(K,Na)2[AsB6O12]2[B3O3(OH)3], a New Microporous Material, and Its Comparison to Teruggite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Crystal Structure Analysis
2.3. Structural Complexity Calculations
3. Results
Structure Description
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kniep, R.; Engelhart, H.; Hauf, C. A first approach to borophosphate structural chemistry. Chem. Mater. 1998, 10, 2930–2934. [Google Scholar] [CrossRef]
- Ewald, B.; Huang, Y.-X.; Kniep, R. Strucrural chemistry of borophosphates, metalloborophosphates and related compounds. Z. Anorg. Allg. Chem. 2007, 633, 1517–1540. [Google Scholar] [CrossRef]
- Li, M.; Verena-Mudring, A. New developments in synthesis, structure, and applications of borophosphates and metalloborophosphates. Cryst. Growth. Des. 2016, 16, 2441–2458. [Google Scholar] [CrossRef]
- Schulze, G.E.R. Die Kristallstruktur von BPO4 und BAsO4. Z. Phys. Chem. B. 1934, 24, 215–240. [Google Scholar] [CrossRef]
- Driss, A.; Jouini, T. Structure de Na2AlBAs4O14, un aluminoboroarseniate condense. Acta Crystallogr. 1988, C44, 791–794. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, K.; Park, C.-H. Pb6(AsO4)(B(AsO4)4)-ein neuartiger Kristallstrukturtyp im System PbO/B2O3/As2O5 mit einem Beitrag ueber Pb(BAsO5). Z. Naturforsch. B 1996, 51, 313–318. [Google Scholar]
- Haines, J.; Cambon, O.; Astier, R.; Fertey, P.; Chateau, C. Crystal structures of alpha-quartz homeotypes boron phosphate and boron arsenate: Structure-property relationships. Z. Kristallogr.-Cryst. Mater. 2004, 219, 32–37. [Google Scholar] [CrossRef]
- Wiggin, S.B.; Weller, M.T. Boroarsenates: A framework motif and family templated on cations and anions. J. Am. Chem. Soc. 2005, 127, 17172–17173. [Google Scholar] [CrossRef]
- Lieb, A.; Weller, M.T. NH4[BAsO4F]—A new layer fluoro-boroarsenate with a silicate related topology. Z. Anorg. Allg. Chem. 2009, 635, 1877–1881. [Google Scholar] [CrossRef] [Green Version]
- Lieb, A.; Weller, M.T. (NH4)2[BAs2O7(OH)]—A framework compound with two polymorphs. Z. Anorg. Allg. Chem. 2009, 636, 2085. [Google Scholar] [CrossRef]
- Lieb, A.; Weller, M.T. Determination of the hydrogen positions in the novel barium boroarsenate Ba[B2As2O8(OH)2] by combined single crystal X-ray and powder neutron investigations. Z. Anorg. Allg. Chem. 2017, 643, 1649–1653. [Google Scholar] [CrossRef] [Green Version]
- Aristarain, L.F.; Hurlut, C.S. Teruggite, 4CaO·MgO·6B2O3·As2O5·18H2O, a new mineral from Jujuy, Argentina. Am. Mineral. 1968, 53, 1815–1827. [Google Scholar]
- Helvaci, C. Occurrence of rare borate minerals: Veatchite-A, tunellite, teruggite and cahnite in the Emet borate deposits, Turkey. Mineral. Dep. 1984, 19, 217–226. [Google Scholar] [CrossRef]
- Garcia-Valles, M.; Fernandez-Turiel, J.L.; Gimeno-Torrente, D.; Saavedra-Alonso, J.; Martinez-Manent, S. Mineralogical characterization of silica sinters from the El Tatio geothermal field, Chile. Am. Mineral. 2008, 93, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Negro, A.D.; Kumbasar, I.; Ungaretti, L. The crystal structure of teruggite. Am. Mineral. 1973, 58, 1034–1043. [Google Scholar]
- Prewitt, C.T.; Buerger, M.J. The crystal structure of cahnite, Ca2BAsO4(OH)4. Am. Mineral. 1961, 46, 1077–1085. [Google Scholar]
- Kurkutova, E.N.; Rau, V.G.; Rumanova, I.M. Crystalline structure of seamanite Mn3(PO4/BO3)(H2O)3 = Mn3(PO3OH)(BO(OH)3)(OH)2. Dokl. Akad. Nauk. SSSR 1971, 197, 1070–1073. (In Russian) [Google Scholar]
- Moore, P.B.; Ghose, S. A novel face-sharing octahedral trimer in the crystal structure of seamanite. Am. Mineral. 1971, 56, 1527–1538. [Google Scholar]
- Huminicki, D.M.C.; Hawthorne, F.C. Hydrogen bonding in the crystal structure of seamanite. Can. Mineral. 2002, 40, 923–928. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Krivovichev, S.V. Topological complexity of crystal structures: Quantitative approach. Acta Crystallogr. Sect. A 2012, 68, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Krivovichev, S.V. Structural complexity of minerals: Information storage and processing in the mineral world. Mineral. Mag. 2013, 77, 275–326. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural complexity and configurational entropy of crystalline solids. Acta Crystallogr. Sect. B 2016, 72, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Krivovichev, S.V. Ladders of information: What contributes to the structural complexity of inorganic crystals. Z. Kristallogr. 2018, 233, 155–161. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Majzlan, J.; Drahota, P.; Filippi, M. Paragenesis and crystal chemistry of arsenate minerals. Rev. Mineral. Geochem. 2014, 79, 17–184. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Burns, P.C.; Grice, J.D. The crystal chemistry of boron. Rev. Mineral. Geochem. 1996, 33, 41–115. [Google Scholar]
- Filatov, S.K.; Bubnova, R.S. Borate crystal chemistry. Phys. Chem. Glasses. 2000, 41, 216–224. [Google Scholar]
- Hawthorne, F.C. A bond-topological approach to theoretical mineralogy: Crystal structure, chemical composition and chemical reactions. Phys. Chem. Miner. 2012, 39, 841–874. [Google Scholar] [CrossRef] [Green Version]
- Peters, C.R.; Milberg, M.E. The refined structure of orthorhombic metaboric acid. Acta Crystallogr. 1964, 17, 229–234. [Google Scholar] [CrossRef]
- Pankova, Y.A.; Gorelova, L.A.; Krivovichev, S.V.; Pekov, I.V. The crystal structure of ginorite, Ca2[B14O20(OH)6]*5H2O, and the analysis of dimensional reduction and structural complexity in the CaO–B2O3–H2O system. Eur. J. Mineral. 2018, 30, 277–287. [Google Scholar] [CrossRef] [Green Version]
Crystallographic Data | |
---|---|
Crystal system | triclinic |
Space group | P |
a, b, c [Å], α, β, γ [°], V [Å3] | 8.414(5), 10.173(6), 15.90(1), 79.56(1), 78.68(1), 70.91(1), 1251(1) |
Z | 2 |
Crystal density (g/cm3) | 2.609 |
Absorption coefficient (mm−1) | 9.039 |
Crystal size/mm3 | 0.37 × 0.07 × 0.05 |
Data Collection Parameters | |
Radiation type, wavelength | MoKα, 0.71073 |
2θ angles range, deg. | 5.18−59.422 |
Index ranges | −9 ≤ h ≤ 11 −14 ≤ k ≤ 14 −22 ≤ l ≤ 22 |
Reflections collected | 21,483 |
Independent reflections | 7031 [Rint = 0.1044, Rsigma = 0.1203] |
Observed reflections (>4σ Fσ) | 3436 |
Structure Refinement Parameters | |
Refinement method | Full-matrix least-square analysis of F2 |
Weight coefficients a, b | 0.0686, 4.5654 |
R1 [F > 4σ(F)], wR2 [F > 4σ (F)] | 0.061, 0.144 |
R1 [all data], wR2 [all data] | 0.148, 0.184 |
S | 0.954 |
ρmax, ρmin, e·Å−3 | 1.611/−0.923 |
Atom | s.o.f. | x | y | z | Ueq |
---|---|---|---|---|---|
As1 | As | 0.25014(8) | 0.49578(7) | 0.00236(4) | 0.0163(2) |
As2 | As | 0.75034(8) | 0.99316(7) | −0.49276(5) | 0.01621(19) |
O1 | O | 0.3335(6) | 0.5060(5) | 0.0872(3) | 0.0217(11) |
O2 | O | 0.1062(5) | 0.6462(5) | −0.0285(3) | 0.0222(11) |
O3 | O | 0.3657(6) | 1.4531(5) | −0.5439(3) | 0.0268(12) |
O4 | O | 0.2601(7) | 0.9363(5) | −0.0505(3) | 0.0306(13) |
O5 | O | 1.0757(6) | 0.8610(5) | −0.6022(3) | 0.0216(11) |
O6 | O | 0.4249(6) | 1.2178(5) | −0.4820(3) | 0.0205(11) |
O7 | O | 0.6068(6) | 1.0206(5) | −0.4031(3) | 0.0207(10) |
O8 | O | 0.8969(5) | 0.8423(5) | −0.4651(3) | 0.0191(10) |
O9 | O | 0.3925(5) | 0.4690(5) | −0.0881(3) | 0.0208(11) |
O10 | O | 0.1523(6) | 1.6571(5) | −0.4957(3) | 0.0224(11) |
O11 | O | 0.2096(7) | 1.3482(5) | −0.2455(3) | 0.0335(13) |
O12 | O | 0.1311(6) | 1.1568(5) | 0.0042(3) | 0.0191(10) |
O13 | O | 0.8288(6) | 1.1271(5) | −0.5304(3) | 0.0225(11) |
O14 | O | 0.6672(6) | 0.9855(5) | −0.5787(3) | 0.0214(11) |
O15 | O | 0.3531(6) | 1.1589(5) | −0.3274(3) | 0.0188(10) |
O16 | O | 0.1708(6) | 0.3611(5) | 0.0384(3) | 0.0226(11) |
O17 | O | 0.2105(8) | 1.1404(5) | −0.1467(4) | 0.0401(15) |
O18 | O | 0.2996(7) | 1.6575(5) | −0.6402(3) | 0.0325(14) |
O19 | O | 0.3999(6) | 0.7169(5) | 0.0147(3) | 0.0188(10) |
O20 | O | 0.3694(6) | 0.6635(5) | 0.1718(3) | 0.0206(11) |
O21 | O | 0.1692(7) | 0.8373(6) | 0.2533(3) | 0.0411(16) |
O22 | O | 0.0972(6) | 1.3666(5) | −0.1012(3) | 0.0204(11) |
O23 | O | 0.2027(8) | 0.8791(6) | 0.1037(3) | 0.0446(17) |
O24 | O | 0.2877(7) | 1.3955(6) | −0.3928(3) | 0.0388(15) |
O25 | O | 0.3380(10) | 0.3253(8) | 0.2813(5) | 0.068(2) |
O26 | O | 0.9331(10) | 0.6982(8) | −0.2753(5) | 0.063(2) |
O27 | O | 0.9550(11) | 0.8431(9) | −0.1848(5) | 0.081(3) |
O28 | O | 0.6844(10) | 0.8290(9) | −0.1912(5) | 0.074(3) |
O29 | O | 0.9103(10) | 0.5445(8) | −0.3663(5) | 0.068(2) |
O30 | O | 0.4197(12) | 0.7913(11) | −0.1968(6) | 0.094(3) |
B1 | B | 0.2687(10) | 1.5892(8) | −0.5574(5) | 0.0209(16) |
B2 | B | 0.2880(11) | 0.8440(9) | 0.0233(5) | 0.0264(19) |
B3 | B | 0.4267(9) | 0.6100(8) | 0.0890(5) | 0.0155(16) |
B4 | B | 0.1974(10) | 1.0816(8) | −0.0615(5) | 0.0240(18) |
B5 | B | 0.4276(9) | 1.1083(9) | −0.4103(5) | 0.0213(18) |
B6 | B | 0.3588(10) | 1.3549(8) | −0.4728(5) | 0.0201(17) |
B7 | B | 0.2508(11) | 0.7894(9) | 0.1775(5) | 0.0260(19) |
B8 | B | 0.1747(10) | 1.2836(9) | −0.1631(6) | 0.0247(19) |
B9 | B | 0.2870(10) | 1.2944(9) | −0.3215(5) | 0.0244(18) |
B10 | B | 1.0748(10) | 0.8074(8) | −0.5110(5) | 0.0197(18) |
B11 | B | 1.1827(11) | 0.7849(9) | −0.6624(5) | 0.0245(19) |
B12 | B | −0.0751(9) | 0.6896(8) | 0.0104(5) | 0.0163(16) |
B13 | B | 0.1662(15) | 0.3618(11) | 0.3052(8) | 0.045(3) |
B14 | B | 0.8542(14) | 0.7964(14) | −0.2181(7) | 0.047(3) |
B15 | B | 0.5874(14) | 0.7803(15) | −0.2237(7) | 0.051(3) |
K1/Na1 | K0.43Na0.57 | 0.8373(4) | 0.0355(4) | 0.2656(2) | 0.0725(16) |
K2 | K0.58 | 0.5869(8) | 0.4469(5) | 0.2792(3) | 0.0823(17) |
K3 | K0.23 | 0.717(2) | 0.3281(17) | 0.3281(13) | 0.108(5) |
Na2 | Na0.19 | 0.771(3) | 0.415(2) | 0.2168(16) | 0.055(6) |
As1–O1 | 1.671(5) | As2–O13 | 1.670(5) | B1–O10 | 1.352(9) |
As1–O2 | 1.673(5) | As2–O8 | 1.673(4) | B1-–O3 | 1.360(9) |
As1–O16 | 1.678(5) | As2–O14 | 1.677(5) | B1–O18 | 1.392(9) |
As1–O9 | 1.682(5) | As2–O7 | 1.678(4) | <B1–O> | 1.368 |
<As1–O> | 1.676 | <As2–O> | 1.674 | ||
B4–O12 | 1.330(9) | ||||
B2–O19 | 1.340(10) | B3–O20 | 1.450(9) | B4–O17 | 1.378(9) |
B2–O4 | 1.371(9) | B3–O19 | 1.453(8) | B4–O4 | 1.388(9) |
B2–O23 | 1.385(10) | B3–O9 | 1.468(8) | <B4–O> | 1.365 |
<B2–O> | 1.365 | B3–O1 | 1.516(9) | ||
<B3–O> | 1.472 | B7–O20 | 1.347(9) | ||
B5–O6 | 1.441(9) | B7–O21 | 1.355(10) | ||
B5–O15 | 1.452(9) | B6–O6 | 1.345(9) | B7–O23 | 1.388(9) |
B5–O14 | 1.480(10) | B6–O24 | 1.371(9) | <B7–O> | 1.363 |
B5–O7 | 1.494(9) | B6–O3 | 1.372(8) | ||
<B5–O> | 1.467 | <B6–O> | 1.363 | B10–O10 | 1.448(9) |
B10–O5 | 1.454(9) | ||||
B8–O22 | 1.340(10) | B9–O15 | 1.321(9) | B10–O8 | 1.489(8) |
B8–O17 | 1.373(9) | B9–O11 | 1.372(10) | B10–O13 | 1.502(10) |
B8–O11 | 1.379(9) | B9–O24 | 1.387(9) | <B10–O> | 1.473 |
<B8-O> | 1.364 | <B9-O> | 1.360 | ||
B13–O25 | 1.362(13) | ||||
B11–O5 | 1.342(9) | B12–O22 | 1.454(8) | B13–O26 | 1.375(14) |
B11–O21 | 1.362(9) | B12–O12 | 1.465(9) | B13–O29 | 1.399(13) |
B11–O18 | 1.381(9) | B12–O16 | 1.475(9) | <B13–O> | 1.379 |
<B11–O> | 1.362 | B12–O2 | 1.481(8) | ||
<B12–O> | 1.469 | K1/Na1–O27 | 2.487(10) | ||
B14–O27 | 1.325(14) | K1/Na1–O30 | 2.591(10) | ||
B14–O28 | 1.355(13) | B15–O28 | 1.305(14) | K1/Na1–O14 | 2.659(6) |
B14–O26 | 1.387(13) | B15–O30 | 1.366(13) | K1/Na1–O21 | 2.854(6) |
<B14–O> | 1.356 | B15–O25 | 1.441(15) | K1/Na1–O15 | 2.861(6) |
<B15–O> | 1.371 | K1/Na1–O17 | 2.989(7) | ||
K2–O25 | 2.751(10) | K1/Na1–O5 | 3.093(6) | ||
K2–O20 | 2.890(7) | K3–O26 | 2.832(18) | <K1/Na1–O> | 2.791 |
K2–O18 | 2.910(7) | K3–O13 | 2.834(17) | ||
K2–O30 | 2.977(11) | K3–O10 | 3.119(18) | Na2–O9 | 2.58(2) |
K2–O9 | 2.991(7) | K3–O24 | 3.150(19) | Na2–O11 | 2.60(2) |
K2–O11 | 3.022(7) | K3–O30 | 3.15(2) | Na2–O26 | 2.65(2) |
K2–O3 | 3.051(7) | K3–O3 | 3.260(19) | Na2–O27 | 2.92(2) |
K2–O24 | 3.139(8) | <K3–O> | 3.106 | Na2–O22 | 2.98(2) |
<K2–O> | 2.966 | <Na2–O> | 2.746 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pankova, Y.A.; Krivovichev, S.V. (K,Na)2[AsB6O12]2[B3O3(OH)3], a New Microporous Material, and Its Comparison to Teruggite. Minerals 2019, 9, 781. https://doi.org/10.3390/min9120781
Pankova YA, Krivovichev SV. (K,Na)2[AsB6O12]2[B3O3(OH)3], a New Microporous Material, and Its Comparison to Teruggite. Minerals. 2019; 9(12):781. https://doi.org/10.3390/min9120781
Chicago/Turabian StylePankova, Yulia A., and Sergey V. Krivovichev. 2019. "(K,Na)2[AsB6O12]2[B3O3(OH)3], a New Microporous Material, and Its Comparison to Teruggite" Minerals 9, no. 12: 781. https://doi.org/10.3390/min9120781
APA StylePankova, Y. A., & Krivovichev, S. V. (2019). (K,Na)2[AsB6O12]2[B3O3(OH)3], a New Microporous Material, and Its Comparison to Teruggite. Minerals, 9(12), 781. https://doi.org/10.3390/min9120781