero, M.E. Brine evolution in two inland evaporative environments: Influence of microbial mats in mineral precipitation. J. Paleolimnol. 2018, 59, 139–157. [Google Scholar] [CrossRef]
- Dubinsky, Z.; Rotem, J. Relations between algal populations and the pH of their media. Oecologia 1974, 16, 53–60. [Google Scholar] [CrossRef]
- Merz, M.U.E.; Schlue, W.R.; Zankl, H. pH-Measurement in the sheath of calcifying filamentous cyanobacteria. Bull. Inst. Oceanogr. 1995, 14, 281–289. [Google Scholar]
- Arp, G.; Bissett, A.; Brinkmann, N.; Cousin, S.; De Beer, D.; Friedl, T.; Mohr, K.I.; Neu, T.R.; Reimer, A.; Shiraishi, F.; et al. Tufa-Forming Biofilms of German Karstwater Streams: Microorganisms, Exopolymers, Hydrochemistry and Calcification. In Tufas and Speleothems: Unravelling the Microbial and Physical Controls; Pedley, H.M., Rogerson, M., Eds.; Geological Society London Special Publications: London, UK, 2010; Volume 336, pp. 83–118. [Google Scholar] [CrossRef]
- Shiraishi, F. Chemical conditions favoring photosynthesis-induced CaCO3 precipitation and implications for microbial carbonate formation in the ancient ocean. Geochim. Cosmochim. Acta 2012, 77, 157–174. [Google Scholar] [CrossRef]
- Trichet, J.; Defarge, C.; Tribble, J.; Tribble, G.; Sansone, F. Christmas Island lagoonal lakes, models for the deposition of carbonate-evaporite organic laminated sediments. Sediment. Geol. 2001, 140, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Obst, M.; Dynes, J.J.; Lawrence, J.R.; Swerhone, G.D.W.; Benzerara, K.; Karundakaran, C.; Kaznatcheev, K.; Tyliszcak, T.; Hitchcock, A.P. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochim. Cosmochim. Acta 2009, 73, 4180–4198. [Google Scholar] [CrossRef]
- Decho, A.W. Exopolymer Microdomains as a Structuring Agent for Heterogeneity within Microbial Biofilms. In Microbial Sediments; Riding, R.E., Awramik, S.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 9–15. [Google Scholar] [CrossRef]
- Roche, A.; Vennin, E.; Bundeleva, I.; Bouton, A.; Payandi-Rolland, D.; Amiotte-Suchet, P.; Gaucher, E.C.; Courvoisier, H.; Visscher, P.T. The Role of the Substrate on the Mineralization Potential of Microbial Mats in A Modern Freshwater River (Paris Basin, France). Minerals 2019, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Gelabert, A.; Pokrovsky, O.S.; Schott, J.; Boudou, A.; Fertet-Mazel, A.; Mielczarski, E.; Mielczarski, J.; Spalla, O. Study of diatoms/aqueous solution interface. I. Acid-base equilibria, surface charge and spectroscopic observation of two freshwater peryphytic and two marine planktonic diatoms. Geochim. Cosmochim. Acta 2004, 68, 4039–4058. [Google Scholar] [CrossRef]
- Leonova, L.V.; Potapov, S.S.; Kuz’mina, L.Y.; Cherviatsova, O.Y.; Glavatskikh, S.P.; Riabova, A.S. The technogenic sediments of biocarbonates and their experimental formation. Mineral. Tekhnogeneza 2014, 15, 113–129. (In Russian) [Google Scholar]
- Novoselov, A.; Konstantinov, A.; Leonova, L.; Soktoev, B.; Morgalev, S. Carbonate Neoformations on Modern Buildings and Engineering Structures in Tyumen City, Russia: Structural Features and Development Factors. Geosciences 2019, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Yang, S. Hollow calcite crystals with complex morphologies formed from amorphous precursors and regulated by surfactant micellar structures. CrystEngComm 2010, 12, 3296–3304. [Google Scholar] [CrossRef]
- Bontognali, T.R.R.; Vasconcelos, C.; Warthmann, R.J.; Dupraz, C.; Bernasconi, S.M.; McKenzie, J.A. Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology 2008, 36, 663–666. [Google Scholar] [CrossRef]
- Sánchez-Román, M.; Vasconcelos, C.; Schmid, T.; Dittrich, M.; McKenzie, J.A.; Zenobi, R.; Rivadeneyra, M.A. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology 2008, 36, 879–882. [Google Scholar] [CrossRef]
- Martinez, R.; Gardes, E.; Pokrovsky, O.S.; Schott, J.; Oelkers, E.H. Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surfaces? Geochim. Cosmochim. Acta 2010, 74, 1329–1337. [Google Scholar] [CrossRef]
No. | Lake | Coordinates | Surface Area (km2) | Watershed Surface (km2) | Mean Depth (m) | T (°C)1 | pH | ||||
1 | Krugloe | 54°38′58″ N | 64°02′09″ E | 1.27 | 2.62 | 1.5 | 11.7 | 9.3 | |||
2 | Lomovo | 54°37′22″ N | 64°01′49″ E | 0.67 | 1.67 | 1.4 | 12.0 | 9.2 | |||
3 | Vtoroe Zasechnoe | 54°37′39″ N | 63°59′36″ E | 1.68 | 3.62 | 2.0 | 12.5 | 9.3 | |||
4 | Pervoe Zasechnoe | 54°38′06″ N | 63°58′32″ E | 1.39 | 3.14 | 1.1 | 12.5 | 9.0 | |||
5 | Solenoe | 54°39′08″ N | 63°59′08″ E | 1.11 | 2.44 | 2.3 | 12.6 | 9.0 | |||
6 | Dolgoe | 54°39′58″ N | 63°59′26″ E | 1.70 | 4.51 | 1.8 | 12.0 | 9.7 | |||
No. | TDS (g\L) | DOC (mg/L) | DIC (mg/L) | Mg2+ (mg/L) | Ca2+ (mg/L) | Na+ (mg/L) | K+ (mg/L) | Cl– (mg/L) | SO42– (mg/L) | Mg/Ca Molar Ratio | |
1 | 40.2 | 112 | 343 | 170 | 30 | 9127 | 158 | 13,568 | 309 | 9.3 | |
2 | 45.1 | 102 | 365 | 643 | 23 | 11,226 | 139 | 11,631 | 8731 | 46.1 | |
3 | 65.1 | 95 | 275 | 1391 | 23 | 15,467 | 188 | 22,136 | 5645 | 99.7 | |
4 | 40 | 69 | 272 | 827 | 36 | 8630 | 111 | 12,606 | 3133 | 37.9 | |
5 | 83.5 | 100 | 240 | 2077 | 52 | 19,955 | 273 | 27,896 | 8754 | 65.9 | |
6 | 27.7 | 88 | 355 | 249 | 7 | 6168 | 120 | 8809 | 330 | 58.7 |
Minerals | Krugloe | Lomovo | Vtoroe Zasechnoe | Pervoe Zasechnoe | Solenoe | Dolgoe |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Calcite CaCO3 | 1.51 | 1.13 | 1.05 | 1.2 | 1.31 | 1.1 |
Aragonite CaCO3 | 1.35 | 0.98 | 0.89 | 1.05 | 1.15 | 0.95 |
Monohydrocalcite CaCO3·H2O | 0.16 | −0.21 | −0.31 | −0.14 | −0.05 | −0.24 |
Disordered dolomite CaMg(CO3)2 | 3.36 | 3.28 | 3.43 | 3.33 | 3.83 | 3.36 |
Ordered dolomite CaMg(CO3)2 | 3.97 | 3.89 | 4.03 | 3.93 | 4.45 | 3.97 |
Huntite Mg3Ca(CO3)4 | 4.52 | 5.01 | 5.62 | 5.00 | 6.12 | 5.31 |
Nesquehonite MgCO3·3H2O | −1.43 | −1.15 | −0.93 | −1.18 | −0.75 | −1.03 |
Hydromagnesite Mg5(CO3)4(OH)2·4H2O | −0.73 | 0.57 | 2.05 | 0.33 | 2.56 | 1.74 |
Magnesite MgCO3 | 1.74 | 2.02 | 2.23 | 1.97 | 2.37 | 2.13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoselov, A.A.; Konstantinov, A.O.; Lim, A.G.; Goetschl, K.E.; Loiko, S.V.; Mavromatis, V.; Pokrovsky, O.S. Mg-Rich Authigenic Carbonates in Coastal Facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation. Minerals 2019, 9, 763. https://doi.org/10.3390/min9120763
Novoselov AA, Konstantinov AO, Lim AG, Goetschl KE, Loiko SV, Mavromatis V, Pokrovsky OS. Mg-Rich Authigenic Carbonates in Coastal Facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation. Minerals. 2019; 9(12):763. https://doi.org/10.3390/min9120763
Chicago/Turabian StyleNovoselov, Andrey A., Alexandr O. Konstantinov, Artem G. Lim, Katja E. Goetschl, Sergey V. Loiko, Vasileios Mavromatis, and Oleg S. Pokrovsky. 2019. "Mg-Rich Authigenic Carbonates in Coastal Facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation" Minerals 9, no. 12: 763. https://doi.org/10.3390/min9120763
APA StyleNovoselov, A. A., Konstantinov, A. O., Lim, A. G., Goetschl, K. E., Loiko, S. V., Mavromatis, V., & Pokrovsky, O. S. (2019). Mg-Rich Authigenic Carbonates in Coastal Facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation. Minerals, 9(12), 763. https://doi.org/10.3390/min9120763