Risk Assessment of Contamination by Potentially Toxic Metals: A Case Study in the Vicinity of an Abandoned Pyrite Mine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Historical and Current Land Use
2.3. Sampling
2.4. Standards, Reagents, and Equipment
2.5. Sample Preparation
2.6. Sample Analysis
2.7. Potential Ecological Risk Assessment
2.8. Statistical Analysis
3. Results
4. Discussion
4.1. Soil and Water Acidification
4.2. Contamination and Risk from Different Elements
4.3. Potential for Remediation and Land Use
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Angelovičová, L.; Fazekašová, D. Contamination of the soil and water environment by heavy metals in the former mining area of Rudňany (Slovakia). Soil Water Res. 2014, 9, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Musilova, J.; Arvay, J.; Vollmannova, A.; Toth, T.; Tomas, J. Environmental contamination by heavy metals in region with previous mining activity. Bull. Environ. Contam. Toxicol. 2016, 97, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Baragaño, D.; Forján, R.; Aguado, J.M.M.; Martino, M.C.; García, P.D.; Rubio, J.M.; Rueda, J.J.Á.; Gallego, J.L.R. Reuse of Dunite Mining Waste and Subproducts for the Stabilization of Metal(oid)s in Polluted Soils. Minerals 2019, 9, 481. [Google Scholar] [CrossRef] [Green Version]
- Anawar, M.H.; Garcia-Sanchez, A.; Murciego, A.; Buyolo, T. Exposure and bioavailability of arsenic in contaminated soils from the La Parrilla mine, Spain. Environ. Geol. 2006, 50, 170–179. [Google Scholar] [CrossRef]
- Mileusnić, M.; Mapani, B.S.; Kamona, A.F.; Ružičić, S.; Mapaure, I.; Chimwamurombe, P.M. Assessment of agricultural soil contamination by potentially toxic metals dispersed from improperly disposed tailings, Kombat mine, Namibia. J. Geochem. Explor. 2014, 144, 409–420. [Google Scholar] [CrossRef]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Papanikolaou, N.C.; Hatzidaki, E.G.; Belivanis, S.; Tzanakakis, G.N.; Tsatsakis, A.M. Lead toxicity update. A brief review. Med. Sci. Monit. 2005, 11, RA329–RA336. [Google Scholar]
- Akcil, A.; Koldas, S. Acid mine drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Peppas, A.; Komnitsas, K.; Halikia, I. Use of organic covers for acid mine drainage control. Miner. Eng. 2000, 13, 563–574. [Google Scholar] [CrossRef]
- Elghali, A.; Benzaazoua, M.; Bussière, B.; Thomas Genty, T. Spatial Mapping of Acidity and Geochemical Properties of Oxidized Tailings within the Former Eagle/Telbel Mine Site. Minerals 2019, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Wei, E. Present situation, problems and suggestions as to pyrite-roasting sulphuric acid production in China. Sulphuric Acid Ind. 2002, 6, 1–4. [Google Scholar]
- Bilston, D.W.; Bruckard, W.J.; McCallum, D.A.; Sparrow, G.J.; Woodcock, J.T. Comparison of Methods of Gold and Silver Extraction from Hellyer Pyrite and Lead-Zinc Flotation Middlings; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Luo, D.; Yi, P.; Liu, J. Study and Development on the Comprehensive Utilization of Iron Pyrite Cinder. Ind. Saf. Dust Cont. 2003, 29, 10–12. [Google Scholar]
- Middleton, D.; Watts, M.J.; Beriro, D.J.; Hamilton, E.M.; Polya, D.A. Arsenic in residential soil and household dust in Cornwall, south west England: Potential human exposure and the influence of historical mining. Environ. Sci. Process. Impacts 2017, 19, 517–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Wen, S.M.; Xian, Y.J.; Shen, H.Y.; Bai, S.J.; Zheng, H.L. Comprehensive Utilization of Pyrite with High Content of Asrenic. Adv. Mater. Res. 2012, 524, 965–968. [Google Scholar] [CrossRef]
- Zhang, Q. Summarization of ecological restoration in mining wasteland. Jiangsu Environ. Sci. Technol. 2008, 21, 142–144. [Google Scholar]
- GB 15618-2009. Environmental Quality Standards for Soils of China; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2009.
- GB 3838-2002. Environmental Quality Standards for Surface Water of China; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002.
- Sun, Z.; Li, Q.; Li, P.; Jiang, S. Effects of grazing exclosure years on soil microorganism and enzyme activities in Seriphidium transiliense Desert. Bull. Soil Water Cons. 2018, 38, 14–18. [Google Scholar]
- Lu, R.K. Soil Science Society of China. In Analysis Methods of Soil Agricultural Chemicals; Science and Technology of China Press: Beijing, China, 1999. [Google Scholar]
- Wu, Q.; Leung, J.Y.S.; Geng, X.; Chen, S.; Huang, X.; Li, H.; Huang, Z.Y.; Zhu, L.B.; Chen, J.H.; Lu, Y.Y. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Sci. Total Environ. 2015, 506, 217–225. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Masunaga, S. Trace metals in soil and vegetables and associated health risk assessment. Environ. Monit. Assess. 2014, 186, 8727–8739. [Google Scholar] [CrossRef]
- Reddy, M.; Moodley, R.; Jonnalagadda, S.B. Elemental uptake and distribution of nutrients in avocado mesocarp and the impact of soil quality. Environ. Monitor. Assess. 2014, 18, 4519–4529. [Google Scholar] [CrossRef]
- Xu, G.R.; Qu, J.G.; Chang, Y.; Tang, A.L. Accurate Determination of Sulfur Content in Sediments by Double Focusing Inductively Coupled Plasma Mass Spectrometry Combined with Microwave Digestion and Studies on Related Matrix Effect. Chin. J. Anal. Chem. 2016, 44, 273–280. [Google Scholar] [CrossRef]
- Raue, B.; Brauch, H.J.; Frimmel, F.H. Determination of sulphate in natural waters by ICP/OES—comparative studies with ion chromatography. Fresenius J. Anal. Chem. 1991, 340, 395–398. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, Q.L.; Yang, Y.; Liang, P.F. Determination of 10 heavy metal elements in water and food by inductively coupled plasma mass spectrometry. Chin. J. Health Lab. Technol. 2013, 23, 2429–2432. [Google Scholar]
- Broekaert, J.A.C. Calculation of detection limits in spectrographic analysis. Bull. Des. Sociétés Chim. Belg. 2015, 82, 561–567. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Deng, H.G.; Gu, T.F.; Li, M.H.; Deng, X. Comprehensive assessment model on heavy metal pollution in soil. Int. J. Electrochem. Sci. 2012, 7, 5286–5296. [Google Scholar]
- He, M.; Wang, Z.; Tang, H. The chemical, toxicological and ecological studies in assessing the heavy metal pollution in Le An River, China. Water Res. 1998, 32, 510–518. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund. EPA/540/1-89/002. 1989. Available online: http://www.epa.gov (accessed on 12 December 2019).
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef]
- Leung, A.O.W.; Duzgoren-Aydin, N.S.; Cheung, K.C.; Wong, M.H. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in Southeast China. Environ. Sci. Technol. 2008, 42, 2674–2680. [Google Scholar] [CrossRef]
- USEPA. Integrated Risk Information System (IRIS). 2014. Available online: http://www.epa.gov/iris/ (accessed on 12 December 2019).
- USEPA. Exposure Factors Handbook: 2011 Edition. EPA/600/R-090/052F. 2011. Available online: http://www.epa.gov (accessed on 12 December 2019).
- Kulkarni, S.G.; Chaudhary, A.K.; Nandi, S.; Tambe, S.S.; Kulkarni, B.D. Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN). Biochem. Eng. J. 2004, 18, 193–210. [Google Scholar] [CrossRef]
- Mao, W.; Li, W.X.; Gao, H.; Jiang, Y.; Hang, T.W.; Gong, X.X.; Chen, M.; Zhang, Y.P. pH variation and the driving factors of farmlands in Yangzhou for 30 years. J. Plant Fertil. 2017, 23, 883–893. [Google Scholar]
- Zhang, X.B.; Du, Y.P.; Wang, L.H.; Zhou, Q.; Huang, X.H.; Sun, Z.G. Combined effects of lanthanum (III) and acid rain on antioxidant enzyme system in soybean roots. PLoS ONE 2015, 10, e0134546. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.T.; Do, T.K.; Tran, T.V.; Dang, M.K.; Vo, Q.T.K. High soil Mn and Al, as well as low leaf p concentration, may explain for low natural rubber productivity on a tropical acid soil in Vietnam. J Plant Nutr. 2018, 41, 903–914. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Feng, R.W.; Wei, C.Y. Availability of arsenic in paddy and vegetable soils in Shuikoushan mining area of Hunan Province, South-central China. Chin. J. Ecol. 2012, 31, 2657–2661. [Google Scholar]
- Luo, W.; Lu, Y.; Wang, G.; Shi, Y.; Wang, T.; Giesy, J.P. Distribution and availability of arsenic in soils from the industrialized urban area of Beijing, China. Chemosphere 2008, 72, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Spurgeon, D.J.; Rowland, P.; Ainsworth, G.; Rothery, P.; Long, S.; Black, H.I.J. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils. Environ. Pollut. 2008, 153, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Deng, Z.M.; Xie, Y.H.; Chen, X.S.; Li, F. The risk assessment of sediment heavy metal pollution in the east Dongting Lake wetland. J. Chem. 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Andry, H.; Yamamoto, T.; Rasiah, V.; Inoue, M. Influence of sedum plant on sediment yield from an acid soil under simulated rainfall. Trans. ASABE 2008, 51, 977–985. [Google Scholar] [CrossRef]
- Xu, Z.; Huo, F. Study on vegetation absorbing toxic elements in coal wasting lands-Take Xinmm, Yanzhou and Tongchuan as example. In Proceedings of the International Conference on Electric Technology and Civil Engineering (ICETCE), Lushan, China, 22–24 April 2011. [Google Scholar] [CrossRef]
- Campbell, L.C. Managing soil fertility decline. J. Crop. Prod. 1998, 1, 29–52. [Google Scholar] [CrossRef]
- Sun, Z.J.; Zhao, S.T.; Lin, X.L.; Zhao, L.; Ma, J.; Wei, Y.; Hou, H. Deriving soils environmental criteria of antimony in China by species sensitivity distributions. Res. Environ. Sci. 2018, 31, 774–781. [Google Scholar]
- Tiberg, C.; Bendz, D.; Theorin, G.; Kleja, D.B. Evaluating solubility of Zn, Pb, Cu and Cd in pyrite cinder using leaching tests and geochemical modelling. Appl. Geochem. 2017, 85, 106–117. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Zhang, G.; Jiang, L.; Han, X. Mechanisms of soil acidification reducing bacterial diversity. Soil Biol. Biochem. 2015, 81, 275–281. [Google Scholar] [CrossRef]
- Fujii, K. Soil acidification and adaptations of plants and microorganisms in bornean tropical forests. Ecol. Res. 2014, 29, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, Z.W.; Shen, X. Influence of soil acidification on soil microorganisms in pear orchards. Commun. Soil Sci. Plant Anal. 2012, 43, 1833–1846. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Nat. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Shi, X.; Ke, J.L. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol. Cell Biochem. 2004, 255, 67–78. [Google Scholar] [CrossRef]
- Thomas, D.J.; Styblo, M.; Lin, S. The cellular metabolism and systemic toxicity of arsenic. Toxicol. Appl. Pharmacol. 2001, 176, 127–144. [Google Scholar] [CrossRef]
- Waqar, A.; Atta, R.; Muhammad, J.; Hua, Z. A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: A global perspective with prominence of Pakistan scenario. Environ. Geochem. Heal. 2019, 41, 737–760. [Google Scholar]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Kalia, K.; Flora, S.J. Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J. Occup. Health 2005, 47, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef]
- Liu, C.P.; Luo, C.L.; Gao, Y.; Li, F.B.; Lin, L.W.; Wu, C.A.; Li, X.D. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern china. Environ. Pollut. 2010, 158, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Brady, J.P.; Ayoko, G.A.; Martens, W.N.; Goonetilleke, A. Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia. Mar. Pollut. Bull. 2014, 81, 248–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Mcdermott, S.; Lawson, A.; Aelion, C.M. The relationship between mental retardation and developmental delays in children and the levels of arsenic, mercury and lead in soil samples taken near their mother’s residence during pregnancy. Int. J. Hyg. Environ. Health 2010, 213, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, P.B.; Macintosh, H.D.L. Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Environ. Health Perspect. 2000, 108, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Presser, T.S. Selenium Pollution. Environmental Geology; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Yan, J.L.; Yang, J.; Ding, X.Y.; Xu, C.Y.; Zhao, M.; Zhang, Y.Y.; Wang, H.; Yang, L.Z. Investigation on background concentration of Se in Hubei Province. Mod. Agric. Sci. Technol. 2016, 21, 157–161. [Google Scholar]
- Guo, Q.; Wang, Y.; Guo, Q. Hydrogeochemical genesis of groundwaters with abnormal fluoride concentrations from Zhongxiang city, Hubei province, central China. Environ. Earth Sci. 2010, 60, 633–642. [Google Scholar] [CrossRef]
- Xiang, J.Q.; Hu, R.C.; Zhang, Y.P.; Song, C.H. Distribution Characteristics and Utilization Prospect of Selenium Resources of Soil in Jianghan Basin Economic Zone. Resour. Environ. Eng. 2015, 29, 431–435. [Google Scholar]
- Zhu, J.; Zheng, B. Distribution of selenium in a mini-landscape of Yutangba, Enshi, Hubei province, China. Appl. Geochem. 2001, 16, 1333–1344. [Google Scholar] [CrossRef]
- Sun, H.J.; Rathinasabapathi, B.; Wu, B.; Luo, J.; Pu, L.P.; Ma, L.Q. Arsenic and selenium toxicity and their interactive effects in humans. Environ. Int. 2014, 69, 148–158. [Google Scholar] [CrossRef]
- Spallholz, J.E. On the nature of selenium toxicity and carcinostatic activity. Free Radical Biol. Med. 1994, 17, 45–64. [Google Scholar] [CrossRef]
- Vellaisamy, S.; Mindy, Y.A.; Elizabeth, M. Protective and antioxidant role of selenium on arsenic trioxide-induced oxidative stress and genotoxicity in the fish hepatoma cell line PLHC-1. Environ. Toxicol. Chem. 2012, 31, 2861–2869. [Google Scholar]
- Selvaraj, V.; Tomblin, J.; Armistead, M.Y.; Murray, E. Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1 fish cell line through DNA and mitochondrial membrane potential damage. Ecotoxicol. Environ. Saf. 2013, 87, 80–88. [Google Scholar] [CrossRef]
- Xiang, J.Y.; Wang, J.P.; Chen, L.; Ling, Z.Y.; Han, J.J.; Li, Q.K.; Qiugui Wang, Q.G. Distribution, Source Identification, and Assessment of Potentially Toxic Elements in the Sediment Core from the Estuarine Region of the Golmud River to the Qarhan Salt Lake, Qinghai, China. Minerals 2019, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, T.; Xiao, M.S.; Cai, Y.; Zhuang, Z.Y. Ecological risk assessment and carcinogen health risk assessment of arsenic in soils from part area of the Daye city, China. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 042048–042053. [Google Scholar] [CrossRef]
- Udovic, M.; Lestan, D. Redistribution of residual Pb, Zn, and Cd in soil remediated with EDTA leaching and exposed to earthworms (Eisenia fetida). Environ. Technol. 2010, 31, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.H.; Luo, Y.M.; Xing, X.R.; Christie, P. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric. Ecosys. Environ. 2004, 102, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Kidd, P.S.; Proctor, J. Why plants grow poorly on very acid soils: Are ecologists missing the obvious? J. Exp. Bot. 2001, 52, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Winterhaider, K. The use of manual surface seeding, liming & fertilization in the reclamation of acid metal-contaminated land in the Sudbury, Ontario mining and smelting region of Canada. Environ. Technol. Lett. 1983, 4, 209–216. [Google Scholar]
- Yun, S.W.; Yu, C. Changes in phytoavailability of heavy metals by application of limestone in the farmland soil nearby abandoned metal mine and the accumulation of heavy metals in crops. J. Korean Soc. Agric. Eng. 2012, 54, 1–9. [Google Scholar]
- Georgiev, P.S.; Groudev, S.N.; Spasova, I.I.; Nicolova, M.V. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage. In Proceedings of the EGU General Assembly, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Mi, W.; Wu, L.; Ma, Q.; Zhang, X.; Liu, Y. Combined application of organic materials and inorganic fertilizers improving rice yield and soil fertility of yellow clayey paddy soil. Trans. Chin. Soc. Agric. Eng. 2016, 32, 103–108. [Google Scholar]
- Ma, L. Acid-tolerant plant species screened for rehabilitating acid mine drainage sites. J. Soils Sediments Prot. Risk Assess. Rem. 2015, 5, 1104–1112. [Google Scholar] [CrossRef]
- Maleci, L.; Tani, C.; Bini, C.; Wahsha, M. On the metal tolerance and resilience capacity of Helichrysum italicum G. Don growing on mine soils. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Chen, Z.F.; Cheng, W.; Chen, Z.X.; Pan, R.S.; Hu, T.S.; Sun, K.L.; Li, D.Q. Study on the plant furnishing of vegetation recovery of the mine rock slope. Environ. Protect. Technol. 2015, 21, 15–20. [Google Scholar]
- Yuri, S.; Masayuki, S.; Koichiro, S. Heavy metal behavior in lichen-mine waste interactions at, an abandoned mine site in Southwest Japan. Metals 2015, 5, 1591–1608. [Google Scholar]
- Chen, S.Y.; Wang, S.Y. Effects of Solid Content and Substrate Concentration on Bioleaching of Heavy Metals from Sewage Sludge Using Aspergillus niger. Metals 2019, 9, 994. [Google Scholar] [CrossRef] [Green Version]
Sample | pH | As | Pb | Zn | |
---|---|---|---|---|---|
Soil (0–15 cm) | 1 | 3.83 ± 0.24 cln | 36.4 ± 3.8 bceg | 38.2 ± 1.1 ad | 56.3 ± 4.2 a |
2 | 3.19 ± 0.10 jmo | 55.9 ± 11.2 aceg | 43.4 ± 6.0 ad | 35.4 ± 9.1 a | |
3 | 3.12 ± 0.04 kmo | 69.6 ± 11.3 ace | 46.6 ± 7.0 ad | 30.8 ± 6.0 a | |
4 | 3.43 ± 0.08 gmn | 50.7 ± 5.5 aceg | 39.3 ± 4.8 ad | 48.1 ± 9.6 a | |
5 | 3.53 ± 0.04 emn | 34.5 ± 8.8 aceg | 33.0 ± 4.8 ad | 31.6 ± 2.7 a | |
6 | 4.19 ± 0.29 bl | 33.6 ± 7.7 bdfh | 36.3 ± 13.8 ad | 31.6 ± 11.4 a | |
7 | 3.44 ± 0.09 fmn | 52.9 ± 3.7 bceg | 47.2 ± 4.7 ac | 38.4 ± 3.4 a | |
8 | 3.36 ± 0.03 imn | 70.0 ± 3.4 aceg | 60.4 ± 5.9 a | 52.0 ± 4.0 a | |
9 | 3.59 ± 0.04 dln | 66.6 ± 8.7 ac | 60.7 ± 5.8 a | 37.8 ± 7.4 a | |
10 | 3.41 ± 0.03 hmn | 78.2 ± 3.3 a | 57.1 ± 4.2 a | 28.3 ± 7.2 a | |
11 | 6.80 ± 0.08 a | 22.7 ± 0.8 bceh | 25.4 ± 2.3 bc | 31.2 ± 2.0 a | |
12 | 6.18 ± 0.02 a | 25.1 ± 0.6 bceh | 26.7 ± 1.1 bc | 28.0 ± 1.2 a | |
Netherlands target value | - | 29 | 85 | 140 | |
Chinese standard for soils | <6.5 | 30 | 280 | 200 | |
6.5–7.5 | 25 | 600 | 250 | ||
Leachate | 1 | 2.97 ± 0.01 beg | 0.21 ± 0.01 beg | 0.080 ± 0.002 bf | 1.92 ± 0.03 ac |
2 | 2.49 ± 0.03 cfh | 0.32 ± 0.02 adf | 0.075 ± 0.001 cg | 1.93 ± 0.02 a | |
3 | 3.23 ± 0.07 a | 0.28 ± 0.01 cdf | 0.093 ± 0.002 a | 1.78 ± 0.03 bdf | |
4 | 3.10 ± 0.04 adg | 0.39 ± 0.02 a | 0.083 ± 0.003 de | 1.85 ± 0.02 ace | |
5 | 3.19 ± 0.05 ad | 0.35 ± 0.02 ad | 0.092 ± 0.002 ae | 1.90 ± 0.01 ace | |
Netherlands target value | - | - | 0.015 | 0.065 | |
Chinese standard for water | - | 0.1 | 0.1 | 2.0 |
Factor | pH | CEC | OM | As | Ca | Fe | Pb | S | Se | Zn |
---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | −0.806 *** | 0.957 *** | −0.649 *** | −0.398 * | −0.834 *** | −0.593 *** | −0.955 *** | −0.623 *** | −0.255 |
CEC | 1 | −0.837 *** | 0.660 *** | 0.270 | 0.810 *** | 0.647 *** | 0.837 *** | 0.634 *** | 0.305 | |
OM | 1 | −0.543 *** | −0.389 * | −0.781 *** | −0.531 *** | −0.999 *** | −0.599 *** | −0.269 | ||
As | 1 | 0.320 | 0.819 *** | 0.806 *** | 0.535 *** | 0.810 *** | 0.049 | |||
Ca | 1 | 0.428 ** | 0.207 | 0.377 * | 0.155 | 0.474 ** | ||||
Fe | 1 | 0.832 *** | 0.776 *** | 0.748 *** | 0.347 * | |||||
Pb | 1 | 0.525 ** | 0.851 *** | 0.361 * | ||||||
S | 1 | 0.597 *** | 0.259 | |||||||
Se | 1 | 0.073 | ||||||||
Zn | 1 |
Factor | pH | As | Ca | Fe | Pb | S | Se | Zn |
---|---|---|---|---|---|---|---|---|
pH | 1 | 0.069 | 0.270 | −0.122 | 0.831 *** | 0.280 | 0.602 * | −0.597 * |
As | 1 | 0.733 ** | −0.075 | 0.131 | −0.589 * | −0.099 | −0.103 | |
Ca | 1 | 0.288 | 0.300 | −0.221 | −0.348 | 0.133 | ||
Fe | 1 | −0.273 | 0.600 * | −0.553 * | 0.766 *** | |||
Pb | 1 | 0.007 | 0.389 | −0.467 | ||||
S | 1 | 0.095 | 0.230 | |||||
Se | 1 | −0.814 *** | ||||||
Zn | 1 |
Sampling Site | Depth (cm) | Potential Ecological Risk Factors | RI | Degree of Pollution | ||
---|---|---|---|---|---|---|
As | Pb | Zn | ||||
1 | 0−15 | 12.1 ± 0.3 | 0.7 ± 0 | 0.3 ± 0 | 13.1 ± 0.3 | low |
15−30 | 5.4 ± 0.4 | 0.4 ± 0 | 0.1 ± 0 | 5.9 ± 0.4 | low | |
30−45 | 1.6 ± 0.3 | 0.2 ± 0 | 0 | 1.8 ± 0.3 | low | |
45−60 | 0.4 ± 0.2 | 0.1 ± 0 | 0 | 0.5 ± 0.2 | low | |
60−75 | 0.3 ± 0.1 | 0 | 0 | 0.3 ± 0.1 | low | |
75−90 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
2 | 0−15 | 18.6 ± 0.3 | 0.8 ± 0 | 0.2 ± 0 | 19.6 ± 0.3 | low |
15−30 | 8.4 ± 0.4 | 0.5 ± 0 | 0.1 ± 0 | 9.0 ± 0.4 | low | |
30−45 | 2.1 ± 0.1 | 0.2 ± 0 | 0 | 2.3 ± 0.1 | low | |
45−60 | 0.6 ± 0.2 | 0.1 ± 0 | 0 | 0.7 ± 0.2 | low | |
60−75 | 0.4 ± 0.1 | 0.1 ± 0 | 0 | 0.5 ± 0.1 | low | |
75−90 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
3 | 0−15 | 23.2 ± 0.4 | 0.8 ± 0.1 | 0.2 ± 0 | 24.2 ± 0.5 | low |
15−30 | 10.7 ± 0.6 | 0.4 ± 0 | 0.1 ± 0 | 11.2 ± 0.6 | low | |
30−45 | 2.4 ± 0.3 | 0.2 ± 0 | 0 | 2.6 ± 0.3 | low | |
45−60 | 0.7 ± 0.2 | 0.1 ± 0 | 0 | 0.8 ± 0.2 | low | |
60−75 | 0.4 ± 0.1 | 0 | 0 | 0.4 ± 0.1 | low | |
75−90 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
4 | 0−15 | 16.9 ± 0.3 | 0.7 ± 0.1 | 0.2 ± 0 | 17.8 ± 0.4 | low |
15−30 | 7.9 ± 0.3 | 0.4 ± 0 | 0.1 ± 0 | 8.4 ± 0.3 | low | |
30−45 | 2.1 ± 0.2 | 0.2 ± 0 | 0 | 2.3 ± 0.2 | low | |
45−60 | 0.6 ± 0.1 | 0.1 ± 0 | 0 | 0.7 ± 0.1 | low | |
60−75 | 0.4 ± 0.1 | 0 | 0 | 0.4 ± 0.1 | low | |
75−90 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
5 | 0−15 | 15.8 ± 0.2 | 0.6 ± 0 | 0.2 ± 0 | 16.6 ± 0.2 | low |
15−30 | 7.0 ± 0.5 | 0.4 ± 0 | 0.1 ± 0 | 7.5 ± 0.5 | low | |
30−45 | 2.0 ± 0.2 | 0.2 ± 0 | 0 | 2.2 ± 0.2 | low | |
45−60 | 0.6 ± 0.1 | 0.1 ± 0 | 0 | 0.7 ± 0.1 | low | |
60−75 | 0.4 ± 0.1 | 0 | 0 | 0.4 ± 0.1 | low | |
75−90 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
6 | 0−15 | 7.6 ± 0.3 | 0.6 ± 0.1 | 0.2 ± 0 | 8.4 ± 0.4 | low |
15−30 | 4.4 ± 0.4 | 0.5 ± 0 | 0.1 ± 0 | 5.0 ± 0.4 | low | |
30−45 | 1.7 ± 0.2 | 0.2 ± 0 | 0 | 1.9 ± 0.2 | low | |
45−60 | 0.6 ± 0.2 | 0.1 ± 0 | 0 | 0.7 ± 0.2 | low | |
60−75 | 0.4 ± 0.1 | 0.1 ± 0 | 0 | 0.5 ± 0.1 | low | |
75−90 | 0.2 ± 0 | 0 | 0 | 0.2 ± 0 | low | |
7 | 0−15 | 14.9 ± 0.3 | 0.8 ± 0 | 0.2 ± 0 | 15.9 ± 0.3 | low |
15−30 | 6.9 ± 0.4 | 0.5 ± 0 | 0.1 ± 0 | 7.5 ± 0.4 | low | |
30−45 | 1.9 ± 0.2 | 0.2 ± 0 | 0 | 2.1 ± 0.2 | low | |
45−60 | 0.6 ± 0.2 | 0.1 ± 0 | 0 | 0.7 ± 0.2 | low | |
60−75 | 0.4 ± 0.1 | 0 | 0 | 0.4 ± 0.1 | low | |
75−90 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
8 | 0−15 | 20.8 ± 0.4 | 1.1 ± 0.1 | 0.3 ± 0 | 22.2 ± 0.5 | low |
15−30 | 9.2 ± 0.4 | 0.6 ± 0 | 0.1 ± 0 | 9.9 ± 0.4 | low | |
30−45 | 1.8 ± 0.2 | 0.2 ± 0 | 0 | 2.0 ± 0.2 | low | |
45−60 | 0.6 ± 0.3 | 0.1 ± 0 | 0 | 0.7 ± 0.3 | low | |
60−75 | 0.4 ± 0.1 | 0 | 0 | 0.4 ± 0.1 | low | |
75−90 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
9 | 0−15 | 23.3 ± 0.4 | 1.1 ± 0.1 | 0.2 ± 0 | 24.6 ± 0.5 | low |
15−30 | 10.0 ± 0.6 | 0.5 ± 0 | 0.1 ± 0 | 10.6 ± 0.6 | low | |
30−45 | 2.0 ± 0.2 | 0.1 ± 0 | 0 | 2.1 ± 0.2 | low | |
45−60 | 0.6 ± 0.2 | 0.1 ± 0 | 0 | 0.7 ± 0.2 | low | |
60−75 | 0.4 ± 0.1 | 0 | 0 | 0.4 ± 0.1 | low | |
75−90 | 0.2 ±0 | 0 | 0 | 0.2 ±0 | low | |
10 | 0−15 | 27.0 ± 0.4 | 1.0 ± 0.1 | 0.1 ± 0 | 28.1 ± 0.5 | low |
15−30 | 11.1 ± 0.3 | 0.5 ± 0 | 0.1 ± 0 | 11.7 ± 0.3 | low | |
30−45 | 1.8 ± 0.2 | 0.2 ± 0 | 0 | 2.0 ± 0.2 | low | |
45−60 | 0.7 ± 0.2 | 0.1 ± 0 | 0 | 0.8 ± 0.2 | low | |
60−75 | 0.4 ± 0.1 | 0 | 0 | 0.4 ± 0.1 | low | |
75−90 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
11 | 0−15 | 9.1 ± 0.4 | 0.2 ± 0 | 0.1 ± 0 | 9.4 ± 0.4 | low |
15−30 | 3.9 ± 0.3 | 0.1 ± 0 | 0.1 ± 0 | 4.1 ± 0.3 | low | |
30−45 | 1.5 ± 0.3 | 0.1 ± 0 | 0 | 1.6 ± 0.3 | low | |
45−60 | 0.4 ± 0.2 | 0 | 0 | 0.4 ± 0.2 | low | |
60−75 | 0.3 ± 0.1 | 0 | 0 | 0.3 ± 0.1 | low | |
75−90 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
12 | 0−15 | 8.4 ± 0.3 | 0.4 ± 0 | 0.1 ± 0 | 8.9 ± 0.3 | low |
15−30 | 3.3 ± 0.4 | 0.2 ± 0 | 0 | 3.5 ± 0.4 | low | |
30−45 | 1.2 ± 0.3 | 0.1 ± 0 | 0 | 1.3 ± 0.3 | low | |
45−60 | 0.3 ± 0.1 | 0 | 0 | 0.3 ± 0.1 | low | |
60−75 | 0.3 ± 0 | 0 | 0 | 0.3 ± 0 | low | |
75−90 | 0.2 ± 0 | 0 | 0 | 0.2 ± 0 | low |
Sampling Site | P’i | Degree of Pollution | ||||
---|---|---|---|---|---|---|
As | Pb | Zn | As | Pb | Zn | |
1 | 2.27 | 0.81 | 0.97 | moderate | low | low |
2 | 3.41 | 0.76 | 0.98 | strong | low | low |
3 | 2.89 | 0.94 | 0.90 | moderate | low | low |
4 | 4.07 | 0.86 | 0.93 | strong | low | low |
5 | 3.65 | 0.94 | 0.95 | strong | low | low |
Soil | As HQ | Pb HQ | Zn HQ | HI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Children | Females | Males | Children | Females | Males | Children | Females | Males | Children | Females | Males | |
1 | 0.69−0.86 | 0.17−0.21 | 0.15−0.18 | 0.07 | 0.02 | 0.01−0.02 | - | - | - | 0.76−0.93 | 0.19−0.23 | 0.16−0.20 |
2 | 0.95−1.43 | 0.24−0.36 | 0.20−0.31 | 0.07−0.09 | 0.02 | 0.01−0.02 | - | - | - | 1.02−1.52 | 0.26−0.38 | 0.22−0.33 |
3 | 1.24−1.72 | 0.31−0.43 | 0.27−0.37 | 0.07−0.10 | 0.02 | 0.02 | - | - | - | 1.32−1.82 | 0.33−0.46 | 0.28−0.39 |
4 | 0.96−1.20 | 0.24−0.30 | 0.21−0.26 | 0.06−0.08 | 0.02 | 0.01−0.02 | - | - | - | 1.03−1.28 | 0.26−0.32 | 0.22−0.27 |
5 | 0.55−0.92 | 0.14−0.23 | 0.12−0.20 | 0.05−0.07 | 0.01−0.02 | 0.01 | - | - | - | 0.60−0.99 | 0.15−0.25 | 0.13−0.21 |
6 | 0.55−0.88 | 0.14−0.22 | 0.12−0.19 | 0.04−0.09 | 0.01−0.02 | 0.01−0.02 | - | - | - | 0.60−0.97 | 0.15−0.24 | 0.13−0.21 |
7 | 1.05−1.21 | 0.26−0.30 | 0.22−0.26 | 0.09−0.11 | 0.02−0.03 | 0.02 | - | - | - | 1.14−1.32 | 0.29−0.33 | 0.24−0.28 |
8 | 1.42−1.56 | 0.35−0.39 | 0.30−0.34 | 0.10−0.12 | 0.02−0.03 | 0.02−0.03 | - | - | - | 1.52−1.68 | 0.38−0.42 | 0.33−0.36 |
9 | 1.23−1.60 | 0.31−0.40 | 0.26−0.34 | 0.10−0.12 | 0.02−0.03 | 0.02−0.03 | - | - | - | 1.33−1.73 | 0.33−0.43 | 0.29−0.37 |
10 | 1.60−1.74 | 0.40−0.43 | 0.34−0.37 | 0.09−0.10 | 0.02−0.03 | 0.02 | - | - | - | 1.69−1.84 | 0.42−0.46 | 0.36−0.39 |
11 | 0.47−0.50 | 0.12−0.13 | 0.10−0.11 | 0.04−0.05 | 0.01 | 0.01 | - | - | - | 0.50−0.55 | 0.13−0.14 | 0.11−0.12 |
12 | 0.52−0.55 | 0.13−0.14 | 0.11−0.12 | 0.03−0.04 | 0.01 | 0.01 | - | - | - | 0.56−0.59 | 0.14−0.15 | 0.12−0.13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Zhou, W.; Yang, X.; Christie, P.; Luo, Y. Risk Assessment of Contamination by Potentially Toxic Metals: A Case Study in the Vicinity of an Abandoned Pyrite Mine. Minerals 2019, 9, 783. https://doi.org/10.3390/min9120783
Ma T, Zhou W, Yang X, Christie P, Luo Y. Risk Assessment of Contamination by Potentially Toxic Metals: A Case Study in the Vicinity of an Abandoned Pyrite Mine. Minerals. 2019; 9(12):783. https://doi.org/10.3390/min9120783
Chicago/Turabian StyleMa, Tingting, Wei Zhou, Xiao Yang, Peter Christie, and Yongming Luo. 2019. "Risk Assessment of Contamination by Potentially Toxic Metals: A Case Study in the Vicinity of an Abandoned Pyrite Mine" Minerals 9, no. 12: 783. https://doi.org/10.3390/min9120783
APA StyleMa, T., Zhou, W., Yang, X., Christie, P., & Luo, Y. (2019). Risk Assessment of Contamination by Potentially Toxic Metals: A Case Study in the Vicinity of an Abandoned Pyrite Mine. Minerals, 9(12), 783. https://doi.org/10.3390/min9120783